单变量描述统计分析.ppt
- 格式:ppt
- 大小:248.50 KB
- 文档页数:24
社专本111 2011761114 梁雪彩P59第二章单变量统计描述分析六、根据以下统计资料:(汉族,50,000)(苗族,22,000)(布依,20,000)(藏族,1,000)问:(1)能做成那些统计图?(2)如果做成条形图,对变量值的排列是否有要求?答:(1)能做成条形图和圆饼图(2)如果做成条形图,对变量的排列没有要求,因为题目中的统计资料是定类变量,长条排列次序可以任意,定类变量无大小、高低次序之分。
七、根据以下资统计料:(老年,1,000)(中年,2,000)(青年,5,000)问:(1)能否做成直方图?为什么?(2)如果做成条形图,对变量值的排列是否有要求?答:(1)不能,因为上述为定序变量,定距变量才能做成直方图。
(2)如果做成条形图,对变量的排列有要求,因为题目中的统计资料是定序变量,长条按序排列,定序变量有大小、高低次序之分。
十三、以下是某班参加业余活动的情况的调查:C=“书社”P=“摄影组”J=“舞蹈团”O=“体育组”C C C P O P C C C P O O P C O C P C C PO C P C C O C J C O O C P C C O O O O PO C O O O O P O P P(1)试作统计图和统计表某班参加业余活动情况的条形图某班参加业余活动情况的圆饼图:表1.1某班参加业余活动情况的调查表(2)选择适当的集中值和离散值,并讨论之。
集中值众值M0=书社则可知参加书社业余活动的人数最多中位值Md=N+1/2=25.5 中位值Md=摄影组均值=19+12+1+18/4=12.5离散值异众比率r=(N-fm0)/N=50-19/50=0.62 异众率比较高,则认为总数的代表性较差,所提供的信息量较少。
极差:R=观察的最大值-观察的最小值=18 极差大表示资料分散,人们选择的业余活动的人数有比较大的差异。
四分互差Q=Q75-Q25 Q50 的位置=50+1/2=25.5Q25的位置=50+1/4=12.75Q75的位置=3(50+1)/4=38.25Q25=书社Q75=体育组四分互差Q=Q75-Q25=体育组-书社可知有50%的人选择体育组和书社这两项活动方差=[(19-12.5)^2+(12-12.5)^2+(1-12.5)^2+(18-12.5) ^2]/4=51.31标准差=7.16。
单变量数据的描述和分析简介:在统计学中,单变量数据(univariate data)是指只有一个单独的变量的数据集合。
这种类型的数据通常用于观察、描述和分析一个特定的量或属性。
本文将讨论如何对单变量数据进行合适的描述和分析,以揭示数据集中的模式、趋势和分布。
一、数据描述1. 数据的基本统计量对于单变量数据,我们需要了解一些基本的统计量,以获得对数据的整体概括。
常见的基本统计量包括:(1)均值(mean):描述数据的平均水平,计算方法为将所有数据值相加后除以观测次数。
(2)中位数(median):描述数据的中间位置,即将数据按照大小顺序排列,取中间位置的值。
(3)众数(mode):描述数据中出现频率最高的值或值的集合。
(4)极差(range):描述数据的范围,即最大值与最小值之间的差异。
(5)方差(variance):描述数据的离散程度,计算方法为每个数据值与均值之差的平方的平均值。
(6)标准差(standard deviation):描述数据的离散程度,是方差的平方根。
2. 数据的分布图表除了基本统计量之外,数据的可视化也是揭示数据特征的重要方法。
以下是几种常见的单变量数据的分布图表:(1)频率分布表(frequency table):将数据按照不同的取值范围划分为区间,统计每个区间的频数或频率。
(2)直方图(histogram):将数据按照取值范围划分为一系列不相交的区间,描绘出每个区间的频数或频率的柱状图。
(3)箱线图(box plot):展示数据的分散情况,包括最大值、最小值、中位数、上四分位数和下四分位数等统计信息。
(4)饼图(pie chart):用于表示数据的比例关系,适用于离散型数据。
二、数据分析1. 总体推断通过单变量数据的描述,我们可以对所研究的总体进行推断。
总体推断是建立在样本数据上的,用于推断整个总体的特征和性质。
常见的总体推断方法包括:(1)参数估计:通过样本数据估计总体的参数,如均值、方差等。
第⼆章单变量统计描述分析第⼆章单变量统计描述分析第⼀节单变量统计描述基本技术⼀、变量的计量尺度/层次1、定类变量——最低层次的变量类型。
只有类别属性之分,⽆⼤⼩程度之分。
根据变量值,只能知道研究对象的异同。
从数学运算特性来看,定类变量只有等于或不等于的性质。
2、定序变量——层次⾼于定类变量。
取值除类别属性外,还有等级、次序之分。
数学运算特性除等于或不等于外,还有⼤于或⼩于。
3、定距变量——层次⾼于定序变量。
取值除类别属性、次序之外,取值之间的距离可以⽤标准化的举例度量。
数学运算特性除等于不等于,⼤于⼩于之外,还可以加减。
如收⼊,以1元为标准化距离,则2000元⽐1500元多了500元。
4、定⽐变量——最⾼层次变量。
除了上述三种属性外,可以进⾏乘除运算。
1、社会学研究中,能够满⾜定距⽽不能同时满⾜定⽐要求的变量不多。
如智商,因为智商0分只有相对的意义,0分不等于没有智商,且0值不固定。
当前社会统计⽅法很少要求达到定⽐层测,所以只介绍前三种层次变量。
2、在社会学研究当中,有些变量的层次是不统⼀可变的,可⽤定序层次也可⽤定距层次,根据研究需要。
⾼层次变量可以降低层次来使⽤。
⼀般来说,测量层次越⾼越好,数学特性就越多,统计分析就越⽅便,能了解资料的程度就越深⼊。
⼆、基本技术1、次数分布(定类)——针对定类变量最基本的统计分析⽅法。
⾯对⼤量的数据资料,⾸先要组织整理,第⼀步就是要采⽤次数分布来简化资料,看某变量的每⼀个值出现的次数是多少。
定类变量的取值要求:变量取值必须完备,使得每个各观察值都有所归类;必须互斥,⼀个观察值只能归⼊⼀类,对于分组数据遵循上限不包括在内原则。
次数分布可简化资料,但不能⽐较样本,因为样本量不同。
2、⽐、⽐例和⽐率(通常保留⼀位或两位⼩数)⽐:某两类的次数相除,如性别⽐=男性/⼥性⽐例:某类次数除以总数,⽼年⼈⼝⽐例=⽼年⼈⼝数/总⼈⼝数×100%⽐率:某⼀确定变量相对应的某些事件发⽣的频率。