基于有限元的高速龙门五轴加工中心动静态优化设计
- 格式:pdf
- 大小:275.16 KB
- 文档页数:3
超重型龙门式加工中心的结构设计与优化随着制造业的发展以及对加工精度和效率的要求不断提升,超重型龙门式加工中心作为一种重要的设备在工业生产中扮演着重要的角色。
本文将就超重型龙门式加工中心的结构设计与优化进行探讨,以满足高精度、高效率的加工要求。
超重型龙门式加工中心的结构设计是整个设备设计的关键,它直接影响到设备的性能和稳定性。
在设计时,需要充分考虑以下几个方面:首先,要充分考虑刚度和稳定性。
超重型龙门式加工中心在加工过程中需要承受较大的切削力和惯性力,因此结构需要具有足够的刚度和稳定性,以确保加工精度和表面质量。
在设计时,可以采用梁式结构,增加横梁和支撑柱的数量和截面尺寸,以提高整个结构的刚度。
其次,要考虑设备的负载能力和运动平稳性。
超重型龙门式加工中心通常需要加工较大尺寸的工件,因此结构需要具有足够的负载能力,以支撑工件的重量和加工力。
在设计时,可以采用双柱龙门式结构,增加纵梁和支撑柱的截面尺寸和数量,以增加结构的负载能力。
同时,还可以采用滚动导轨和滚珠丝杠等技术,以提高设备的运动平稳性和精度。
另外,要考虑设备的刚性和动态特性。
超重型龙门式加工中心在加工过程中会产生较大的振动和冲击力,因此结构需要具有足够的刚性和抗震性。
在设计时,可以采用箱型梁或闭式结构,增加结构的强度和刚性。
同时,还可以采用减震器和振动消除技术,以降低设备的振动幅度和噪音,提高加工精度和表面质量。
最后,要考虑设备的维修和保养便捷性。
超重型龙门式加工中心通常由多个部件和机构组成,因此在设计时需要考虑设备的维修和保养便捷性。
在设计时,可以采用模块化设计和标准化部件,以方便维修和更换。
同时,还可以加装传感器和监测装置,实时监测设备的运行状态,及时发现故障并进行维修。
除了结构设计,超重型龙门式加工中心的优化也是提高设备性能的重要手段。
在优化过程中,可以从以下几个方面进行改进:首先,可以优化加工工艺和刀具选择。
通过合理选择加工工艺和刀具,可以降低切削力和热变形,提高加工精度和表面质量。
縉密an工廉检测技术I 2024年第3期Precision Machining and Testing Technology■基于能量平衡原理的机床结构动态优化刘江①王兆涛①阮业康②(①北京科技大学机械工程学院,北京100083;②中船重工武汉船用机械有限责任公司,湖北武汉430084)摘要:提出了一种基于能量平衡原理的机床结构动态优化的方法,通过提高机床部件能量分布的均匀性来提高机床动态性能。
以数控雕铳机龙门架的动态性能优化设计为例,对这一方法做了具体的阐述。
首先,利用有限元软件模态分析确定出部件危险模态的固有频率及振型;然后,根据能量分布确定出动能和势能集中的区域,再根据能量平衡原理对零件结构进行优化;最后,使用标准差对能量分布的均匀性进行评价,最终达到提高机床部件动态特性的目的。
关键词:动态特性;能量平衡;动能;势能;标准差中图分类号:TG502.31文献标识码:EDOI:10.19287/ki.1005-2402.2021.03.004Dynamic optimization of machine tool structure based on energy balanee principleLIU Jiang®,WANG Zhaotao①,RUAN Yekang®((DSchool of Mechanical Engineering,University o£Science and Technology Beijing,Beijing100083,CHN;②Wuhan Maring Machinery Plant Co.,Ltd.,Wuhan430084,CHN)Abstract:This paper presents a method of dynamic optimization of machine tool structure based on energy balance principle.The dynamic performance o£machine tool is improved by improving the uniformity of energydistribution of machine tool parts.Taking the dynamic perfonnance optimization design of gantry of CNCengraving and milling machine as an example,this method is expounded in detail.The paper firstly usesmodal analysis in finite element analysis software to find the dangerous modal,secondly identifies theconcentrated area of the kinetic energy and potential energy distribution,then optimizes the part structureon the principle of energy balance,finally evaluates the uniformity of energy distribution by standard deviation.The results prove that the dynamic performance of machine tool is improved by the better uniformity of energy distribution.Keywords:dynamic performance;energy balance;kinetic energy;potential energy;standard deviation高速加工机床作为现代车间柔性化生产的基本单元,不仅具有较高的生产效率和加工精度,还具备快速响应、快速移动的特点,因此,为其设计轻质量、低惯量及高刚性的部件就显得十分重要⑷。
高架桥式五坐标龙门加工中心整机动特性分析东南大学机械工程系 (210096) 倪向阳 张建润江苏多棱数控机床有限公司 (213012) 彭 文摘 要 基于试验识别机床各结合面参数,本文建立了机床整机有限元模型,并进行了静态、动态和谐响应分析,在此基础上找出机床结构的薄弱环节,为机床结构优化设计提供技术支持。
关键词 有限元建模 有限元分析 模态分析 谐响应分析 结合面 在有关项目支持下东南大学与江苏多棱数控机床有限公司合作,开发大型高架桥式五坐标龙门加工中心,机床结构示意图如图1所示。
它主要用于航空航天工业中大型铝合金构件和复杂模具的高速、高效、高精度切削加工。
为保证该机床具有良好的动、静态特性,在设计阶段进行整机和零部件的动力学建模与动、静态特性分析,以确保机床具有良好的动态特性和优良的加工性能。
1.立柱;2.滑座;3.滑台;4.横梁;5.拖板;6.箱体;7.轴;8.电主轴架;9.电主轴图1 机床结构示意图对于这种大型机床的复杂结构,由于零部件装配结合面参数的不确定性,直接建立能描述结构动、静态特性的准确有限元模型是十分困难的[1]。
本文通过试验测试的方法识别出机床主要结合面参数,并应用到整机有限元建模中,得到了较准确的机床整机有限元模型,在此基础上进行机床动、静态特性分析,得到了可靠的分析结果[2][3]。
1 结合面参数识别与整机有限元建模1.1 结合面参数识别机床结合面是影响整个机床动、静态特性的关键,因此整机建模时结合面的参数正确与否,对整机有限元模型的建模精度具有举足轻重的作用。
本文针对影响整机建模精度的关键结合面———导轨副进行动态试验,识别出导轨结合面参数,把这些参数应用于整机建模,以确保整机的建模精度。
图2所示为测试系统示意图:测试时将滑台置于滑座上,由于滑座的质量远大于滑台质量,且滑座与滑台的刚度相对结合面刚度大得多,因此滑座与滑台系统可以近似为单自由度系统。
系统在各方向产生第一阶模态将由导轨结合面相应方向刚度单独决定,因此可以采用分量分析法来识别出该结合面参数[4]。
第12卷第1期2012年1月1671—1815(2012)01-0180-05科学技术与工程Science Technology and EngineeringVol.12No.1Jan.2012 2012Sci.Tech.Engrg.仪表技术基于ANSYS Workbench 的大型数控龙门铣镗床床身静动态特性分析张强1尹志宏1*张明旭2李晓园1徐凯1(昆明理工大学机电工程学院1,昆明650093;沈机集团昆明机床股份有限公司技术中心2,昆明650203)摘要对某大型数控龙门铣镗床床身的结构特点和受力情况进行了分析。
在此基础上以ANSYS12.1Workbench 为平台,用有限元方法对该床身进行了静力学和模态分析,并在不同约束条件下对比了床身的静力学变形和模态。
分析结果表明该机床床身静力状态下变形较小,低阶模态频率较高,符合使用要求;但结构较为厚重,优化空间较大,可进行进一步优化。
关键词床身有限元静力学模态中图法分类号TH123;文献标志码A2011年10月8日收到,10月20日修改第一作者简介:张强(1983—),山西人,男,硕士研究生,研究方向:机电系统动力学。
E-mail :sxndzq@163.com 。
*通讯作者简介:尹志宏,(1962—),男,教授,研究方向:系统动力学。
E-mail :yzh_kun@sina.com 。
近年来,随着科学技术的发展和计算机更新换代的加快,国内设计领域正在逐步由传统设计向现代设计过渡,这在机床行业表现的尤为突出。
目前,国内机床结构件的一般设计过程为:根据设计要求进行半经验半理论的传统设计,在此基础上完成三维CAD 绘图,然后对初步设计进行CAE 分析,进而根据分析结果进行再设计(优化);如此反复,直至性能达到要求,最后进行制造。
在进行CAE 分析时,如何根据结构的不同特点选取与之匹配的现代设计方法、评价参数和分析软件对设计进行评价、为优化提供依据,从而有效提升产品质量,成为近年来研究的热点[1—4]。
五轴联动立式加工中心结构设计简介作为难度最大、应用范围最广的数控机床技术,五轴联动立式加工中心在加工方面有着不可替代的优点:1) 能够加工一般三轴联动机床不能加工或者无法一次装夹加工完成的连续光滑的自由曲面。
例如航空发动机转子、大型发电机转子、大型船舶螺旋桨等,更多行业技术请关注微新机械公社圈由于五轴联动立式加工中心在加工过程中刀具相对于工件的角度可以随时调整,避免了刀具的加工干涉,因此五轴联动立式加工中心可以完成三轴联动机床不能完成的许多复杂的加工;2) 可以提高自由空间曲面的加工精度、加工效率和加工质量。
相对于三轴数控机床加工一般的型腔复杂的工件,工件一次装夹就可完成五面体的加工,并且由于五轴数控加工中心加工时可以随时调整位姿角,五轴联动立式加工中心可以以更好的角度加工工件,避免了多次装夹,大大提高了加工效率、加工质量和加工精度;3) 在零件加工过程中,大量的时间将消耗在搬运工件、上下料、安装调整等时间上,为了尽可能减少这些时间,五轴加工中心大量使用。
其加工效率相当于两台三轴机床,甚至可以完全省去某些大型自动化生产线的投资,大大节约了占地空间和工作在不同制造单元之间的周转运输时间及费用。
因此,五轴联动立式加工中心的重要作用使其成为当今数控工业发展的热点和重点。
五轴联动立式加工中心结构设计底座 1,在底座 1 的上部两侧分别设有左床身 12 和右床身 2,在左床身12 和右床身 2 的上部内侧分别设有 Y 轴重载滚柱线轨 3,一 Y 向运动的横梁 5 安放在Y 轴重载滚柱线轨 3上,左床身 12 和右床身 2 的上部两端分别设有第一马达座和第一尾端座,在第一马达座和第一尾端座之间分别设有 Y 轴丝杠 4,Y 轴丝杠 4 与横梁 5 螺母法兰面结合并通过Y 轴丝杠 4 驱动做 Y 向运动,在横梁 5 的上端面和左侧面设置有 X 轴重载滚柱线轨,在横梁 5的 X 轴重载滚柱线轨 7 上设有可 X 向运动的滑座 11,横梁 5 的左侧斜面上安装有第二马达座,横梁5 的右侧侧斜面上安装有第二尾端座,第二马达座和第二尾端座之间安装有 X 轴丝杠 8, X 轴丝杠 8 与滑座11 的底部螺母法兰面结合并通过X 轴丝杠 8 驱动做做 X 向运动,滑座 11 的内侧侧面上设置有Z 轴重载滚柱线轨 10,滑座 11 的前端上部安装有第三马达座,下部安装有第三尾端座,第三马达座和第三尾端座之间设有 Z 轴丝杠 15,Z 轴丝杠 15 与一机头 9 右侧螺母法兰面结合并通过Z 轴丝杠 15 驱动做 Z 向运动,机头 9 内的主轴孔内装有可高速旋转的电主轴 6,机头 9 的上端安装有气缸导向板 18,滑座 11 的上端安装气缸支撑板17,气缸固定板 17 上安装有气缸 16,右床身 2 和左床身 12 之间安装有带高动态特性力矩电机的双轴转台 14,底座 1 的后部且在右床身2 和左床身 12 之间的空腔内安放有刀库 13。