基于含硼推进剂的微推进器燃烧特性及推进性能

  • 格式:docx
  • 大小:44.99 KB
  • 文档页数:14

下载文档原格式

  / 14
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于含硼推进剂的微推进器燃烧特性及推进性能

李和平;席剑飞;罗淋旺;赵文敬;梁导伦;刘建忠

【摘要】In order to study the ignition and combustion characteristics,and propulsion properties of microthrusters using boronbased propellants,the laser ignition test bench was set up.Three different boron-containing propellants (the formulation B/AP,the formula B/KNO3 and the formulation B/AP/HTPB) were modulated,and they were carried on combustion tests in different internal micro-combustion chambers (2~ 6 mm).The experimental results show that with quick burning rate and large thrust,the B/KNO3 has the average thrust of 28.56 mN in the combustion chamber with 2.76 mm inner diameter;with long effect time and large impulse,the formulation B/AP has the maximum impulse of 0.042 28 N · s in the combustion chamber with 4.92 mm inner diameter.The combustion of formulation B/AP/HTPB is more stable,and the addition of adhesive can improve combustion performance,but also reduce the thrust performance.And thrust,specific thrust,impulse,specific impulse and other propulsion performances increase first and then decrease with the increase diameter of combustion chamber.%为研究使用含硼推进剂的微推进器点火燃烧特性及推进性能,搭建了激光点火测试实验台,配制了B/AP、B/KNO3及

B/AP/HTPB三种含硼推进剂配方,分别在2~6 mm不同内径微燃烧室中进行了燃烧测试实验.实验结果表明,配方B/KNO3的燃速快,推力大,在内径为2.76 mm燃烧室中的平均推力达到0.028 56 N;配方B/AP的推力作用时间长,冲量大,在内径为4.92 mm燃烧室中的最大冲量为0.042 28 N·s;配方B/AP/HTPB燃烧较稳定,

粘合剂的添加可改善燃烧特性,但会降低推进性能,且推力、比推力、冲量、比冲量等推进性能均随燃烧室内径的增大呈先增大、后减小的趋势.

【期刊名称】《固体火箭技术》

【年(卷),期】2017(040)006

【总页数】7页(P671-677)

【关键词】微推进器;含硼推进剂;燃烧特性;推进性能

【作者】李和平;席剑飞;罗淋旺;赵文敬;梁导伦;刘建忠

【作者单位】浙江大学能源清洁利用国家重点实验室,杭州 310027;杭州电子科技大学能源研究所,杭州 310018;南京师范大学能源与机械工程学院,南京 210042;杭州电子科技大学能源研究所,杭州 310018;杭州电子科技大学能源研究所,杭州310018;浙江大学能源清洁利用国家重点实验室,杭州 310027;浙江大学能源清洁利用国家重点实验室,杭州 310027

【正文语种】中文

【中图分类】V435

0 引言

随着航天领域的卫星朝着体积更小、质量更轻的微卫星方向发展,结构简单、小体积、轻质量、易于集成的微推进器迎来良好的发展机遇。微卫星在运行过程中需要很小很精确的推力来完成轨道位置的保持或者更变,而传统的推进器因质量和体积较大,无法满足微卫星的要求,这就使得推进器必须朝着微型化方向发展。基于MEMS技术,可将化学推进器做的更小更轻,以便安装在微卫星上,在航天领域

具有广泛的发展前景[1]。相比于传统推进器,微推进器的比表面积大,热损失大;燃烧室尺寸小,使燃料的停留时间减小;表面力、粘性力、摩擦力等微通道效应也显著增加,这使得燃料的燃烧效率低于传统燃烧室[2-3]。选用高热值的燃料是提

升微推进器性能的关键[4]。固体燃料与气体、液体燃料相比,不需要泵、阀等复

杂的系统,且不存在泄露等问题,结构较紧凑,利于整个系统的整合,特别适用于微推进器[5-8]。相比于传统的镁、铝、合金等金属燃料,硼的比体积和比质量的

热值较高[9-10],且硼燃料在燃烧过程中产物较为洁净,受到国内外学者的广泛关注。但硼点火燃烧性能差,因其表面覆盖的B2O3氧化膜需要很高的温度才能蒸发,阻碍了外界氧化剂与硼颗粒的接触和反应,导致硼的点火延迟时间长、燃烧效率低等问题[11-12]。国内有不少学者对硼的点火燃烧特性进行了研究[13-15],但对含硼推进剂的推力测试还缺乏较全面的研究[6]。

本文在自行搭建的激光点火测试实验台上,进行不同含硼推进剂(B/AP、B/KNO3、B/AP/HTPB)在不同内径(2~6 mm)微燃烧室中的燃烧实验,研究对比各工况下微推进器的点火燃烧特性和推进性能,以期为现有微推进器的能量和性能提升提供可供选择的推进剂配方。

1 实验

1.1 实验设备

激光点火测试实验台主要由点火模块、燃烧诊断模块、推力测试模块和燃烧器模块构成,如图1所示。

点火模块主要控制点火的功率和时间,由功率为50~150 W的CO2激光发生器

构成。试验时,点火功率设置为150 W,激光通过反射镜射入微燃烧室,当管口

的燃料被点燃后,关闭激光器。

燃烧诊断模块主要由高速摄影仪、高速测温仪、光纤光谱仪构成,记录样品在微燃烧室中的火焰形貌、火焰温度、产物光谱的变化。其中,高速摄影仪的频率为

相关主题