2016苏教版九年级数学上册《用一元二次方程解决问题(3)——销售问题》导学案
- 格式:doc
- 大小:94.50 KB
- 文档页数:3
课题: 1.4 用一元二次方程解决问题(2)学习目标:1、 经历和体验用一元二次方程解决实际问题的过程,进一步体会一元二次方程是刻画现实世界数量关系的有效模型;2、 会根据具体问题中的数量关系列出一元二次方程并求解,培养学生的数学应用能力;3、能检验所得的问题的结果是否符合实际意义,进一步提高学生逻辑思维能力、分析和解决问题的能力.学习重点:分析和解决问题.学习难点:根据具体问题中的数量关系列出一元二次方程.学习过程 :一.【情境创设】1.某果园有100棵桃树,一棵桃树平均结1000个桃子,现准备多种一些桃树以提高产量.经试验发现,每多种一棵桃树,每棵桃树的平均产量就会减少2个.如果要使产量增加%2.15,那么应种多少棵桃树?2.某商场从厂家以每件21元的价格购进一批商品,若每件的售价为a 元,则可卖出)10350(a 件,商场计划要赚450元,则每件商品的售价为多少元?二.【问题探究】问题3:某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场采取了降价措施.假设在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件.如果商场通过销售这批衬衫每天盈利1250元,那么衬衫的单价降了多少元?问题4:某公司组织一批员工到该风景区旅游,支付给旅行社28000元,你能确定参加这次旅游的人数吗?三.【拓展提升】问题5.某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40~65元之间.市场调查发现:若每箱以50元销售,平均每天可销售90箱;价格每降低1元,平均每天多销售3箱;价格每升高1元,平均每天少销售3箱.(1)写出平均每天销售y(箱)与每箱售价x(元)之间的关系式;(2)求出商场平均每天销售这种牛奶的利润w(元)与每箱牛奶的售价x(元)之间的关系式(每箱的利润=售价-进价);(3)当每箱牛奶售价为多少时,平均每天的利润为900元?(4)当每箱牛奶售价为多少时,平均每天的利润为1200元?四.【课堂小结】在商品销售中的基本关系式是什么?请说明五.【反馈练习】姓名班级1.某商场礼品柜台购进大量贺年卡,一种贺年卡平均每天可销售500张,每张盈利3.0元.为了尽快减少库存,商场决定采取适当的措施.调查发现,如果这种贺年卡的售价每降低1.0元,那么商场平均每天多售出300张.商场要想平均每天盈利160元,每张贺年卡应降价多少元?2.商场销售某种商品,今年四月份销售了若干件,共获毛利3万元(每件商品毛利润=每件商品的销售价格 每件商品的成本价格).五月份商场在成本价格不变的情况下,把这种商品的每件销售价降低了4元.但销售量比四月份增加了500件,从而所获毛利润比四月份增加了2千元.问调价前,销售每件商品的毛利润是多少元?3.某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价5.0元,其销售量就减少10件,问应将售价提为多少元时,才能使所赚利润最大?并求出最大利润.。
教学过程教师主导活动学生主体活动2.某商店6月份的利润是2500元,要使8月份的利润达到3600元,平均每月增长的百分率是多少?三.释疑拓展:1.某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元。
求3月份到5月份营业额的月平均增长率。
2.如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为a为15米),围成中间隔有一道篱笆的长方形花圃.(1)如果要围成面积为36平方米的花圃,AB的长是多少米?(2)能围成面积比36平方米更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.学生思考后可以小组讨论,让学生谈谈自己是如何思考让学生独立思考,然后让学生板演,最后学生点评教学过程教学内容个案调整教师主导活动学生主体活动2某公司组织一批员工到该风景区旅游,支付给旅行社28000元,你能确定参加这次旅游的人数吗?三.释疑拓展:某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降1元,可多售50个,但售价不得低于进价),单价降低x元销售一周后,商店对剩余的旅游纪念品清仓处理,以每个4元的价格全部售出。
如果这批旅游纪念品一共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?四.检测巩固:1.某商场将进货价为30元的台灯以40元售出,平均每月能售出600个。
调查表明:这种台灯的售价每上涨一元,其销售量就将减少10个。
为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?让学生先独立思考,然后小组讨论交流,最后全班展示交流,并让学生自己归纳发现的结论学生思考后可以小组讨论让学生谈谈自己是如何思考的。
利用一元二次方程求解营销类问题【学习目标】1.会用一元二次方程解决销量随销售单价变化而变化的市场营销类应用题.2.通过列方程解应用题,进一步认识方程模型的重要性,提高逻辑思维能力和分析问题、解决问题的能力.【学习重点】会用一元二次方程求解营销类问题.【学习难点】 将实际问题抽象为一元二次方程的模型,寻找等量关系,用一元二次方程解决实际问题.情景导入 生成问题1.列一元二次方程解应用题的步骤:(1)审题;(2)设元;(3)列方程;(4)解方程;(5)检验;(6)写出答案.2.利用一元二次方程解决销售利润问题:这类问题中的等量关系有:(1)一件商品的利润=一件商品的售价-一件商品的进价;(2)商品的利润率=一件商品的利润一件商品的进价×100%;(3)商品的总利润=一件商品的利润×销售商品的数量.利用以上等量关系,结合题意建立方程来解决此类问题. 自学互研 生成能力知识模块 利用一元二次方程求解营销类问题先阅读教材P 54例2的解答过程,然后完成下面填空.1.本题的主要等量关系:每台冰箱的销售利润×平均每天销售冰箱的数量=5000元.2.如果设每台冰箱降价x 元,那么每台冰箱的定价应为(2900-x)元.200 )典例讲解:某商场将销售成本为30元的台灯以40元的价格售出,平均每月销售600个.市场调查表明:这种台灯的售价每上涨1元,每月平均销售数量将减少10个.若销售利润率不得高于100%,那么销售这种台灯每月要获利10000元,台灯的售价应定为多少元?分析:如果这种台灯售价上涨x元,那么每个月每个台灯获利(40+x-30)元,每月平均销售数量为(600-10x)个,销售利润为(40+x-30)和(600-10x)的积.用一元二次方程解决实际问题时,所求得的结果往往有两个,而实际问题的答案常常是一个,这就需要我们仔细审题,看清题目的要求,进而作出正确的选择.解:设这种台灯的售价上涨x元,根据题意,得(40+x-30)(600-10x)=10000,即x2-50x+400=0,解得x1=10,x2=40.所以每个台灯的售价应定为50元或80元.当台灯售价定为80元,售价利润率为166.7%,高于100%,不符合要求;当台灯售价定为50元时,售价利润率为66.7%,低于100%,符合要求.答:每个台灯售价应定为50元.归纳总结:列一元二次方程解应用题,步骤与以前的列方程应用题一样,其中审题是解决问题的基础,找等量关系列方程是关键,恰当灵活地设元直接影响着列方程与解法的难易,它可以为正确合理的答案提供有利的条件.方程的解必须进行实际意义的检验.对应练习:1.教材P55——随堂练习2.教材P55习题2.10第1题.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块利用一元二次方程求解营销类问题检测反馈达成目标1.兰翔百合经销店将进货价为20元/盒的百合,在市场参考价28-38元/盒的范围内定价为36元/盒销售,这样平均每天可售出40盒.经市场调查发现,在进货价不变的情况下,若每盒售价每下调1元钱,平均每天就能多销售10盒,要使每天的利润达到750元,应将每盒的售价下调( A)A.1元B.11元C.1元或11元D.无法确定2.某小区2014年屋顶绿化面积为2000平方米,计划2016年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是20%.3.某商店准备进一批季节性小家电,单价为40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若准备获利2000元,则应进货多少个?定价为多少元?解:设每个商品的定价是x元,由题意,得(x-40)[180-10(x-52)]=2000,整理,得x2-110x+3000=0,解得x1=50,x2=60.当x=50时,进货180-10(x-52)=200(个),不符合题意,舍去.当x=60时,进货180-10(x-52)=100(个).答:该商品每个定价为60元,进货100个.课后反思查漏补缺1.收获:______________________________________________________________________2.存在困惑:_________________________________________________________________。
《用一元二次方程解决问题(3)——销售问题》导学案
学习目标
1、进一步体会利用一元二次方程解决有关商品的销售问题。
2、增强数学的应用意识,进一步提高分析问题、解决问题的能力
学习重、难点
重点:列一元二次方程解决有关商品的销售问题。
难点:正确寻找出商品销售问题中的等量关系
学习过程:
一、学前准备:
某商家从厂家以每件21元的价格购进一批商品,若每件的售价为a元,则可卖出(350-10a)件,商家计划要赚450元,则每件商品的售价为多少元?
二、自主探索:
某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元。
为了扩大销售,增加盈利,商场决定采取适当的降价措施。
经调查发现,在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件。
如果商场通过销售这批衬衫每天要盈利1200元,衬衫的单价应降多少元?
-
由表格我们很易得到等量关系:。
四、拓展延伸:
1、某商场礼品柜台购进大量贺年卡,一种贺年卡平均每天可销售500涨,每张可盈利0.3元。
为了尽快减少库存
........,商场决定采取适当措施。
调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天多售出300张。
商场要想平均每天盈利160元,每张贺年卡应降价多少元?
2、西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价O.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利2O0元,应将每千克小型西瓜的售价降低多少元?
教(学)后反思:。