第三章 酶催化反应动力学
- 格式:doc
- 大小:575.50 KB
- 文档页数:10
酶催化反应的动力学和热力学模型酶催化反应是生命体系中关键的一环,它在细胞代谢、信号传导、免疫反应等生命活动中发挥着至关重要的作用。
酶催化反应的动力学和热力学模型则是研究这些反应本质和控制机制的关键工具。
本文将介绍酶催化反应的动力学和热力学背景,探讨几种常见的酶催化反应模型,并简述大分子反应的特点及控制机制。
一、酶催化反应的动力学和热力学背景酶催化反应是指在生物体内,酶作为催化剂促进化学反应的进行。
酶能够显著降低反应所需的能垒,从而提高反应速率。
这是因为酶与底物之间形成的酶底物复合物能够在化学反应中提供一个更加稳定的、能量较低的过渡态,从而降低反应所需的能量和活化能。
在酶催化反应中,反应速率是非常重要的一个参数。
反应速率和底物浓度、酶浓度、反应温度等因素相关,因此需要建立反应速率的动力学模型。
此外,酶催化反应的热力学特性也是研究的关键点之一,热力学模型的建立可以帮助我们理解反应的驱动力和热力学限制。
二、几种常见的酶催化反应模型1. 米高斯-明茨动力学模型米高斯-明茨动力学模型是最早提出的酶动力学模型之一。
这个模型假设底物结合酶的速率比化学反应速率快很多,因此酶底物复合物的形成是反应速率的控制步骤。
当底物浓度很低时,酶活性不会受到抑制。
但是随着底物浓度的增加,酶活性会逐渐达到饱和,反应速率也会趋于常数。
2. 酶抑制模型酶抑制模型是一种描述酶和抑制剂之间互作关系的动力学模型。
抑制剂可以直接地或者通过结合酶活性部位抑制酶的活性。
在酶活性被抑制的情况下,反应速率呈现非线性关系,其动力学方程可以写成一个双曲线形式。
3. 酶电化学模型酶电化学模型结合了动力学和电化学的理论,描述酶催化反应的电化学过程和催化剂对电极反应动力学的影响。
这种模型在电化学和生物传感领域有着广泛的应用。
三、大分子反应的特点及控制机制除了小分子酶催化反应,大分子反应也是生物体系中一种重要的反应类型。
大分子反应包括蛋白质合成和降解、DNA复制和修复等过程。
酶催化反应动力学一、引言酶是生物体内自然存在的一类生物催化剂,其作用是加速生物体内的化学反应。
酶的催化效率比非酶催化的反应高出成千上万倍,甚至数十百万倍。
这种高效的催化作用使得酶在生物体内的生命活动中扮演着不可或缺的角色。
酶催化反应动力学是研究酶催化反应速率以及影响反应速率的各种因素的科学。
它是生物化学反应工程、生物制药工程、生物农业工程、生物材料工程等学科的基础,也是生物医学、生物工程、生物安全等领域的热点研究课题。
二、酶催化反应动力学的基础概念1、酶催化反应速率:指单位时间内,单位体积中底物的消耗速率或产物的生成速率。
2、米氏方程:Michaelis-Menten方程是描述酶催化反应速率与底物浓度关系的经典方程,它揭示了酶的催化效率与底物浓度的关系。
3、酶的活性中心:酶分子中与底物结合并发生催化反应的部位,通常由多种氨基酸残基组成。
4、底物结合与释放:酶与底物的结合和释放是酶催化反应的重要环节,其速率受底物浓度、竞争性抑制剂、温度、pH等多种因素的影响。
三、影响酶催化反应速率的因素1、底物浓度:底物浓度是影响酶催化反应速率的主要因素之一。
在底物浓度较低时,反应速率随底物浓度的增加而线性增加;当底物浓度达到一定值时,反应速率达到最大值,此时即使再增加底物浓度,反应速率也不会再增加。
2、温度:温度对酶催化反应速率的影响较大。
在一定范围内,随着温度的升高,酶的活性增强,反应速率增大;但当温度超过一定范围后,高温会导致酶失活,反应速率反而下降。
3、pH:pH对酶催化反应速率的影响也较大。
每种酶都有其最适pH 值,在此pH值下,酶的活性最强,反应速率最大。
当pH值偏离最适范围时,酶的活性降低,反应速率下降。
4、抑制剂:抑制剂是能够降低酶催化反应速率的物质。
竞争性抑制剂通过与底物竞争结合酶的活性中心来降低反应速率;非竞争性抑制剂通过与酶活性中心外的位点结合来降低反应速率;反竞争性抑制剂通过与底物-酶复合物结合来降低反应速率。
酶催化反应动力学分析酶是生物体内最常见的催化剂,能够加速化学反应的速率,使化学反应在生命体内发生。
酶结构复杂,需要在特定的温度、pH值和离子浓度等条件下才能发挥最佳催化作用。
酶催化反应动力学分析是研究酶催化反应特性和机理的重要手段。
本文将对酶催化反应动力学分析进行探讨。
一、酶催化反应动力学酶催化反应动力学是研究酶催化反应速率的学科,主要关注酶催化反应的速率常数。
速率常数即反应速度与物质浓度之间的关系。
酶催化反应基本上遵循米氏动力学(Michaelis-Menten,简称M-M)方程。
M-M方程是描述酶催化反应速率的一种数学表达式。
其中,Vmax表示酶反应速率的最大值,Km表示酶与底物结合能力的常数。
酶对底物的亲和力越强,则Km值越小,酶在底物浓度足够大的条件下,其反应速率趋向于最大值Vmax。
当底物浓度为Km时,反应速率的一半为Vmax/2。
公式:V=Vmax*[S]/(Km+[S])其中,V表示反应速率,[S]表示底物浓度。
二、酶催化反应动力学分析过程1.测定酶反应速率酶催化反应速率可以通过测定产生的产物量或消耗的底物量来反应。
通常需要对底物和产物的浓度进行测定分析。
比如,在酶催化下,葡萄糖可以被转化为葡萄糖酸,可以通过测定葡萄糖和葡萄糖酸的浓度来反应酶的催化速率。
2.绘制酶反应速率曲线在实验中,通常会对不同底物浓度下的反应速率进行测定,并将反应速率与底物浓度绘制成曲线。
根据M-M方程,当底物浓度充分大时,反应速率趋向于最大值Vmax。
曲线的最大值即为酶反应速率的最大值Vmax,曲线的一半处即为酶的底物浓度Km。
3.计算酶催化常数通过实验测定的结果,可以计算出酶的催化常数。
其中,Km越小,表示酶与底物结合的亲和力越强,反应速率越快;Vmax则表示酶催化反应的最大速率,与酶的浓度和酶的催化效率有关。
三、酶催化反应动力学分析在生物学中的应用酶催化反应动力学分析是生物学领域中的重要研究方法之一。
酶催化反应机理的研究可以帮助我们理解生物反应的基本特性,例如代谢反应和细胞信号转导等。
酶催化反应动力学酶是生物体内一类非常重要的催化剂,可以加速化学反应的速率,而不影响反应的化学平衡。
酶催化反应动力学,即研究酶催化反应速率的变化规律以及影响反应速率的因素。
本文将重点介绍酶催化反应动力学的基本概念、实验方法和相关影响因素。
一、酶催化反应速率酶催化反应速率是反应物转化为产物的速度。
在酶催化下,反应速率明显增加,可以达到每秒数百倍甚至上千倍。
反应速率由酶的浓度、底物浓度、反应温度和pH值等因素决定。
酶催化反应速率通常遵循麦克斯韦-玛尔计算公式,即速率v等于最大反应速率vmax与反应物浓度[S]的比例关系:v = vmax[S] / (Km + [S])。
其中Km称为米氏常数,表示反应物浓度为一半时的速率。
当[S]远大于Km时,速率v ≈ vmax,此时反应速率近似与反应物浓度成正比;当[S]远小于Km时,速率v ≈vmax[S]/Km,此时反应速率与反应物浓度成线性关系。
二、酶催化反应的实验方法进行酶催化反应动力学研究,需要了解反应速率及其影响因素。
实验方法主要包括测定酶催化反应速率的变化和测定酶的两个重要参数:最大反应速率vmax和米氏常数Km。
1. 测定酶催化反应速率的变化测定酶催化反应速率的变化,可以通过观察底物消失或产物增加的速度来确定。
常用的方法包括光度法、荧光法、比色法等。
这些方法都是通过测量反应物和产物的光学性质的变化,建立光学性质与反应速率之间的关系,来间接确定反应速率。
2. 测定最大反应速率vmax测定最大反应速率vmax是了解酶催化能力的重要指标。
最常用的方法是通过实验测量不同底物浓度下的反应速率,并将速率与底物浓度作图。
根据麦克斯韦-玛尔计算公式,绘制速率-底物浓度曲线,可以确定最大反应速率vmax。
3. 测定米氏常数Km米氏常数Km是衡量底物与酶结合力的指标。
测定Km的常用方法是选择一种底物,通过实验测量不同底物浓度下的反应速率,并将速率与底物浓度作图。
绘制速率-底物浓度曲线,可以确定Km。
第3章酶催化反应动力学(2学时)主要内容:3.1 酶催化反应速度3.2 底物浓度对酶促反应速度的影响3.3 抑制剂对酶促反应速度的影响3.4 其它因素对酶促反应速度的影响•酶催化反应动力学也称酶促反应动力学(kinetics of enzyme-catalyzed reactions),是研究酶促反应速度以及影响此速度的各种因素的科学。
在研究酶的结构与功能的关系以及酶的作用机制时,需要酶促反应动力学提供相关的实验证据;为了找到最有利的反应条件从而提高酶催化反应的效率以及了解酶在代谢过程中的作用和某些药物的作用机制等,也需要我们掌握酶促反应动力学的相关规律。
因此,对于酶促反应动力学的研究既有重要的理论意义又具有相当的实践价值。
酶的动力学研究包括哪些内容?•酶促反应动力学以化学动力学为基础,通过对酶促反应速度的测定来讨论诸如底物浓度、抑制剂、温度、pH和激活剂等因素对酶促反应速度的影响。
•温度、pH及激活剂都会对酶促反应速度产生十分重要的影响,酶促反应不但需要最适温度和最适pH,还要选择合适的激活剂。
而且在研究酶促反应速度以及测定酶的活力时,都应选择相关酶的最适反应条件。
3.1酶催化反应速度•如果我们以产物生成量(或底物减少量)来对反应时间作图,便可以得到如图3-1所示的曲线图。
该曲线的斜率表示单位时间内产物生成量的变化,因此曲线上任何一点的斜率就是相应横坐标上时间点的反应速度。
从图中的曲线可以看出在反应开始的一段时间内斜率几乎不变,然而随着反应时间的延长,曲线逐渐变平坦,相应的斜率也渐渐减小,反应速度逐渐降低,显然这时测得的反应速度不能代表真实的酶活力。
•引起酶促反应速度随反应时间延长而降低的原因很多,如底物浓度的降低、产物浓度增加从而加速了逆反应的进行、产物对酶的抑制或激活作用以及随着反应时间的延长引起酶本身部分分子失活等等。
因此在测定酶活力时,应测定酶促反应的初速度,从而避免上述各种复杂因素对反应速度的影响。
由于反应初速度与酶量呈线性关系,因此可以用测定反应初速度的方法来测定相关制剂中酶的含量。
酶活力测定时需注意:1 选择反应的最适温度,根据不同的底物和缓冲液选择反应的最适pH。
2 速度要快,取反应的初速度3 底物浓度要足够大(一般在10Km以上)–使酶被底物饱和,以充分反应待测酶的活力测定酶活力的基本原理酶蛋白的含量很低,很难直接测定其蛋白质的含量,且常与其他各种蛋白质混合存在,将其提纯耗时费力。
故不能直接用重量或体积等指标来衡量。
•测定产物增加量•测定底物减少量测定酶活力常用的方法:•分光光度法(spectrophotometry)•荧光法(fluorometry)•同位素法(isotope method)•电化学方法(electrochemical method)•其他方法:如旋光法、量气法、量热法和层析法等3.2 底物浓度对酶促反应速度的影响•中间络合物学说–中间络合物学说也称酶底物中间络合物学说,最早是由Henri和Wurtz两位科学家提出的。
在1903年,Henri在用蔗糖酶水解蔗糖实验研究化学反应中底物浓度与反应速度的关系时发现,当酶浓度不变时,可以测出一系列不同底物浓度下的化学反应速度,以该反应速度对底物浓度作图,可得到如图3-2所示的曲线。
图3-2 底物浓度对酶促反应速度的影响•从该曲线图可以看出,当底物浓度较低时,反应速度与底物浓度的关系呈正比关系,反应表现为一级反应。
然而随着底物浓度的不断增加,反应速度不再按正比升高,此时反应表现为混合级反应。
当底物浓度达到相当高时,底物浓度对反应速度影响逐渐变小,最后反应速度几乎与底物浓度无关,这时反应达到最大反应速度(Vmax),反应表现为零级反应。
•根据这一实验结果,Henri和Wurtz提出了酶促化学反应的酶底物中间络合物学说。
该学说认为:当酶催化某一化学反应时,酶(E)首先需要和底物(S)结合生成酶底物中间络合物即中间复合物(ES),然后再生成产物(P),同时释放出酶。
该学说可以用下面的化学反应方程式来表示:S + E ES →P + E我们根据中间络合物学说很容易解释图3-2所示的实验曲线,在酶浓度恒定这一前提条件下,当底物浓度很小时酶还未被底物所饱和,这时反应速度取决于底物浓度并与之成正比。
随着底物浓度不断增大,根据质量作用定律,中间复合物ES生成也不断增多,而反应速度取决于ES 的浓度,故反应速度也随之增高但此时二者不再成正比关系。
•当底物浓度达到相当高的程度时,溶液中的酶已经全部被底物所饱和,此时溶液中再也没有多余的酶,虽增加底物浓度也不会有更多的中间复合物ES生成,因此酶促反应速度变得与底物浓度无关,而且反应达到最大反应速度(Vmax)。
当我们以底物浓度[S]对反应速度v作图时,就形成一条双曲线。
在此需要特别指出的是,只有酶促催化反应才会有这种饱和现象,而与此相反,非催化反应则不会出现这种饱和现象。
酶促反应的动力学方程式(米氏方程)•1913年Michaelis和Menten两位科学家在前人工作的基础上,根据酶促反应的中间络合物学说,推导出一个数学方程式,用来表示底物浓度与酶反应速度之间的量化关系,通常把这个数学方程式称为米氏方程:米氏常数的含义•K m值就代表着反应速度达到最大反应速度一半时的底物浓度。
米氏常数的应用价值•Km是酶的一个特征性常数:也就是说Km的大小只与酶本身的性质有关,而与酶浓度无关。
•Km值还可以用于判断酶的专一性和天然底物,Km值最小的底物往往被称为该酶的最适底物或天然底物。
•Km可以作为酶和底物结合紧密程度的—个度量指标,用来表示酶与底物结合的亲和力大小。
•已知某个酶的Km值,就可以计算出在某一底物浓度条件下,其反应速度相当于Vmax的百分比。
•Km值还可以帮助我们推断具体条件下某一代谢反应的方向和途径,只有Km值小的酶促反应才会在竞争中占优势。
3.3抑制剂对酶促反应速度的影响•由于酶的本质是蛋白质,凡可使酶蛋白变性而引起酶活力丧失的作用都称为失活作用(inactivation)。
如果由于酶必需基团的化学性质发生改变,但酶并未发生变性,而引起酶活力降低或丧失的作用则称为抑制作用(inhibition)。
导致酶发生抑制作用的物质称为抑制剂(inhibitor)。
•由于抑制作用与变性作用从本质而言是不同的,因此与变性剂对酶的变性作用无选择性不同的是,抑制剂对酶的抑制作用是有选择性的,即一种抑制剂只能使某一种酶或对某一类酶产生抑制作用。
•对酶抑制作用的探讨是研究酶的结构与功能、酶的催化机制以及阐明机体代谢途径的基本手段,也可以为医药产业中设计新药物和农业生产中设计新农药提供重要的理论依据,从这个角度而言,对酶抑制作用的研究不仅具有重要的理论意义,而且具有突出的实践价值。
3.3.1抑制作用的类型•根据抑制剂与酶的作用方式的区别以及抑制作用是否可逆,我们可以将抑制作用分为两大类,即:–不可逆的抑制作用–可逆的抑制作用。
3.3.1.1 不可逆的抑制作用•由于抑制剂与酶的必需基团以共价键的形式结合而引起酶活力降低或丧失,因此不能用透析、超滤等物理方法去除抑制剂而使酶复活,这种抑制作用是不可逆的,我们称之为不可逆抑制。
此时被抑制的酶分子受到抑制剂对其不同程度的化学修饰,因此不可逆抑制从本质上来说就是酶的修饰抑制。
不可逆抑制剂•通常把不可逆抑制剂分为两种类型,即非专一性不可逆抑制剂和专一性不可逆抑制剂。
①非专一性不可逆抑制剂主要包括以下六大类:•a) 有机磷化合物•b) 有机汞、有机砷化合物:抑制含巯基的酶。
•c) 重金属盐:能使酶蛋白变性而失活。
•d) 烷化剂:与酶必需基团中的巯基、氨基、羧基、咪唑基和硫醚基等结合,从而抑制酶活性。
•e) 硫化物、氰化物和CO:这类物质能通过与酶中金属离子形成较为稳定络合物的形式,来抑制酶的活性。
•f) 青霉素(Penicillin):–青霉素可通过与糖肽转肽酶活性部位丝氨酸羟基共价结合的方式,使糖肽转肽酶失活,导致细菌细胞壁合成受阻,从而损害细菌生长。
②专一性不可逆抑制剂可以分为Ks型和Kat型两大类。
•a) Ks型不可逆抑制剂:具有与底物相类似的结构•b) Kat型不可逆抑制剂:该类抑制剂不但具有与天然底物相类似的结构,而且抑制剂本身也是酶的底物,这类不可逆抑制剂的特点是专一性极高,因此也被称为自杀性底物(suicide substrate)。
3.3.1.2 可逆的抑制作用•由于抑制剂与酶以非共价键的形式结合而引起酶活力降低或丧失,但是能用透析、超滤等物理方法除去抑制剂而使酶复活,这种抑制作用是可逆的,我们称之为可逆抑制(reversible inhibition)。
•根据可逆抑制剂与底物的关系,我们将可逆抑制作用分为三种类型,它们分别是竞争性抑制、非竞争性抑制和反竞争性抑制。
•①竞争性抑制(competitive inhibition) :•是最常见的一种可逆抑制作用。
抑制剂(I)与底物(S)竞争酶(E)的同一结合部位,因此抑制剂的存在直接影响底物与酶的正常结合。
这是由于酶的活性部位不能同时既与底物结合又与抑制剂结合,所以在底物和抑制剂之间会产生竞争,从而形成一定的平衡关系。
•对于绝大多数竞争性抑制剂而言,其结构与底物结构十分类似,因此也能与酶的活性部位结合形成可逆的酶-抑制剂复合物EI,但酶-抑制剂复合物EI不能分解成产物P,导致相应的酶促反应速度下降。
其抑制程度取决于底物和抑制剂的相对浓度,可以通过增加底物浓度的方法来解除这种抑制作用。
这类抑制最典型的例子是丙二酸和戊二酸竞争与琥珀酸脱氢酶结合,但不能催化脱氢反应。
•②非竞争性抑制(noncompetitive inhibition) :–这类抑制作用的特点是底物(S)和抑制剂(I)可以同时与酶(E)结合,两者之间不存在竞争关系。
但是在酶与抑制剂结合后,还可以进一步与底物结合形成酶-底物-抑制剂复合物ESI;酶与底物结合后,也可以进一步与抑制剂结合形成酶-底物-抑制剂复合物ESI。
但是这种中间的三元复合物,即酶-底物-抑制剂复合物ESI不能进一步分解产生产物,因此相应的酶促反应速度下降。
–由于这类抑制剂与酶活性部位以外的基团相结合,因此其结构与底物结构并无相似之处,而且不能用增加底物浓度的方法来解除这种抑制作用,故称非竞争性抑制。
这类抑制最典型的例子是亮氨酸是精氨酸酶的一种非竞争性抑制剂。
还有某些重金属离子如Ag+、Cu2+、Hg2+、Pb2+等对酶的抑制作用也属于这一类。
•③反竞争性抑制(uncompetitive inhibition) :–这类抑制作用的特点是只有在酶(E)与底物(S)结合后,才能与抑制剂(I)结合,形成酶-底物-抑制剂复合物ESI,与非竞争性抑制相似,这种中间的三元复合物,即酶-底物-抑制剂复合物ESI 不能进一步分解产生产物,因此相应的酶促反应速度下降。