【教案】 关于原点对称的点的坐标
- 格式:doc
- 大小:134.00 KB
- 文档页数:7
23.2.3 关于原点对称的点的坐标〔李萨〕一、教学目标〔一〕学习目标1.理解P点与P′点关于原点对称时,它们的横纵坐标的关系,掌握P〔x,y〕关于原点的对称点为P′〔-x,-y〕的运用.2.复习轴对称、旋转,尤其是中心对称,知识迁移到关于原点对称的点的坐标的关系及其运用.〔二〕学习重点两个点关于原点对称时,它们的坐标符号相反,即点P〔x,y〕•关于原点的对称点P′〔-x,-y〕及其运用.〔三〕学习难点运用中心对称的知识导出关于原点对称的点的坐标的性质及其运用它解决实际问题.二、教学设计〔一〕课前设计1.预习任务两个点关于原点对称时,它们的坐标符号相反,即点P〔x,y〕关于原点O的对称点P′〔-x,-y〕2.预习自测〔1〕点A〔a,1〕与点A'〔5,b〕关于坐标原点对称,那么实数a、b的值是〔〕A.a=5,b=1B.a=-5,b=1C.a=5,b=-1D.a=-5,b=-1【知识点】关于原点对称的点的坐标的性质【解题过程】∵A与A'点关于原点成中心对称∴a+5=0,1+b=0∴a=-5,b=-1【思路点拨】抓住关于原点对称的点的坐标的性质【答案】D.〔2〕如下图,△PQR是△ABC△ABC中任意一点M的坐标为〔a,b〕,那么它的对应点N的坐标为.【知识点】关于原点对称的点的坐标的性质【解题过程】∵M与N点关于原点成中心对称∴a+x=0,b+y=0∴=-a,y=-b∴N〔-a,-b〕【思路点拨】抓住关于原点对称的点的坐标的性质【答案】〔-a,-b〕〔3〕在平面直角坐标系中,点A〔2m+3n,1〕与点B〔5,3m-2n〕关于原点0中心对称,那么m= ,n= .【知识点】关于原点对称的点的坐标的性质【解题过程】∵A与B点关于原点成中心对称∴2m+3n=-5,3m-2n=-1∴ m=-1,n=-1【思路点拨】抓住关于原点对称的点的坐标的性质【答案】-1,-1.〔4〕在平面直角坐标系中,△ABC的三个顶点的坐标分别为A〔-4,3〕,B〔-3,1〕,C〔-1,3〕. (1)请按以下要求画图:①将△ABC先向右平移4个单位长度,再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2 .〔2〕在第1题中,所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出点M的坐标. 【知识点】平移与中心对称的性质【数学思想】数形结合【解题过程】〔1〕①将点A、B、C分别先向右平移4个单位长度,再向上平移2个单位长度得点A1、B1、C1,然后顺次连接,可得△A1B1C1,如下图;②先找出点A、B、C关于原点O的对称点A2、B2、C2,然后顺次连接,可得△A2B2C2,如下图;〔2〕点M的坐标为〔2,1〕.【思路点拨】抓住平移和中心对称的性质【答案】〔1〕〔2〕点M的坐标为〔2,1〕.〔二〕课堂设计1.知识回忆〔1〕中心对称的定义:如果把一个图形绕某个点旋转180,它能够与另一个图形重合,那么这两个图形关于这个点对称或中心对称.这个点叫做它们的对称中心.这两个图形中的对应点叫做关于中心的对称点.〔2〕中心对称的性质:①中心对称的两个图形,对称点所连线段必过对称中心,且被对称中心平分.②中心对称的两个图形是全等图形.2.问题探究探究一理解P与点P′点关于原点对称时,它们的横纵坐标的关系重点知识★●活动①回忆旧知,回忆中心对称中的相关概念作图:作出三角形AOB关于O点的对称图形,如下图.B AO解:延长AO使OC=AO,延长BO使OD=BO,连结CD那么△COD为所求的,如下图.【设计意图】通过对旧知识的复习,为新知识的学习作铺垫.●活动②整合旧知探究P与点'P点关于原点对称时,它们的横纵坐标的关系〔学生活动〕如图,在直角坐标系中,A〔-3,1〕、B〔-4,0〕、C〔0,3〕、•D〔2,2〕、E 〔3,-3〕、F〔-2,-2〕,作出A、B、C、D、E、F点关于原点O的中心对称点,并写出它们的坐标,并答复:这些坐标与点的坐标有什么关系?教师点评:画法:〔1〕连结AO并延长AO〔2〕在射线AO上截取OA′=OA〔3〕过A作AD′⊥x轴于D′点,过A′作A′D″⊥x轴于点D″.∵△AD′O与△A′D″O全等∴AD′=A′D″,OA=OA′∴A′〔3,-1〕同理可得B、C、D、E、F这些点关于原点的中心对称点的坐标.〔学生活动〕分组讨论〔每四人一组〕:讨论的内容:关于原点作中心对称时,①它们的横坐标与横坐标绝对值什么关系?纵坐标与纵坐标的绝对值又有什么关系?②坐标与坐标之间符号又有什么特点?教师点评:〔1〕从上可知,横坐标与横坐标的绝对值相等,纵坐标与纵坐标的绝对值相等.〔2〕坐标符号相反,即设P〔x,y〕关于原点O的对称点P′〔-x,-y〕.【设计意图】鼓励学生独立自主解决问题,让学生初步感受通过观察来掌握几何知识的相关概念,引导学生由观察得到感性认识,思考满足中心对称关系的条件,寻求解决问题的方法. 探究二轴对称、旋转,尤其是中心对称,知识迁移到关于原点对称的点的坐标的关系及其运●活动①大胆猜测,大胆操作,探究新知如图,利用关于原点对称的点的坐标特点,作出与线段AB关于原点对称的图形.分析:要作出线段AB A、点B关于原点的对称点A′、B′即可.解:点P〔x,y〕关于原点的对称点为P′〔-x,-y〕,因此,线段AB的两个端点A〔0,-1〕,B〔3,0〕关于原点的对称点分别为A′〔1,0〕,B〔-3,0〕.连结A′B′.那么就可得到与线段AB关于原点对称的线段A′B′.【设计意图】教师综合学生的疑惑,把有意义的问题归纳,并展示出来.●活动②集思广益,探索关于原点对称的点的特点〔学生活动〕△ABC,A〔1,2〕,B〔-1,3〕,C〔-2,4〕利用关于原点对称的点的坐标的特点,作出△ABC关于原点对称的图形.教师点评分析:先在直角坐标系中画出A、B、C三点并连结组成△ABC,要作出△ABC关于原点O的对称三角形,只需作出△ABC中的A、B、C三点关于原点的对称点,•依次连结,便可得到所求作的△A′B′C′.因此,综合以上我们得出关于原点对称的点的性质:①横坐标与横坐标的绝对值相等,纵坐标与纵坐标的绝对值相等.②坐标符号相反,即设P〔x,y〕关于原点O的对称点P′〔-x,-y〕.【设计意图】通过关于原点中心对称的作图,发坐标的关系.●活动③关于原点中心对称的应用1.△ABC在平面直角坐标系xOy中的位置如下图.画出△ABC关于点O成中心对称的△A1B1C1.【知识点】中心对称的性质【数学思想】数形结合【解题过程】先找出点A、B、C关于原点O的对称点A1、B1、C1,然后顺次连接,可得△A1B1C1,如下图;【思路点拨】抓住中心对称的性质【答案】2.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为〔2,4〕,请解答以下问题:〔1〕画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.〔2〕画出△A1B1C1绕原点旋转180°后得到的△A2B2C2,并写出点A2的坐标.【知识点】轴对称的性质和中心对称的性质【数学思想】数形结合【解题过程】〔1〕先找出点A、B、C关于x轴的对称点A1、B1、C1,然后顺次连接,可得△A1B1C1,如下图;点A1的坐标〔2,-4〕.(2)先找出点A1、B1、C1关于原点O的对称点A2、B2、C2,然后顺次连接,可得△A2B2C2,如下图;点A2的坐标〔-2,4〕.【思路点拨】抓住轴对称的性质和中心对称的性质【答案】〔1〕如下图:点A1的坐标〔2,-4〕.〔2〕如下图,点A2的坐标〔-2,4〕.探究三拓展应用★▲●活动①根底性例题例1. 如下图,△ABC三个顶点的坐标分别为A〔-2,-1〕,B〔-3,-3〕,C〔-1,-3〕.画出△ABC关于原点0对称的△A2B2C2,并写出点A2的坐标.【知识点】中心对称的性质【数学思想】数形结合【解题过程】先找出点A、B、C关于原点O的对称点A2、B2、C2,然后顺次连接,可得△A2B2C2,如下图;点A2的坐标〔2,1〕【思路点拨】抓住中心对称的性质【答案】如下图.A2〔2,1〕练习:如图,在边长为1的正方形网格中,△ABC的顶点均在格点上.画出△ABC关于原点成中心对称的△A'B'C'【知识点】中心对称的性质【数学思想】数形结合【解题过程】先找出点A、B、C关于原点O的对称点A1、B1、C1,然后顺次连接,可得△A1B1C1,如下图;【思路点拨】根据关于原点对称的点的坐标,可得答案;【答案】见解答过程【设计意图】让学生熟练掌握坐标系中中心对称点的性质,并快速作图.●活动2 提升型例题例2.在如下图的单位正方形网格中,△ABC经过平移后得到△A1B1C1,在AC上一点P〔2.4,2〕平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,那么P2点的坐标为〔〕A.〔1.4,-1〕B.〔1.5,2〕C.〔1.6,1〕D.〔2.4,1〕【知识点】平移和旋转的性质【数学思想】数形结合【解题过程】∵A点坐标为:〔2,4〕,A1〔-2,1〕,∴点P〔2.4,2〕平移后的对应点P1为:〔-1.6,-1〕.∵点P1绕点O逆时针旋转180°,得到对应点P2,∴P2点的坐标为:〔1.6,1〕.应选C.【思路点拨】抓住平移和旋转的性质【答案】 C.练习:如图,在平面直角坐标系中,假设△ABC与△A1B1C1关于E点成中心对称,那么对称中心E点的坐标.【知识点】找对称中心【解题过程】因为△ABC与△A1B1C1关于点E成中心对称,所以点E是AA1的中点,所以点E 的坐标为〔3,-1〕.【思路点拨】抓住中心对称图形的性质【答案】〔3,-1〕.【设计意图】结合平移和中心对称的性质,进展综合运用●活动3 探究型例题例3.如下图,将△ABC绕点C〔0,-1〕旋转180°得到△A'B'C,设点A的坐标为〔a,b〕,那么点A'的坐标为.【知识点】中心对称的性质【解题过程】∵A'与A关于C点成中心对称∴a+x=2×0,b+y=-1×2∴x=-a,y=-b-2,∴点A'的坐标为〔-a,-b-2〕.【思路点拨】对称中心不是原点的中心对称问题.【答案】〔-a,-b-2〕.练习:如下图,把长方形OABC放在直角坐标系中,OC在x轴上,OA在y轴上,且OC=2,OA=4,把长方形OABC绕着原点顺时针旋转90°得到长方形OA'B'C',那么点B'的坐标为.【知识点】旋转的性质【解题过程】∵OA'=OA=4,OC'=OC=2∴B'〔4,2〕【思路点拨】抓住旋转的性质【答案】〔4,2〕【设计意图】提升训练,学会从特殊到一般的转化.3. 课堂总结知识梳理两个点关于原点对称时,它们的坐标符号相反,即点P〔x,y〕,•关于原点的对称点P′〔-x,-y〕,及利用这些特点解决一些实际问题.重难点归纳运用中心对称的知识导出关于原点对称的点的坐标的性质及其运用它解决实际问题.〔三〕课后作业根底型自主突破1.在平面直角坐标系中,△ABC的三个顶点坐标分别为A〔2,-1〕,B〔3,-3〕,C〔0,-4〕.〔1〕画出△ABC关于原点O成中心对称的△A1B1C1;〔2〕画出△A1B1C1关于y轴对称的△A2B2C2.【知识点】中心对称与轴对称的性质【数学思想】数形结合【解题过程】〔1〕先找出点A、B、C关于原点成中心对称的点A1、B1、C1,然后顺次连接,可得△A1B1C1,如下图;(2)先找出点A1、B1、C1关于y轴的对称点A2、B2、C2,然后顺次连接,可得△A2B2C2,如下图;【思路点拨】中心对称与轴对称的性质【答案】〔1〕△A1B1C1如下图.〔2〕△A2B2C2如〔1〕图所示.2. 在如下图的正方形网格中,△ABC顶点均在格点上,请在所给的平面直角坐标系中按要求作图并完成填空:〔1〕作出△ABC关于原点O成中心对称的△A1B1C1,写出点B1的坐标;〔2〕作出△A1B1C1绕点O逆时针旋转90°的△A2B2C2,写出点C2的坐标.【知识点】中心对称和旋转的性质【数学思想】数形结合【解题过程】〔1〕先找出点A、B、C关于原点成中心对称的点A1、B1、C1,然后顺次连接,可得△A1B1C1,如下图;写出点B1的坐标为〔4,-4〕;(2)先找出点A1、B1、C1绕点逆时针旋转90°的对应点A2、B2、C2,然后顺次连接,可得△A2B2C2,如下图;写出点C2的坐标为〔1,4〕.【思路点拨】抓住中心对称和旋转的性质 【答案】〔1〕 如下图,B 1〔4,-4〕 〔2〕如下图,C 2〔1,4〕3.如图,在平面直角坐标系中,直角△ABC 的三个顶点分别是A (-3,1),B(0,3),C (0,1) .〔1〕将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A 1B 1C 1; 〔2〕分别连接AB 1、BA 1后,求四边形AB 1A 1B 的面积. 【知识点】中心对称的性质和菱形的面积 【解题过程】〔1〕如图,△A 1B 1C 1为所作,〔2〕四边形AB 1A 1B 的面积=.124621=⨯⨯【思路点拨】抓住中心对称后图形的特点【答案】〔1〕如图〔2〕四边形AB1A1B的面积为12.4. △ABC在平面直角坐标系中位置如下图,△ABC的顶点A、B、C都在格点上.〔1〕作出△ABC关于原点O的中心对称图形△A1B1C1〔点A、B、C关于原点O的对称点分别为A1、B、C1〕.1〔2〕写出点C1的坐标及CC1长.〔3〕BC与BC1的位置关系为.【知识点】中心对称的性质和两点间的距离公式【数学思想】数形结合【解题过程】〔1〕先找出点A、B、C关于原点成中心对称的点A1、B1、C1,然后顺次连接,可得△A1B1C1,如下图;2. 〔2〕用两点间的距离公式求线段CC1的长,C1〔2,1〕,CC1=5〔3〕垂直【思路点拨】抓住中心对称的性质【答案】〔1〕2.〔2〕C1〔2,1〕,CC1=5〔3〕垂直5.△ABC在平面直角坐标系xOy中的位置如下图.〔1〕作△ABC 关于点C 成中心对称的△A 1B 1C 1.〔2〕将△A 1B 1C 1向右平移4个单位,作出平移后的△A 2B 2C 2.〔3〕在x 轴上求作一点P ,使PA 1+PC 2的值最小,并写出点P 的坐标〔不写解答过程,直接写出结果〕.【知识点】中心对称的性质和轴对称的应用 【数学思想】数形结合 【解题过程】〔1〕先找出点A 、B 、C 分别关于点C 的对称点A 1、B 1、C 1,然后顺次连接,可得△A 1B 1C 1,如下图;〔2〕先找出点A 1、B 1、C 1分别向右平移4个单位的对应点A 2、B 2、C 2,然后顺次连接,可得△A 2B 2C 2 ,如下图;〔3〕作点A 1关于x 轴的对称点A',连接A'C 2,交x 轴于点P ,可得P 点坐标为 〔38,0〕,如下图【思路点拨】抓住中心对称的性质和轴对称的应用 【答案】 〔1〕 如下图.〔2〕 如下图.〔3〕〔38,0〕.6.如下图,将△ABC 绕点P 顺时针旋转 得到 △A'B'C',那么点P 的坐标是 〔 〕A.〔1,1〕B.〔1,2〕C. 〔1,3〕D. 〔1,4〕【知识点】旋转的性质【解题过程】∵将△ABC以某点为旋转中心,顺时针旋转90°得到△A′B′C′,∴点A的对应点为点A′,点C的对应点为点C′,作线段AA′和CC′的垂直平分线,它们的交点为P〔1,2〕,∴旋转中心的坐标为〔1,2〕.应选B.【思路点拨】抓住旋转中心的性质【答案】B.能力型师生共研7.在平面直角坐标系中,线段OP的两个端点坐标分别是O〔0,0〕,P〔4,3〕,将线段OP 绕点O逆时针旋转90°到OP'位置,那么点P'的坐标为A.〔3,4〕B.〔-4,3〕C.〔-3,4〕D.〔4,-3〕【知识点】旋转的性质【解题过程】先做图,将点P绕点O逆时针旋转90°到P',再利用全等知识求线段,应选C.【思路点拨】抓住旋转三要素作图【答案】C.8. 正方形ABCD与正方形A1B1C1D1,关于某点中心对称,A、D1、D三点的坐标分别是〔0,4〕〔0,3〕〔0,2〕.〔1〕求对称中心的坐标;〔2〕写出顶点B 、C 、B 1、C 1的坐标. 【知识点】中心对称的性质【解题过程】〔1〕 因为D 和D 1是对称点,所以对称中心是线段DD 1的中点,所以对称中心的坐标是〔0,25〕. 〔2〕B 〔-2,4〕,C 〔-2,2〕,C 1〔2,3〕,B 1〔2,1〕.【思路点拨】抓住旋转的性质 【答案】〔1〕〔0,25〕. 〔2〕B 〔-2,4〕,C 〔-2,2〕,C 1〔2,3〕,B 1〔2,1〕.探究型 多维突破9.在平面直角坐标系中,△ABC 三个顶点的坐标分别为()()()1,2,3,4,2,9.A B C --- ⑴画出ABC △,并求出AC 所在直线的解析式.⑵画出ABC △绕点A 顺时针旋转90后得到的111A B C △,并求出ABC △在上述旋转过程中扫过的面积.【知识点】旋转的性质和扇形面积【解题过程】⑴如下图,ABC △即为所求. 设AC 所在直线的解析式为()0y kx b k =+≠∵()1,2A -,()2,9C - ∴229k b k b -+=⎧⎨-+=⎩ 解得 75k b =-⎧⎨=-⎩∴75y x =--⑵如下图,11B C 1△A 即为所求.由图可知,52AC =ABC S S S =+△扇形=()2905225663602ππ+=+ 【思路点拨】〔1〕利用两点坐标列方程组就一次函数解析式; 〔2〕利用旋转的性质和扇形面积公式求解. 【答案】〔1〕75y x =-- 〔2〕2562π+ 10.去冬今春,济宁市遭遇了200年不遇的大旱,某乡镇为了解决抗旱问题,要在某河道建一座水泵站,分别向河的同一侧张村A 和李村B 送水.经实地勘查后,工程人员设计图纸时,以河道上的大桥O 为坐标原点,以河道所在的直线为x 轴建立直角坐标系〔如图〕,两村的坐标分别为A 〔2,3〕,B (12,7).(1)假设从节约经费考虑,水泵站建在距离大桥O 多远的地方可使所用输水管最短? (2)水泵站建在距离大桥O 多远的地方,可使它到张村、李村的距离相等?【知识点】对称的性质,中垂线的性质 【解题过程】〔1〕作点B 关于x 轴的对称点E ,连接AE ,O2 4 6 8 10 12 x /千米2 4 6 8y /千米 ABA BCOB 1C 1A 1 xy11那么点E 为〔12,-7〕,设直线AE 的函数关系式为y =kx +b ,那么23127k b k b +=⎧⎨+=-⎩,解得15k b =-⎧⎨=⎩, 所以,直线AE 解析式为y =-x +5当y =0时,x =5,所以,水泵站应建在距离大桥5千米的地方时,可使所用输水管道最短. 〔2〕作线段AB 的垂直平分线GF ,交AB 于点F ,交x 轴于点G , 设点G 的坐标为〔x ,0〕,在Rt △AGD 中,AG 2=AD 2+DG 2=32+〔x -2〕2 在Rt △BCG 中,BG 2=BC 2+GC 2=72+〔12-x 〕2 ∵AG= BG ,∴32+〔x -2〕2=72+〔12-x 〕2 解得x =9.所以,水泵站建在距离大桥9千米的地方,可使它到张村、李村的距离相等.【思路点拨】〔1〕利用对称找出最短距离,再用一次函数与x 轴交点求距离 〔2〕先做出AB 的中垂线,再利用AB 的中垂线上与x 轴交点求距离 【答案】〔1〕水泵站应建在距离大桥5千米的地方〔2〕水泵站建在距离大桥9千米的地方自助餐A(a,2)与点A'(3,b)关于坐标原点对称,那么实数a、b的值是______.【知识点】关于原点对称的点的坐标的性质【解题过程】∵A与A'点关于原点成中心对称∴a+3=0,2+b=0∴a=-3,b=-2【思路点拨】抓住关于原点对称的点的坐标的性质【答案】a=-3,b=-2.2.在平面直角坐标系内,假设点P〔-1,p〕和点Q〔q,3〕关于原点O对称,那么pq的值为.【知识点】关于原点对称的点的坐标.【解题过程】∵点P〔-1,p〕和点Q〔q,3〕关于原点O对称,∴q=1,p=-3,那么pq的值为:-3.故答案为:-3.【思路点拨】抓住关于原点对称的点的坐标的性质【答案】-33.在平面直角坐标系中,线段OP的两个端点坐标分别是O〔0,0〕,P〔2,5〕,将线段OP 绕点O逆时针旋转90°到OP'位置,那么点P'的坐标为.【知识点】旋转的性质【解题过程】先做图,将点P绕点O逆时针旋转90°到P',再利用全等知识求线段,故为〔-5,2〕.【思路点拨】抓住旋转三要素作图【答案】〔-5,2〕.4.正方形ABCD在坐标系中的位置如下图,将正方形ABCD绕D点顺时针方向旋转90后,B点的坐标为〔〕A.〔-2,2〕 B.〔4,1〕 C.〔3,1〕 D.〔4,0〕【知识点】坐标和旋转变换【解题过程】由旋转性质找到B旋转后的对应点B',应选D.【思路点拨】抓住旋转的性质【答案】D.5.如图,在正方形网格中每个小正方形的边长都是单位长度1,△ABC的顶点都在格点上,且△ABC与△DEF关于点O成中心对称.〔1〕在网格图中标出对称中心点O的位置;〔2〕画出将△ABC沿水平方向向右平移5个单位后的△D1E1F1.【知识点】作图-旋转变换;作图-平移变换【数学思想】【解题过程】〔1〕如下图,点O为所求.(2)如下图,△D1E1F1即为所画的三角形.【思路点拨】〔1〕连接对应点B、E,对应点C、F,其交点即为对称中心O的位置;〔2〕利用网格构造找出平移后的点的位置,然后顺次连接即可.【答案】见解答过程6.如图,方格纸中有三个点A、B、C要求作一个四边形使这三个点在这个四边形的边〔包括顶点〕上,且四边形的顶点在方格的顶点上.〔1〕在①中作出的四边形是中心对称图形但不是轴对称图形;〔2〕在②中作出的四边形是轴对称图形但不是中心对称图形;〔3〕在③中作出的四边形既是轴对称图形又是中心对称图形.【知识点】轴对称和中心对称的性质【解题过程】〔1〕作一个平行四边形如答图①;〔2〕作一个等腰梯形如答图②;〔3〕作一个正方形如答图③.【思路点拨】抓住轴对称和中心对称的性质【答案】。
九年级上册数学教案《关于原点对称的点的坐标》教材分析《关于原点对称的点的坐标》是人教版九年级上册第二十三章第二节第三课时的内容。
教材从观察和实验入手,归纳得出坐标平面上的一个点关于原点对称的点的坐标的对应关系,进一步探讨了如何利用点与点的对应关系,在平面直角坐标系中作出一个图形关于原点对称的图形。
学情分析学生已经学习了平面直角坐标系和一次函数。
本节课采用了自主学习,合作交流的方式,让学生学会观察图形,作出决策,共同找出关于原点对称的点的坐标的性质,让学生感受图形中心对称变换后的坐标的变化,并且能进一步解决一些相关问题,培养学生的应用能力和创新意识。
教学目标1、掌握在直角坐标系中关于原点对称的点的坐标的关系。
2、会在平面直角坐标系内作关于原点对称的图形。
3、进一步体会数形结合的思想。
教学重点会在平面直角坐标系内作关于原点对称的图形。
教学难点掌握在直角坐标系中关于原点对称的点的坐标的关系。
教学方法讲授法、演示法、谈话法、讨论法、练习法教学过程一、导入阶段如图,在直角坐标系中,作出下列已知点关于原点O的对称点,并写出它们的坐标。
这些坐标与已知点的坐标有什么关系?A(4,0),B(0,-3),C(2,1),D(-1,2),E(-3,-4) A’(-4,0),B’(0,3),C’(-2,-1),D’(1,-2),E’(3,4) 对称点的横纵坐标与已知点的横纵坐标是相反数。
归纳:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)二、新授阶段如图所示,利用关于原点对称的点的坐标关系,作出与△ABC关于原点对称的图形。
解:点P(x,y)关于原点的对称点为P’(-x,-y)。
因此△ABC的三个顶点A(-4,1),B(-1,-1),C(-3,2)关于原点的对称点分别为A’(4,-1),B’(1,1),C’(3,-2)。
依次连接A’B’,B’C’,C’A’,就可以得到△ABC关于原点对称的△A’B’C’。
关于原点对称的点的坐标教案教学内容:本教案主要向学生介绍原点对称的点的坐标性质。
通过本节课的学习,学生将能够理解原点对称的概念,掌握原点对称点的坐标特点,并能够运用这些性质解决实际问题。
教学目标:1. 了解原点对称的点的概念。
2. 掌握原点对称点的坐标特点。
3. 能够运用原点对称性质解决实际问题。
教学重点:1. 原点对称的点的概念。
2. 原点对称点的坐标特点。
教学难点:1. 原点对称点的坐标特点的运用。
教学准备:1. 教学PPT或黑板。
2. 坐标轴图。
3. 练习题。
教学过程:一、导入(5分钟)1. 向学生介绍原点对称的点的概念。
2. 通过示例向学生展示原点对称的点的坐标特点。
二、新课讲解(15分钟)1. 详细讲解原点对称的点的坐标性质。
2. 通过坐标轴图向学生展示原点对称点的坐标特点。
3. 举例说明原点对称性质在解决实际问题中的应用。
三、课堂练习(10分钟)1. 让学生独立完成练习题,巩固原点对称点的坐标特点。
2. 解答学生疑问,给予个别辅导。
四、课堂小结(5分钟)2. 强调原点对称性质在解决实际问题中的应用。
五、课后作业(课后自主完成)1. 完成练习题,巩固原点对称点的坐标特点。
2. 选择一道实际问题,运用原点对称性质解决。
教学反思:本节课通过导入、新课讲解、课堂练习、课堂小结和课后作业等环节,向学生介绍了原点对称的点的坐标性质。
在教学过程中,注意通过示例和练习题让学生充分理解和掌握原点对称点的坐标特点。
强调原点对称性质在解决实际问题中的应用,提高学生的解决问题的能力。
在课后作业中,要求学生运用原点对称性质解决实际问题,培养学生的应用能力。
总体来说,本节课的教学目标是达到了。
六、实例分析(15分钟)1. 通过具体的实例,让学生进一步理解和掌握原点对称的点的坐标性质。
2. 分析实例中原点对称点的坐标特点,并解释其原因。
七、练习与巩固(15分钟)1. 让学生进行一些有关原点对称点的坐标特点的练习题,以巩固所学知识。
关于原点对称的点的坐标教案第一章:引言1.1 课程背景在数学中,我们经常会遇到一些关于点的位置关系的问题,例如,如何判断两个点是否关于某个点对称,如何求出关于原点对称的点的坐标等。
这些问题在日常生活和工作中都有着广泛的应用。
本章我们将学习关于原点对称的点的坐标的相关知识。
1.2 教学目标通过本章的学习,学生能够理解原点对称的概念,掌握求解关于原点对称的点的坐标的方法,能够应用所学知识解决实际问题。
第二章:原点对称的概念2.1 知识点介绍在平面直角坐标系中,原点是对称的中心点,如果一个点P关于原点对称,它的坐标可以通过将点P的横纵坐标取相反数得到,即如果点P的坐标为(x, y),它关于原点对称的点的坐标为(-x, -y)。
2.2 教学活动2. 学生分组讨论,通过实际操作,尝试找出关于原点对称的点的坐标之间的关系。
第三章:求解关于原点对称的点的坐标3.1 知识点介绍要求解一个点关于原点对称的点的坐标,只需要将这个点的横纵坐标取相反数即可。
3.2 教学活动1. 教师通过PPT或者黑板展示一些具体的例子,引导学生掌握求解关于原点对称的点的坐标的方法。
2. 学生分组练习,通过实际操作,尝试求解给定的点关于原点对称的点的坐标。
3. 教师选取一些学生的答案进行讲解和解析,强调解题的注意事项和技巧。
第四章:应用举例4.1 知识点介绍通过学习原点对称的点的坐标,我们可以解决一些实际问题,例如,在平面几何中,我们可以通过求解关于原点对称的点的坐标来找到图形的对称中心等。
4.2 教学活动1. 教师通过PPT或者黑板展示一些应用原点对称的点的坐标解决实际问题的例子。
2. 学生分组讨论,尝试应用所学知识解决给定的实际问题。
3. 教师选取一些学生的答案进行讲解和解析,强调解题的思路和方法。
5.1 知识点介绍通过本章的学习,学生能够理解原点对称的概念,掌握求解关于原点对称的点的坐标的方法,并能够应用所学知识解决实际问题。
5.2 教学活动2. 学生进行课堂练习,巩固所学知识。
关于原点对称的点的坐标学案学习目标:1.学习点P与点P′关于原点对称时,它们的横、纵坐标的关系.2.学习点P(x,y)关于原点的对称点为P′(-x,-y).学习重点:探究关于原点对称的点的坐标的规律学习难点:关于原点对称的点的坐标的规律及运用教学过程:一、教学导入【课前热身】1.下列各点分别在坐标平面的什么位置上?A(4,0)B(0,-3)C(2,1)D(-1,2)E(-3,-4)2.(1)你能说出点P关于x轴、y轴对称点的坐标吗?思考:关于x轴对称的点的坐标具有怎样的关系?关于y轴对称的点的坐标具有怎样的关系?(课前主持人主持,并抽一小组展示,最后小组评价)巩固已学知识,为本节课的学习做好铺垫。
结论:点P(a,b)关于x轴对称的点的坐标为P′(a,-b);点P(a,b)关于y轴对称的点的坐标为P′(-a, b).简记为:“关于谁,谁不变 ”教学过程【第一学程】学习任务:写出关于原点对称的点的坐标问题1 如何确定平面直角坐标系中A 点关于原点对称的点A′坐标?练一练:在直角坐标系中,作出下列点关于原点的对称点,并写出它们的坐标. A (2,1) B (0,-3) C (4,0) D (-1,2) E (-3,-2)师生活动:让学生在课前发给的坐标纸上(事先把复印好的坐标纸发给学生,每人一张)作出这几个点关于原点的对称点,并写出它们的坐标.教师巡查,点拨不懂的学生作出对称点.议一议: 比较点A ,B ,C ,D ,E 与它们的对称点的坐标,你有什么发现?师生活动:先让学生观察,分组讨论、交流.讨论的内容:关于原点作中心对称时, ①它们的横坐标与横坐标的绝对值有什么关系?纵坐标与纵坐标的绝对值又有什么关系?②坐标与坐标之间符号又有什么特点?教师提示学生从对称点的坐标的符号去观察,这样便于看出坐标的差别,有利于学生发现问题.设计意图:以小组的形式,合作学习,让学生在探索、交流的活动中体会关于原点对称时,纵、横坐标的关系,进一步体验作图意义,以此来突破“关于原点对称的性质”,进而培养学生分析、作图的能力,突破重点和难点.问题2.你能根据你发现的规律得出一个结论吗?师生活动:由同学口述发现的规律,教师引导学生得出,(1)横坐标的绝对值相等,纵坐标的绝对值相等;(2)坐标符号相反,即点P (x ,y )关于原点O 的对称点为点P ′(-x ,-y ).'''''A B C D E ,,,,'''''A B C D E ,,,,归纳关于原点对称的两个点,它们的坐标符号相反(关于原点对称的点的坐标互为相反数),即点P(x,y)关于原点的对称点为P'(-x,-y).设计意图:通过归纳总结,培养了学生的思维能力.简记为:“关于谁,谁不变,关于原点都改变”。
一、教案简介本教案主要向学生介绍关于原点对称的点的坐标概念。
通过本节课的学习,学生将能够理解原点对称的点的坐标特征,并能运用这一概念解决实际问题。
二、教学目标1. 知识与技能:能够理解原点对称的点的坐标特征;能够运用原点对称的点的坐标解决实际问题。
2. 过程与方法:培养学生的观察、思考和解决问题的能力;培养学生的坐标系绘制和计算能力。
3. 情感态度价值观:激发学生对数学的兴趣;培养学生的团队合作意识。
三、教学重点与难点1. 教学重点:原点对称的点的坐标特征;原点对称的点的坐标在实际问题中的应用。
2. 教学难点:理解原点对称的点的坐标特征;在实际问题中灵活运用原点对称的点的坐标。
四、教学准备1. 教具准备:坐标纸;直尺;彩笔。
2. 教学素材:相关例题和练习题。
五、教学过程1. 导入:通过展示一些关于原点对称的图形,引导学生思考原点对称的点的坐标特征。
2. 新课导入:介绍原点对称的点的坐标概念;解释原点对称的点的坐标特征,即两个点关于原点对称时,它们的坐标符号相反。
3. 实例讲解:通过一些具体的例题,展示如何判断两个点是否关于原点对称;引导学生运用原点对称的点的坐标特征解决问题。
4. 练习与讨论:让学生独立完成一些相关的练习题;引导学生进行小组讨论,分享解题思路和方法。
提出一些拓展问题,激发学生的思考和兴趣。
6. 课堂小结:对本节课的学习内容进行简要回顾;强调原点对称的点的坐标特征在实际问题中的应用。
7. 作业布置:布置一些相关的练习题,巩固所学知识;鼓励学生进行自主学习,探索更多的原点对称的点的坐标性质。
六、教学延伸1. 应用拓展:通过一些实际问题,让学生运用原点对称的点的坐标特征进行解决;引导学生发现原点对称的点的坐标在实际生活中的应用。
2. 知识拓展:引导学生思考原点对称的点的坐标特征与其他几何图形的对称性的联系;引导学生探索原点对称的点的坐标在高等数学中的应用。
七、教学评估1. 课堂表现评估:观察学生在课堂上的参与程度、思考问题和解决问题的能力;评估学生对原点对称的点的坐标特征的理解程度。
关于原点对称的点的坐标教案教案:关于原点对称的点的坐标一、教学目标:1. 了解坐标系中原点对称的概念。
2. 学习如何确定原点对称点的坐标。
3. 掌握原点对称点的性质和应用。
二、教学内容:1. 原点对称的概念介绍2. 原点对称点的坐标确定方法3. 原点对称点的性质和应用三、教学过程:1. 导入新课(5分钟)教师可以通过给出一个问题来导入新课,如:如果平面上有一个点A(3,4),请问能否找到它的一个对称点,使得对称点关于坐标原点(0,0)对称?请同学们思考一下。
然后请同学们和老师一起讨论解答这个问题,引出原点对称的概念。
2. 讲解原点对称的概念(10分钟)教师通过幻灯片、板书等方式,向学生介绍原点对称的概念。
可以用图像的形式来展示,如对称轴是以原点为中心的垂直或水平线。
3. 确定原点对称点的方法(15分钟)(1)通过对称性质确定坐标:对于某点P(x,y),它的原点对称点是P'(-x,-y)。
(2)通过计算确定坐标:对于某点P(x,y),它的原点对称点是P'。
首先计算出点P到原点的距离d,然后用相同的方向、相同的长度在原点的反方向上找到点P'。
4. 原点对称点的性质和应用(15分钟)(1)原点对称点的性质:- 坐标轴上的点关于原点对称后,坐标不变;- 平移是保持原点对称性质的;- 连接原点和对称点的线段经过坐标轴的中点。
(2)原点对称点的应用:在解决问题时,可以利用原点对称的性质简化计算或寻找解的方法。
5. 练习与巩固(15分钟)教师可以设计一些练习题,让学生通过计算和画图找出原点对称点的坐标,巩固所学内容。
四、教学总结(5分钟)教师对本节课进行总结,回顾本节课所学的内容,并强调原点对称的概念、确定原点对称点的方法以及原点对称点的性质和应用。
五、课后作业(5分钟)布置一些作业题,让学生进行练习,巩固所学内容。
六、板书设计:1. 原点对称的概念2. 确定原点对称点的方法3. 原点对称点的性质和应用以上是关于原点对称的点的坐标教案,根据教学目标和内容进行设计,通过理论讲解和练习巩固,帮助学生理解原点对称的概念、确定原点对称点的方法,掌握原点对称点的性质和应用。