蛋白质的全部理化性质及分类
- 格式:ppt
- 大小:302.00 KB
- 文档页数:34
蛋白质蛋白质是构成人体一切细胞和组织结构的最重要组成成分,是在所有生命现象中起着决定性作用的基本物质。
可以说,没有蛋白质就没有生命。
所以,蛋白质是人体不可或缺的重要营养素。
蛋白质是一类复杂的高分子有机化合物。
主要含有碳、氢、氧、氮,及少量硫、磷、铁、铜、碘、钴元素等。
与其他供能营养素相较,含有氮元素是其最突出的特点,因而蛋白质是人体氮元素的唯一供源。
这也是其他营养素无法替代的。
一般蛋白质中氮的平均含量为16%,以测出的含氮量乘以6.25即可换算成蛋白质量。
一、蛋白质的分类蛋白质的分类方法有多种。
营养学中一般多按化学结构、形状及营养价值等三种方法分类。
1.按化学结构:可将蛋白质分为单纯蛋白质(纯为α-氨基酸所组成)与结合蛋白质(单纯蛋白质与非蛋白质分子结合而成)两大类。
前者如清蛋白、球蛋白、谷蛋白等,水解后的最终产物只是氨基酸;后者如核蛋白、糖蛋白、脂蛋白等,水解后还有其所含的非蛋白质分子(辅基)。
2.按蛋白质形状:可将蛋白质分为纤维状蛋白质和球状蛋白质。
前者多为结构蛋白,是形成机体组织的物质基础,如胶原蛋白等;后者多用以合成生物活性因子,如酶、激素、免疫因子、补体等。
3.按营养价值:可将蛋白质分为完全蛋白质、半完全蛋白质和不完全蛋白质。
完全蛋白质所含氨基酸种类齐全、数量充足、比例合理,既能维持动物生存,又能促其生长发育,如牛奶、蛋、肝脏、酵母、黄豆及胚芽等食物中所含的蛋白质;否则即为不完全蛋白质,其所含氨基酸种类不全,如动物明胶和玉米胶蛋白等;半完全蛋白质所含氨基酸种类齐全,但有的氨基酸数量不足,虽能维持动物生存,却不能促其生长发育,如麦胶蛋白等。
二、蛋白质的理化性质蛋白质经物理或化学方法处理后,其性质可发生改变。
变性后的蛋白质较易被人体蛋白酶消化。
这就是蛋白质食品在加工后更易被人消化、吸收的原理。
除用酸或碱水解蛋白质外,亦有利用酶水解蛋白质,均可使之分解成氨基酸。
如酱油、酱、酱豆腐、豆腐、奶酪、松花蛋等食品。
蛋白质的理化性质(二)引言:蛋白质是生物体内最重要的有机物之一,它具有多种复杂的理化性质。
在本文中,我们将详细介绍蛋白质的理化性质,包括其酸碱性、溶解性、热稳定性、氧化还原性和聚合性等方面。
正文:1. 酸碱性:- 蛋白质的酸碱性来源于其氨基酸残基中的氨基和羧酸基,并受到溶液pH的影响。
- 在酸性条件下,蛋白质带正电荷,容易与带负电荷的物质相互作用。
- 在碱性条件下,蛋白质带负电荷,容易与带正电荷的物质相互作用。
2. 溶解性:- 蛋白质的溶解性受到其成分和物理条件的影响,如溶液离子强度、温度和pH等。
- 水是蛋白质最常见的溶剂,但特定条件下,蛋白质也可以溶解于有机溶剂中。
- 蛋白质的溶解性对其功能和应用具有重要意义。
3. 热稳定性:- 蛋白质在高温下容易发生变性,失去原有的结构和功能。
- 高温可以引起蛋白质内部的氢键和疏水作用的破坏。
- 不同蛋白质对温度的敏感性不同,有些蛋白质可以在高温下保持一定的稳定性。
4. 氧化还原性:- 蛋白质中的部分氨基酸残基可以参与氧化还原反应,如半胱氨酸(Cys)和甲硫醇(Met)等。
- 氧化还原反应可以改变蛋白质的构象和功能。
- 氧化还原平衡在细胞代谢和疾病发展中起着重要的调节作用。
5. 聚合性:- 蛋白质具有聚合的能力,可以通过非共价相互作用形成多聚体结构。
- 蛋白质的聚合对于其功能和稳定性至关重要。
- 一些蛋白质可以通过聚合来形成纤维或胶状物质。
总结:蛋白质具有复杂的理化性质,包括酸碱性、溶解性、热稳定性、氧化还原性和聚合性。
深入理解蛋白质的理化性质对于揭示其结构、功能和应用具有重要意义。
此外,这些性质也与蛋白质在细胞内的代谢过程和疾病发展中起着关键的调节作用。
蛋白质的理化性质蛋白质是一类高分子生物大分子化合物,由氨基酸分子结合而成。
下面将从化学、物理、生化等方面来介绍蛋白质的理化性质。
1. 氨基酸的性质氨基酸是蛋白质的基本组成单位,其分子结构具有酸性和碱性两部分,分别是羧基和氨基。
氨基酸的酸性和碱性反应性决定蛋白质的异性和电性。
氨基酸的酸性基团和碱性基团在不同的环境下会存在不同的离子形式,从而影响蛋白质的电性质。
2. 构象的性质蛋白质的构象是指氨基酸之间的立体构型,决定了蛋白质的特殊结构和功能。
蛋白质的构象主要由五种不同层次的结构组成,包括原生构象、二级构象、三级构象、四级构象和超级结构。
每一层次的构象都有一定的稳定性和特殊结构,是蛋白质功能和特性的决定因素。
3. 溶解和凝固的性质蛋白质在水中具有一定的溶解性,但可能会因为温度、pH值、离子强度等因素的改变而发生凝固。
这种溶解或凝固的性质取决于蛋白质的特殊结构以及其所处环境。
当蛋白质分子与水分子之间的相互作用受到破坏或受到特定溶剂或离子的作用时,蛋白质分子会转化为凝胶态或沉淀态。
4. 热力学性质蛋白质分子的热力学性质涉及其结构及其所处溶液环境的物理化学性质,可用于研究蛋白质折叠和复性过程。
蛋白质的热力学性质包括热容量、热稳定性、相转化、热解离等。
这些性质的变化与蛋白质结构的稳定性和功能密切相关。
蛋白质的光学性质主要表现为它们具有的吸收、发射光线的光学行为。
蛋白质的吸收和发射光束涉及其分子内的色团,这些分子内的色团主要由氨基酸的芳香族侧链所构成。
蛋白质的光学性质可以利用光谱分析来研究蛋白质的结构和功能。
综上所述,蛋白质的理化性质是多方面的,包括氨基酸的性质、构象的性质、溶解和凝固的性质、热力学性质以及光学性质等,这些性质的变化都会导致蛋白质的性质和功能的变化。
因此,对蛋白质的理化性质进行研究对于理解蛋白质的结构、功能与机制具有重要意义。
(一)蛋白质的分子组成1.氨基酸(1)分类:组成人体蛋白质的氨基酸仅有20种,除甘氨酸外,均属L-α-氨基酸。
根据其侧链的结构和理化性质可分成五类:非极性脂肪族氨基酸、极性中性氨基酸、芳香族氨基酸、酸性氨基酸和碱性氨基酸。
(2)理化性质①两性解离及等电点:氨基酸是一种两性电解质,具有两性解离的特性。
在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的pH称为该氨基酸的等电点(pI)。
②紫外吸收性质:根据氨基酸的吸收光谱,含有共辄双键的色氨酸、酪氨酸的最大吸收峰在280nm波长附近。
③茚三酮反应:氨基酸与茚三酮水合物共加热时,合成为蓝紫色的化合物,此化合物最大吸收峰在570nm波长处。
可作为氨基酸的定量分析方法。
2.肽蛋白质中的氨基酸相互结合成肽。
连接两个氨基酸的酰胺键称肽键。
蛋白质就是由许多氨基酸残基组成的多肽链。
(二)蛋白质的分子结构1.一级结构在蛋白质分子中,从N端至C端的氨基酸排列顺序称为蛋白质的一级结构。
其主要化学键是肽键,此外,蛋白质分子中所有二硫键的位置也属于一级结构的范畴。
2.二级结构是指蛋白质分子中某一段肽链的局部空间结构,也就是该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。
主要包括α-螺旋、β-折叠、β-转角和无规卷曲。
α-螺旋:每个肽键的N-H和第四个肽键的羰基氧形成氢键,氢键的方向与螺旋长轴基本平行。
肽链中的全部肽键都可形成氢键,以稳固螺旋结构。
3.三级结构是指整条肽链中全部氨基酸残基的相对空间位置,也就是整条肽链所有原子在三维空间的排布位置。
蛋白质三级结构的形成和稳定主要靠次级键,如疏水键、离子键(盐键)、氢键和范德华力等。
分子量较大的蛋白质常可折叠成多个结构较为紧密的区域,并各行其功能,称为结构域。
4.四级结构体内许多功能性蛋白质含有2条或2条以上多肽链。
每一条多肽链都有其完整的二级结构,称为亚基,亚基与亚基之间呈特定的三维空间排布,并以非共价键相连接,这种蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用,称为蛋白质的四级结构。
蛋白质的理化性质(一)蛋白质的两性解离及等电点1.蛋白质的等电点(pI):当蛋白质溶液处于某一pH时,蛋白质上可解离基团解离成正、负离子的趋势相等,净电荷为零时溶液的pH。
➢等电点时溶解度最小可使蛋白质沉淀。
➢蛋白质pI要用等电聚焦等方法测定。
(二)蛋白质的胶体性质1.胶体溶液的三个条件:①大小在1-100nm范围内:蛋白质分子量很大,属胶体颗粒范围。
②同种电荷互相排斥:相同蛋白质颗粒带有同性电荷,与周围的反离子构成稳定的双电层。
③质点外围有水化层:多肽链上的极性基团极易吸附水分子,使蛋白质颗粒外围形成一层水化膜。
蛋白质可以形成稳定的胶体溶液。
2.利用胶体溶液性质,可用透析法将蛋白质中小分子杂质除去。
(三)蛋白质的沉淀1.定义:蛋白质在溶液中的稳定性是有条件的、相对的。
如果加入适当的试剂使蛋白质分子处于等电点状态或破坏其水化层和双电层,蛋白质胶体溶液因不再稳定而产生沉淀。
此现象即为蛋白质的沉淀作用。
2.类型:分可逆沉淀与不可逆沉淀。
➢可逆沉淀▁非变性沉淀定义:在温和条件下,改变溶液的pH或电荷状况,蛋白质结构和功能没有发生变化。
如等电点沉淀法、盐析法和有机溶剂沉淀法等。
是分离和纯化的基本方法。
a.等电点沉淀法:用弱酸或弱碱调节蛋白质溶液的pH等于pI,破坏蛋白质表面净电荷使蛋白质沉淀。
b.盐析沉淀法:1.盐析:通过加入大量高浓度中性盐如硫酸铵、氯化钠等,破坏蛋白质分子表面的水化层,中和它们的电荷,而使蛋白质沉淀析出的现象。
2.各种蛋白质亲水性及荷电均有差别,因此通过调节中性盐浓度,可使混合蛋白质溶液中的不同蛋白分别沉淀析出,这种方法称为分段盐析。
3.盐溶:加入低浓度盐导致蛋白质溶解度增加的现象。
c.有机溶剂沉淀法定义:加入能与水互溶的有机溶剂如乙醇、丙酮等,破坏蛋白质的水化膜使蛋白质产生沉淀。
注意:通常在低温条件下进行,否则有机溶剂与水互溶产生的溶解热会使蛋白质发生变性。
➢不可逆沉淀▁变性沉淀定义:沉淀条件剧烈,破坏了蛋白质胶体溶液稳定性,同时也破坏了蛋白质结构和功能。
第四节蛋白质的理化性质Ⅰ复习题问:⒈什么是分子病?试举例。
⒉何为变构效应?⒊什么是蛋白质的构象病?试举例。
Ⅱ新授一、蛋白质的紫外吸收述:蛋白质的紫外吸收特征:蛋白质溶液能吸收一定波长的紫外线,主要是由带芳香环的氨基酸决定的。
由于这些分子中含有共轭双键使蛋白质在紫外光280nm波长处有特征性吸收波,其对紫外光吸收能力的强弱顺序为:色(Trp)>酪(Tyr)>苯丙(Phe)。
二、蛋白质的等电点与电泳㈠两性电离与等电点述:蛋白质分子除两端的氨基和羧基可解离外,氨基酸残基侧链中某些基团,在一定的溶液pH条件下都可解离成带负电荷或正电荷的基团。
蛋白质的等电点(pI):(课本P11)当蛋白质溶液处于某一pH时,蛋白质解离成阴、阳离子的趋势相等,净电荷为零,蛋白质为兼性离子,此时溶液的pH称为该蛋白质的等电点。
(P课本11图1-13)蛋白质阴、阳离子、兼性离子转换图述:体内各蛋白质的等电点不同,但大多接近于pH5.0,所以人体液pH为7.4的环境,大多蛋白质解离成阴离子。
过渡:蛋白质两性电离的性质非常重要,可以依此进行蛋白质的分离纯化。
㈡电泳⒈概念电泳:指带电颗粒在电场中向电性相反的电极移动的现象。
述:蛋白质在高于或低于等电点的pH溶液中为带电颗粒,能发生电泳。
在同一pH溶液中,由于各蛋白质所带电荷性质和数量不一,分子大小和形状不同,因此它们在同一电场中移动的速度也有差异。
根据这一原理可以用电泳法进行蛋白质的分离与鉴定。
⒉几种重要的蛋白质电泳⑴种类:纤维膜电泳,粉末电泳,凝胶电泳等⑵举例:双向凝胶电泳述:双向凝胶电泳是蛋白质组学研究的重要技术,它利用各蛋白质等电点和相对分子质量的差异,将复杂的蛋白质混合物分离,后利用质谱等技术对蛋白质逐一鉴定。
蛋白质组学:研究一个生物体系(生物群体、生物个体、器官、组织或细胞)蛋白质的结构、功能和蛋白质群体的相互作用。
三、蛋白质的胶体性质述:蛋白质是生物大分子,其溶液有许多高分子溶液的性质,如:扩散慢、易沉降、粘度大、不能透过半透膜等。
蛋白质的理化性质蛋白质是生物体中最为重要的大分子有机化合物之一,其具有多种理化性质,这些性质直接影响着蛋白质的功能和结构。
本文将着重介绍蛋白质的理化性质,包括分子质量、氨基酸组成、等电点、溶解性、热稳定性和光学性质等方面。
分子质量蛋白质的分子质量通常是指相对分子质量,用该蛋白质的分子质量与碳12的质量相对比得到。
蛋白质的分子质量因其组成氨基酸的种类、序列和数量而异。
一般来说,蛋白质的分子质量范围从数千到数十万不等。
氨基酸组成蛋白质是由氨基酸通过肽键连接而成的,不同蛋白质中的氨基酸组成各异。
氨基酸的类型和数量直接影响着蛋白质的结构和性质。
常见的氨基酸包括20种标准氨基酸,它们各自具有独特的化学结构和性质。
等电点蛋白质的等电点是指在该蛋白质溶液中,净电荷为零的pH值。
蛋白质的等电点与其氨基酸组成密切相关。
当蛋白质的溶液pH值低于等电点时,蛋白质带有正电荷,而当溶液pH值高于等电点时,则带有负电荷。
等电点对于蛋白质在电泳分离和纯化过程中具有重要的意义。
溶解性蛋白质的溶解性在很大程度上取决于其氨基酸组成和环境条件。
一些蛋白质在水中易溶解,而另一些可能需要特定的溶剂或特定的pH值才能溶解。
溶解性对于蛋白质的结构和功能具有重要影响,不溶解的蛋白质可能会失去其生物活性。
热稳定性蛋白质的热稳定性是指其在高温下是否能够保持其原有的结构和功能。
蛋白质的热稳定性受其组成氨基酸的性质和序列的影响。
一些蛋白质在高温下能够保持稳定,而另一些则易于发生变性和失活。
光学性质一些蛋白质具有旋光性,即其能够使得通过它们的光发生旋转现象。
这种旋光性取决于蛋白质分子中的手性氨基酸,如L-氨基酸和D-氨基酸。
光学性质对于鉴定和纯化蛋白质具有一定的重要性。
综上所述,蛋白质具有丰富的理化性质,包括分子质量、氨基酸组成、等电点、溶解性、热稳定性和光学性质等。
这些性质对于蛋白质的结构和功能具有重要的影响,也在蛋白质的研究和应用中发挥着重要的作用。