小学数学经典30道运用题详解
- 格式:docx
- 大小:4.72 MB
- 文档页数:18
小学数学必考100道应用题及答案(完整版)1. 学校图书馆有故事书240 本,科技书比故事书多30 本,科技书有多少本?答案:240 + 30 = 270(本)解题思路:科技书数量= 故事书数量+ 302. 果园里有苹果树180 棵,梨树比苹果树少20 棵,梨树有多少棵?答案:180 - 20 = 160(棵)解题思路:梨树数量= 苹果树数量- 203. 小明买了一支钢笔,花了8 元,又买了一个笔记本,花了5 元,一共花了多少钱?答案:8 + 5 = 13(元)解题思路:总花费= 钢笔花费+ 笔记本花费4. 养殖场有鸡200 只,鸭的数量是鸡的1.2 倍,鸭有多少只?答案:200 ×1.2 = 240(只)解题思路:鸭的数量= 鸡的数量×1.25. 一本书有150 页,小红第一天看了20%,第二天看了25%,两天一共看了多少页?答案:150 ×(20% + 25%)= 67.5(页)解题思路:先算出两天分别看的页数占总页数的比例,再乘以总页数得到两天看的页数之和6. 一个长方形的长是12 厘米,宽是长的2/3,这个长方形的面积是多少?答案:宽为12 ×2/3 = 8 厘米,面积= 12 ×8 = 96(平方厘米)解题思路:先求出宽,再用长乘以宽得到面积7. 商店运来500 千克水果,上午卖出180 千克,下午卖出220 千克,还剩多少千克?答案:500 - 180 - 220 = 100(千克)解题思路:用运来的水果重量依次减去上午和下午卖出的重量8. 工人师傅要生产480 个零件,已经生产了3 天,每天生产80 个,还剩多少个没生产?答案:480 - 80 ×3 = 240(个)解题思路:先算出已经生产的零件数量,再用总数减去已生产的数量9. 小明家离学校1500 米,他每天上学、放学一共要走多少米?答案:1500 ×2 = 3000(米)解题思路:上学和放学的路程相同,所以总路程是单程的2 倍10. 一桶油重50 千克,用去了30%,还剩多少千克?答案:50 ×(1 - 30%)= 35(千克)解题思路:剩下的油的重量= 总重量×(1 -用去的比例)11. 一个三角形的底是9 分米,高是底的2/3,这个三角形的面积是多少?答案:高为9 ×2/3 = 6 分米,面积= 9 ×6 ÷2 = 27(平方分米)解题思路:先求出高,再根据三角形面积公式计算12. 学校合唱队有男生25 人,女生人数是男生的1.2 倍,合唱队一共有多少人?答案:女生人数为25 ×1.2 = 30 人,总人数= 25 + 30 = 55(人)解题思路:先求出女生人数,再加上男生人数得到总人数13. 有一块长方形菜地,长18 米,宽12 米,这块菜地的一半种西红柿,种西红柿的面积是多少?答案:菜地面积为18 ×12 = 216 平方米,种西红柿的面积为216 ÷2 = 108 平方米解题思路:先求出菜地面积,再除以2 得到种西红柿的面积14. 一辆汽车2 小时行驶了160 千米,照这样的速度,5 小时能行驶多少千米?答案:速度为160 ÷2 = 80 千米/小时,5 小时行驶80 ×5 = 400 千米解题思路:先求出速度,再乘以时间得到行驶的路程15. 一个正方形的周长是36 厘米,它的面积是多少平方厘米?答案:边长为36 ÷4 = 9 厘米,面积为9 ×9 = 81 平方厘米解题思路:先求出边长,再计算面积16. 妈妈买了3 千克苹果,花了18 元,每千克苹果多少钱?答案:18 ÷ 3 = 6(元)解题思路:单价= 总价÷数量17. 小明做了40 道数学题,做错了5 道,他的正确率是多少?答案:(40 - 5)÷40 ×100% = 87.5%解题思路:正确率= (做对的题数÷总题数)×100%18. 一间教室长10 米,宽6 米,高3.5 米,要粉刷教室的四面墙壁和天花板,除去门窗和黑板的面积20 平方米,粉刷的面积是多少平方米?答案:(10 ×3.5 + 6 ×3.5)×2 + 10 ×6 - 20 = 132(平方米)解题思路:分别计算四面墙壁和天花板的面积,再减去门窗和黑板的面积19. 一根铁丝可以围成一个边长为8 厘米的正方形,如果用这根铁丝围成一个长方形,长是10 厘米,宽是多少厘米?答案:铁丝长度为8 × 4 = 32 厘米,宽为(32 - 10 ×2)÷2 = 6 厘米解题思路:先求出铁丝长度,再根据长方形周长公式求出宽20. 一个圆柱形水桶,底面半径是2 分米,高是5 分米,这个水桶的容积是多少升?答案:3.14 ×2 ×2 ×5 = 62.8(立方分米)= 62.8 升解题思路:圆柱容积= 底面积×高21. 一辆自行车的价格是300 元,一辆摩托车的价格是自行车的6 倍,一辆摩托车比一辆自行车贵多少元?答案:300 ×6 - 300 = 1500(元)解题思路:先求出摩托车的价格,再减去自行车的价格22. 学校举行运动会,参加跑步的有48 人,参加跳远的人数是跑步的3/4,参加跳高的人数是跳远的2/3,参加跳高的有多少人?答案:参加跳远的有48 ×3/4 = 36 人,参加跳高的有36 ×2/3 = 24 人解题思路:依次计算出跳远和跳高的人数23. 有一堆煤,用去了2/5 ,还剩下12 吨,这堆煤原来有多少吨?答案:12 ÷(1 - 2/5)= 20(吨)解题思路:剩下的煤占原来的(1 - 2/5),用剩下的煤的重量除以其占比得到原来煤的重量24. 一块长方形草地,长和宽的比是5:3,长比宽多12 米,这块草地的面积是多少平方米?答案:长比宽多5 - 3 = 2 份,1 份是12 ÷2 = 6 米,长为5 ×6 = 30 米,宽为3 ×6 = 18 米,面积为30 ×18 = 540 平方米解题思路:先求出长和宽分别占的份数,计算出1 份的长度,进而求出长和宽,最后求出面积25. 一个圆锥形沙堆,底面直径是6 米,高是2 米,这个沙堆的体积是多少立方米?答案:半径为6 ÷ 2 = 3 米,体积= 1/3 ×3.14 × 3 ×3 ×2 = 18.84 立方米解题思路:先求出半径,再根据圆锥体积公式计算26. 小红买了2 件上衣和3 条裤子,一共花了240 元,一件上衣的价格是一条裤子的2 倍,上衣和裤子的单价各是多少元?答案:设裤子单价为x 元,则上衣单价为2x 元,2 ×2x + 3x = 240,解得x = 32,上衣单价为64 元解题思路:根据价格关系设未知数,列方程求解27. 甲乙两地相距360 千米,一辆汽车从甲地开往乙地,3 小时行了全程的3/4,这辆汽车平均每小时行多少千米?答案:3 小时行驶的路程为360 ×3/4 = 270 千米,速度为270 ÷3 = 90 千米/小时解题思路:先求出3 小时行驶的路程,再除以时间得到速度28. 有一批零件,师傅单独做需要10 小时,徒弟单独做需要15 小时,师徒两人合作,需要几小时完成?答案:1 ÷(1/10 + 1/15)= 6(小时)解题思路:把工作总量看作单位“1”,师傅每小时完成1/10 ,徒弟每小时完成1/15 ,合作每小时完成(1/10 + 1/15),用1 除以合作每小时完成的量29. 一个长方体水箱,从里面量长8 分米,宽5 分米,高4 分米,水箱里的水深3 分米,水箱里的水有多少升?答案:8 ×5 × 3 = 120(立方分米)= 120 升解题思路:水的体积= 长×宽×水深30. 把20 克盐放入200 克水中,盐占盐水的百分之几?答案:20 ÷(20 + 200)×100% = 9.09%解题思路:先求出盐水的总质量,再用盐的质量除以盐水的总质量乘以100%31. 商店里有红气球180 个,黄气球比红气球少20 个,蓝气球的个数是黄气球的2 倍,蓝气球有多少个?答案:黄气球有180 - 20 = 160 个,蓝气球有160 × 2 = 320 个解题思路:先求出黄气球的个数,再求出蓝气球的个数。
小升初数学复习资料: 小学数学必考经典应用题汇总,共30题一.解答题(共30题, 共196分)1.一个长方形游乐场长90米, 宽80米, 如果把它的各边缩小到原来的/画的一张图纸上, 图上的长和宽各是多少厘米?2.在一个底面半径为10厘米的圆柱形杯里装满水, 水里放了一个底面半径为5厘米的圆锥形铅锤, 当铅锤从水中完全取出后, 杯里的水面下降了0.5厘米, 这个铅锤的体积是多少?3.下表是银行定期存款利率。
4.我国国土面积960万平方千米, 各种地势所占百分比如下图。
(1)请你计算我国国土中山地的面积是多少万平方千米。
(2)根据图中的信息, 请你提出一个数学问题, 并列式解答。
5.下图是根据乐乐今天的早餐制作的统计图。
(1)乐乐今天的早餐是按怎样的比搭配的?如果乐乐今天早餐吃了50克鸡蛋, 则他早餐一共吃了多少克食物?(2)乐乐的妈妈按同样的比大约吃了420克早餐, 算算妈妈今天的早餐中各种食物大约分别吃了多少?6.根据已知条件, 完成下面各题。
(1)已知圆柱底面周长是25.12厘米, 高是20厘米, 求圆柱的表面积. (2)已知圆锥底面直径是8厘米, 高是12厘米, 求体积是多少?(3)如图是圆柱中挖去一个圆锥后的剩余部分, 请计算它的体积.(单位:厘米)7.幼儿园买回240个苹果, 按照大、中、小三个幼儿班的人数分配给各个班。
大班有28人, 中班有25人, 小班有27人。
三个班各应分多少个苹果?8.根据某地实验测得的数据表明, 高度每增加1 km, 气温大约下降6℃, 已知该地地面温度为21℃。
(1)高空某处高度是8 km, 求此处的温度是多少?(2)高空某处温度为一24 ℃, 求此处的高度。
9.把一个体积是282.6cm3的铁块熔铸成一个底面半径是6厘米的圆锥形机器零件, 求圆锥零件的高?(π取3.14)10.一个圆柱形铁皮水桶(无盖), 高10dm, 底面直径是6dm, 做这个水桶大约要用多少铁皮?11.某蓄水池的标准水位记为0米, 如果用正数表示水面高于标准水位的高度, 那么:(1)水面低于标准水位0.1米和高于标准水位0.2米各怎样表示?(2)0.18米和-0.23米各表示什么?12.哈尔滨的气温的-30℃, 北京的气温比哈尔滨高19℃, 请问北京的气温是多少度?13.一块长方形土地的周长是162米, 长与宽的比是5∶4, 这块土地的面积是多少平方米?14.下表记录的是某天我国8个城市的最低气温。
小学数学经典一百道应用题含答案解析应用题100道01、40个梨分给3个班,分给一班20个,其余平均分给二班和三班,二班分到( )个。
【解析】分给一班后还剩下40-20=20个梨,因为其余平均分给二班和三班,所以二班分到20÷2=10个。
02、7年前,妈妈年龄是儿子的6倍,儿子今年12岁,妈妈今年( )岁。
【解析】年龄问题,7年前,儿子年龄为12-7=5岁,而妈妈年龄是儿子的6倍,所以妈妈七年前的年龄为5×6=30岁,那么妈妈今年37岁。
03、同学们进行广播操比赛,全班正好排成相等的6行。
小红排在第二行,从头数,她站在第5个位置,从后数她站在第3个位置,这个班共有( )人【解析】站队问题,要注意不要忽略本身。
从头数,她站在第5个位置,说明她前面有5-1=4个人,从后数她站在第3个位置,说明她后面有3-1=2人,所以这一行的人数为4+2+1=7人,所以这个班的人数为7×6=42人。
04、有一串彩珠,按“2红3绿4黄”的顺序依次排列。
第600颗是( )颜色。
【解析】周期循环问题,以2+3+4=9个一循环,600÷9=66 (6),余数为6,所以第600颗是黄颜色。
05、用一根绳子绕树三圈余30厘米,如果绕树四圈则差40厘米,树的周长有( )厘米,绳子长( )厘米。
【解析】绕树三圈余30厘米,绕树四圈则差40厘米,所以树的周长为30+40=70厘米,绳子长为3×70+30=240厘米。
06、一只蜗牛在10米深的井底向上爬,每小时爬上3米后要滑下2米,这只蜗牛要( )小时才能爬出井口。
【解析】每小时爬上3米后要滑下2米,相当于每小时向上爬了1米,那么7小时后,蜗牛向上爬了7米,离井口还差3米,所以只需要再1小时,蜗牛就可爬出井口,因此需要的总时间为8小时。
07、锯一根10米长的木棒,每锯一段要2分钟。
如果把这根木棒锯成相等的5段,一共要( )分钟。
【解析】把这根木棒锯成相等的5段,只需要锯4次,每次要2分钟,所以一共需要4×2=8分钟。
小学六年级数学应用题30道及答案六年级的数学正是一个整合所学小学数学知识的时候,下面就是小编给大家带来的小学六年级数学应用题30道及答案,希望大家能够喜欢!六年级数学应用题1、甲乙两车同时从AB两地相对开出。
甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。
求AB两地相距多少千米 ?2、一辆客车和一辆货车分别从甲乙两地同时相向开出。
货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。
甲乙两地相距多少千米?3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。
现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。
求乙绕城一周所需要的时间?4、甲乙两人同时从A地步行走向B地,当甲走了全程的1\4时,乙离B地还有640米,当甲走余下的5\6时,乙走完全程的7\10,求AB两地距离是多少米?5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。
甲车每小时行75千米,乙车行完全程需7小时。
两车开出3小时后相距15千米,A,B两地相距多少千米?6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟乙相遇?7、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0.5千米,求甲、乙两人的速度?9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?10、甲每小时行驶9千米,乙每小时行驶7千米。
两者在相距6千米的两地同时向背而行,几小时后相距150千米?11、甲乙两车从相距600千米的两地同时相向而行已知甲车每小时行42千米,乙车每小时行58千米两车相遇时乙车行了多少千米?12、两车相向,6小时相遇,后经4小时,客车到达,货车还有188千米,问两地相距?13、甲乙两地相距600千米,客车和货车从两地相向而行,6小时相遇,已知货车的速度是客车的3分之2 ,求二车的速度?14、小兔和小猫分别从相距40千米的A、B两地同时相向而行,经过4小时候相聚4千米,再经过多长时间相遇?15、甲、乙两车分别从a b两地开出甲车每小时行50千米乙车每小时行40千米甲车比乙车早1小时到两地相距多少?16、两辆车从甲乙两地同时相对开出,4时相遇。
小学数学经典奥数应用题100道及答案(完整版)1. 甲、乙两车同时从A、B 两地相向而行,在距A 地60 千米处第一次相遇。
各自到达对方出发地后立即返回,途中又在距A 地40 千米处相遇。
A、B 两地相距多少千米?答案:(60×3 + 40)÷2 = 110(千米)2. 一个圆形花坛的周长是60 米,沿圆周每隔4 米放一盆红花,每两盆红花之间放3 盆黄花。
花坛周围一共放了多少盆花?答案:60÷4 = 15(盆)红花,15×3 = 45(盆)黄花,共15 + 45 = 60(盆)3. 一列火车通过530 米的桥需40 秒钟,以同样的速度穿过380 米的山洞需30 秒钟。
求这列火车的速度是每秒多少米?车长多少米?答案:速度:(530 - 380)÷(40 - 30) = 15(米/秒),车长:40×15 - 530 = 70(米)4. 用绳子测井深,把绳子三折来量,井外余16 分米,把绳子四折来量,井外余4 分米。
求井深和绳长。
答案:井深:(16×3 - 4×4)÷(4 - 3) = 32(分米),绳长:(32 + 16)×3 = 144(分米)5. 有一堆棋子,把它四等分后剩下一枚,取走三份又一枚;剩下的再四等分又剩一枚,再取走三份又一枚;剩下的再四等分又剩一枚。
问:原来至少有多少枚棋子?答案:从最后的情况倒推,最后至少有5 枚棋子。
则之前有(5×4 + 1)×4 + 1 = 85(枚)6. 甲、乙、丙三人共有人民币168 元,第一次甲拿出与乙相同的钱数给乙;第二次乙拿出与丙相同的钱数给丙;第三次丙拿出与这时甲相同的钱数给甲。
这样,甲、乙、丙三人的钱数相等,原来甲比乙多多少元钱?答案:168÷3 = 56(元),倒推得出原来甲有77 元,乙有49 元,甲比乙多28 元。
小学数学30种典型问题001归一问题002归总问题003和差问题004和倍问题005差倍问题006倍比问题007相遇问题008追及问题009植树问题010年龄问题011行船问题012列车问题013时钟问题014 盈亏问题015工程问题016正反比例问题017按比例分配问题018百分数问题019“牛吃草”问题020鸡兔同笼问题021方阵问题022商品利润问题023存款利率问题024溶液浓度问题025构图布数问题026幻方问题027抽屉原则问题028公约公倍问题029最值问题030列方程问题1 归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量 1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱? 0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式 0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷? 90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式 90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。
例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材? 100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材? 5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式 105÷(100÷5÷4×7)=3(次)答:需要运3次。
小学三年级数学应用题100道及答案(完整版)1. 商店有4 筐苹果,每筐55 千克,已经卖出135 千克,还剩多少千克苹果?答案:4×55 - 135 = 85(千克)2. 美术组有24 人,体育组的人数是美术组的4 倍,两个组共有多少人?答案:24×(4 + 1) = 120(人)3. 每盒粉笔1 元3 角4 分,每瓶墨水6 角2 分,学校买了6 盒粉笔5 瓶墨水,共花多少钱?答案:1.34×6 + 0.62×5 = 11.14(元)4. 有篮球9 个,足球的个数是篮球的8 倍,足球有多少个?答案:9×8 = 72(个)5. 有50 个苹果,每袋放8 个,可以放几袋,还剩几个?答案:50÷8 = 6(袋)......2(个)6. 三年级同学种树80 棵,四、五年级种的棵树比三年级种的2 倍多14 棵,三个年级共种树多少棵?答案:80×2 + 14 + 80 = 254(棵)7. 学校有808 个同学,分乘6 辆汽车去春游,第一辆车已经接走了128 人,如果其余5 辆车乘的人数相同,最后一辆车乘了几个同学?答案:(808 - 128)÷5 = 136(个)8. 学校里组织兴趣小组,合唱队的人数是器乐队人数的3 倍,舞蹈队的人数比器乐队少8 人,舞蹈队有24 人,合唱队有多少人?答案:(24 + 8)×3 = 96(人)9. 小强在计算除法时,把除数76 写成67,结果得到的商是15 还余5。
正确的商应该是多少?答案:(67×15 + 5)÷76 = 1310. 一个书架有3 层书,共有270 本,从第一层拿出20 本放到第二层,从第三层拿出17 本放到第二层,这时三层书架中书的本数相等,原来每层各有几本书?答案:现在每层有:270÷3 = 90(本)原来第一层:90 + 20 = 110(本)原来第二层:90 - 20 - 17 = 53(本)原来第三层:90 + 17 = 107(本)11. 箱里放着同样个数的铅笔盒,如果从每只里拿出60 个,那么5 只箱里剩下铅笔盒的个数的总和等于原来2 只箱里个数的和。
小学数学最典型的30道应用题:定义+数量关系+例题详解归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量;1份数量×所占份数=所求几份的数量;另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1. 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解:买1支铅笔多少钱?0.6÷5=0.12(元)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
例2. 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解:1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。
例3. 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解:1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)7辆汽车1次能运多少吨钢材?5×7=35(吨)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。
【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
小学数学典型应用题100道附答案(完整版)1. 小明有10 个苹果,小红的苹果数是小明的2 倍,小红有多少个苹果?答案:10×2 = 20(个)2. 商店里有30 个篮球,卖出了15 个,还剩下多少个?答案:30 - 15 = 15(个)3. 一辆汽车每小时行驶80 千米,行驶4 小时,一共行驶了多少千米?答案:80×4 = 320(千米)4. 果园里有120 棵桃树,梨树比桃树少20 棵,梨树有多少棵?答案:120 - 20 = 100(棵)5. 一本书有200 页,小明每天看25 页,看了4 天,还剩多少页没看?答案:200 - 25×4 = 100(页)6. 工厂要生产500 个零件,已经生产了200 个,剩下的要在5 天内完成,平均每天生产多少个?答案:(500 - 200)÷5 = 60(个)7. 学校买了8 套桌椅,每套桌椅150 元,一共花了多少钱?答案:8×150 = 1200(元)8. 长方形的长是12 厘米,宽是8 厘米,它的面积是多少平方厘米?答案:12×8 = 96(平方厘米)9. 一根绳子长50 米,剪掉20 米,剩下的占全长的几分之几?答案:(50 - 20)÷50 = 3/510. 小红有80 元零花钱,花了30 元,还剩下零花钱的几分之几?答案:(80 - 30)÷80 = 5/811. 一个三角形的底是6 分米,高是4 分米,面积是多少平方分米?答案:6×4÷2 = 12(平方分米)12. 小明从家到学校,每分钟走60 米,走了10 分钟,小明家到学校有多远?答案:60×10 = 600(米)13. 一批货物,甲车单独运6 小时运完,乙车单独运8 小时运完,两车一起运,需要几小时运完?答案:1÷(1/6 + 1/8) = 24/7(小时)14. 鸡兔同笼,共有20 个头,56 条腿,鸡和兔各有多少只?答案:假设全是鸡,兔有(56 - 20×2)÷(4 - 2) = 8(只),鸡有20 - 8 = 12(只)15. 果园里苹果树和梨树共180 棵,苹果树是梨树的2 倍,苹果树和梨树各有多少棵?答案:梨树有180÷(2 + 1) = 60(棵),苹果树有120 棵。
小学数学30道分数应用题及答案1.光明畜牧场共有900头牛,其中奶牛比肉牛多25%,求奶牛的头数。
解:奶牛的头数为900×1.25=1125头。
2.一辆汽车每行8千米要耗油4/5千克,求平均每千克汽油可行多少千米,行1千米路程要耗油多少千克?解:平均每千克汽油可行10千米,行1千米路程要耗油0.1千克。
3.一辆摩托车1/2小时行30千米,求该摩托车每小时行驶多少千米,行1千米需要多少小时?解:该摩托车每小时行驶60千米,行1千米需要1/60小时。
4.一种电视机降价200元,比原来便宜了2/11,现在这种电视机的价格是多少钱?解:原来这种电视机的价格为2200元,现在降价后的价格为2000元。
5.一块长方形地,长60米,宽是长的2/5,求该块地的面积。
解:该块地的面积为60×(2/5)=24平方米。
6.水果店在两天内卖完一批水果,第一天卖出水果总重量的3/5,比第二天多卖了30千克,求这批水果的总重量。
解:第一天卖出水果总重量的3/5,第二天卖出水果总重量的2/5,第一天比第二天多卖了1/5,即30千克,因此这批水果的总重量为150千克。
7.甲、乙两厂去年分别完成计划任务的112%和110%,共生产食品4000吨,比原来两厂计划之和超产400吨,求甲厂原来的生产任务是多少吨?解:设甲厂原来的生产任务为x吨,则乙厂原来的生产任务为3600-x吨。
根据题意,可列出方程1.12x+1.1(3600-x)=4400,解得甲厂原来的生产任务为2000吨。
8.植树节,初三年级170名学生去参加义务植树活动,如果男生平均一天能挖树坑3个,女生平均一天能种树7棵,正好使每个树坑种上一棵树,求该年级的男女各有多少人?解:设男生有x人,女生有170-x人,则3x=7(170-x),解得男生有119人,女生有51人。
9.工程队修一条路,已修好的长度与剩下的比是4:5,若再修25米就恰好修到了这条路的中点,求这条路的全长。
小学数学经典30道运用题详解+例题解答归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量;1份数量×所占份数=所求几份的数量;另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1. 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解:买1支铅笔多少钱?0.6÷5=0.12(元)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
例2. 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解:1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。
例3. 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
【数量关系】1份数量×份数=总量;总量÷1份数量=份数;总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。
例1. 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。
原来做791套衣服的布,现在可以做多少套?解:这批布总共有多少米?3.2×791=2531.2(米)现在可以做多少套?2531.2÷2.8=904(套)列成综合算式3.2×791÷2.8=904(套)答:现在可以做904套。
例2. 小华每天读24页书,12天读完了《红岩》一书。
小明每天读36页书,几天可以读完《红岩》?解:《红岩》这本书总共多少页?24×12=288(页)小明几天可以读完《红岩》?288÷36=8(天)列成综合算式24×12÷36=8(天)答:小明8天可以读完《红岩》。
例3. 食堂运来一批蔬菜,原计划每天吃50kg,30天慢慢消费完这批蔬菜。
后来根据大家的意见,每天比原计划多吃10kg,这批蔬菜可以吃多少天?解:这批蔬菜共有多少千克?50×30=1500(千克)这批蔬菜可以吃几天?1500÷(50+10)=25(天)列成综合算式50×30÷(50+10)=25(天)答:这批蔬菜可以吃25天。
【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。
例1. 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解:甲班人数:(98+6)÷2=52(人)乙班人数:(98-6)÷2=46(人)答:甲班有52人,乙班有46人。
例2. 长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。
解:长=(18+2)÷2=10(厘米)宽=(18-2)÷2=8(厘米)长方形的面积10×8=80(平方厘米)答:长方形的面积为80平方厘米。
例3. 有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。
解:甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(32-30)=2千克,且甲是大数,丙是小数。
由此可知:甲袋化肥重量:(22+2)÷2=12(千克)丙袋化肥重量:(22-2)÷2=10(千克)乙袋化肥重量:32-12=20(千克)答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。
例4. 甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?解:从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,说明甲车是大数,乙车是小数,甲与乙的差是(14×2+3),甲与乙的和是97,因此:【含义】已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。
【数量关系】总和÷(几倍+1)=较小的数;总和-较小的数=较大的数;较小的数×几倍=较大的数【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。
例1. 果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?解:杏树有多少棵?248÷(3+1)=62(棵)桃树有多少棵?62×3=186(棵)答:杏树有62棵,桃树有186棵。
例2. 东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?解:西库存粮数:480÷(1.4+1)=200(吨)东库存粮数:480-200=280(吨)答:东库存粮280吨,西库存粮200吨。
例3. 甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?解:每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站(28-24)辆。
把几天后甲站车辆数当作1倍量,则乙站车辆数就是2倍量,两站的车辆总数(52+32)就相当于(2+1)倍,那么几天后甲站车辆数减为:(52+32)÷(2+1)=28(辆)所求天数为:(52-28)÷(28-24)=6(天)答:6天以后乙站车辆数是甲站的2倍。
例4. 甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?解:乙丙两数都与甲数有直接关系,因此把甲数作为1倍量。
两个数各是多少,这类应用题叫做差倍问题。
【数量关系】两个数的差÷(几倍-1)=较小的数;较小的数×几倍=较大的数【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。
例1. 果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。
求杏树、桃树各多少棵?解:杏树有多少棵?124÷(3-1)=62(棵)桃树有多少棵?62×3=186(棵)答:果园里杏树是62棵,桃树是186棵。
例2. 爸爸比儿子大27岁,今年爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?解:儿子年龄:27÷(4-1)=9(岁)爸爸年龄:9×4=36(岁)答:父子二人今年的年龄分别是36岁和9岁。
例3. 商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?解:如果把上月盈利作为1倍量,则(30-12)万元就相当于上月盈利的(2-1)倍,上月盈利:(30-12)÷(2-1)=18(万元)本月盈利:18+30=48(万元)答:上月盈利是18万元,本月盈利是48万元。
例4. 粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍?解:由于每天运出的小麦和玉米的数量相等,所以剩下的数量差等于原来的数量差(138-94)。
把几天后剩下的小麦看作1倍量,则几天后剩下的玉米就是3倍量,那么(138-94)就相当于(3-1)倍,因此,剩下的小麦数量:(138-94)÷(3-1)=22(吨)运出的小麦数量:94-22=72(吨)运粮的天数:72÷9=8(天)答:8天以后剩下的玉米是小麦的3倍。
【数量关系】总量÷1个数量=倍数;另1个数量×倍数=另1总量【解题思路和方法】先求出倍数,再用倍比关系求出要求的数。
例1. 100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?解:3700kg是100kg的多少倍?3700÷100=37(倍)可以榨油多少千克?40×37=1480(千克)列成综合算式40×(3700÷100)=1480(千克)答:可以榨油1480千克。
例2. 今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?解:48000名是300名的几倍?48000÷300=160(倍)共植树多少棵?400×160=64000(棵)列成综合算式400×(48000÷300)=64000(棵)答:全县48000名师生共植树64000棵。
例3. 凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?全县16000亩果园共收入多少元?解:800亩是4亩的几倍?800÷4=200(倍)800亩收入多少元?【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。
例1. 南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?解:392÷(28+21)=8(小时)答:经过8小时两船相遇。
例2. 小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?解:“第二次相遇”可以理解为二人跑了两圈。
因此,总路程为400×2相遇时间:(400×2)÷(5+3)=100(秒)答:二人从出发到第二次相遇需100秒时间。
例3. 甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。
解:“两人在距中点3千米处相遇”是正确理解本题题意的关键。
从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,相遇时间:(3×2)÷(15-13)=3(小时)两地距离:(15+13)×3=84(千米)答:两地距离是84千米。
【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动。
在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。