等离子的高温使样品去溶剂化、汽化解离和电离;
部分等离子体经过不同的压力区进入真空系统,在真空系统 内,正离子被拉出并按其质荷比分离;
检测器将离子转化为电子脉冲,然后由积分测量线路计数;
电子脉冲的大小与样品中分析离子的浓度有关,通过与已知 的标准或参比物质比较,实现未知样品的痕量元素定量分析。
实例:原子荧光光谱测定化妆品中的汞;食品中总砷含量 的测定
6.ICP-MS简介
6.1概述 1980年第一篇有关ICP-MS的论文发表。 1983年第一台商品化ICP-MS仪器问世。 至今全球范围已安装5000台以上仪器,普遍应用
于环境、地质、冶金、食品、农业、半导体、生 物医学和核应用等领域,成为公认的最强有力的 元素分析技术。 相比其他痕量金属分析技术,具有以下优点:是 金属分析灵敏度最高的仪器、检出限低、动态范 围宽、多元素同时分析、可进行同位素分析等。
尽管AFS有许多优点,但是由于荧光猝灭效应的存在,使 其在测定复杂基体的样品和高含量试样时,尚有一定困难; 另外,由于固有的散射光的干扰,使其对激发光源和原子 化器有较高要求。除氢化物发生AFS在测定砷、硒、锑、 汞、镉等元素具有独特优势外,AFS在其他方面的应用尚 待开拓。因此,AFS不如AAS和AES应用广泛。
半导体: 33% •高纯金属(电极) •高纯试剂(酸,碱,有机) •Si 晶片的超痕量杂质 •光刻胶和清洗剂
Page 4
6.2仪器原理
电感耦合等离子体质谱仪(ICP-MS) 是以电感耦合等离子 体作为离子源,以质谱进行检测的无机多元素分析技术。
被分析样品通常以水溶液的气溶胶形式引入氩气流中,然后 进入由射频能量激发的处于大气压下的氩等离子体中心区;
该方法具有极高的灵敏度,是原子荧光方法 的主体.该方法使用的测量元素主要有第四. 第五.第六主族的As.Sb.Bi.Se.Te.Pb.Sn 中, 目前已发展为10种元素,包括Cd.Zn在内.