原子荧光光谱基本原理及应用
- 格式:ppt
- 大小:4.37 MB
- 文档页数:7
原子荧光光谱法原子荧光谱(AFS)是介于原子发射光谱(AES)和原子吸收光谱(AAS)之间的光谱分析技术,它的基本原理就是:基态原子(一般蒸气状态)吸收合适的特定频率的辐射而被激发至高能态,而后激发过程中以光辐射的形式发射出特征波长的荧光。
一、原子荧光光谱法原理1.1原子荧光的类型以及荧光猝灭(1)共振荧光当原子受到波长为入A的光能照射时,处于基态E0(或处于E0邻近的亚稳态E1)的电子跃迁到激发态E2,被激发的原子由E2回到基态E0(或亚稳态E1)时,它就放出波长入F的荧光。
这一类荧光称为共振荧光。
(2)直跃线荧光荧光辐射一般发生在二个激发态之间,处于基态E0的电子被激发到E2能级,当电子回到E1能级时,放出直跃荧光。
(3)阶跃线荧光当处于激发态E2的电子在放出荧光之前,由于受激碰撞损失部分能量而至E1回到基态时,放出阶跃线荧光。
(4)热助阶跃线荧光原子通过吸收光辐射由基态E0激发至E2能级,由于受到热能的进一步激发,电子可能跃迁至E2相近的较高能级E3,当其E3跃迁至较低的能级E1(不是基态E0)时所发射的荧光称为热助阶跃荧光。
小于光源波长称为反stoke效应。
(5)热助反stokes荧光(略)某一元素的荧光光谱可包括具有不同波长的数条谱线。
一般来说,共振线是最灵敏的谱线。
处于激发态的原子寿命是十分短暂的。
当它从高能级阶跃到低能级时原子将发出荧光。
M*TM+hr除上述以外,处于激发态的原子也可能在原子化器中与其他分子、原子或电子发生非弹性碰撞而丧失其能量。
在这种情况下,荧光将减弱或完全不产生,这种现象称为荧光的猝灭。
荧光猝灭有下列几类型:1)与自由原子碰撞M*+X=M+XM*T激发原子X、MT中性原子2)与分子碰撞M*+AB=M+AB这是形成荧光猝灭的主要原因。
AB可能是火焰的燃烧产物;3)与电子碰撞M*+e-=M+E-此反应主要发生在离子焰中4)与自由原子碰撞后,形成不同激发态M*+A=M x+AM*、M x为原子M的不同激发态5)与分子碰撞后,形成不同的激发态M*+AB=M x+AB6)化学猝灭反应M*+AB=M+A+BA、B为火焰中存在的分子或稳定的游离基2.荧光强度与分析物浓度间关系原子荧光强度I f与试样浓度C以及激发态光源的辐射强度I0存在以下函数关系I f二①I根据比尔一朗伯定律厅叫口•e-KLN]式中:①-原子荧光量子效率I-被吸收的光强I0-光源辐射强度K一峰值吸收系数L一吸收光程N一单位长度内基态原子数按泰勒级数展开,当N很小,则原子荧光强度I f表达式可简化为:I f二①I0KIN当所有实验条件固定时,原子荧光强度与能吸收辐射线的原子密度成正比,当原子化效率固定时,I f与试样浓度C成正比,即I=aC f上式线性关系,只在浓度低时成立。
原子荧光光谱法同时测定环境水样中砷和汞原子荧光光谱法(Atomic Fluorescence Spectroscopy,AFS)是一种常用的分析方法,可同时测定环境水样中砷和汞的含量。
本文将对该方法进行详细介绍,并探讨其在环境监测中的应用。
一、原子荧光光谱法的原理原子荧光光谱法是基于原子荧光现象的分析方法。
其原理是将待测样品中的砷和汞原子激发至高能级,随后通过荧光转换回低能级从而产生可测量的荧光信号。
该信号的强度与样品中砷和汞元素的含量成正比,从而可定量测定其浓度。
二、实验步骤1. 样品的制备:将环境水样经过前处理步骤,如过滤、酸化等,将样品中的砷和汞转化为易于测量的形态。
2. 仪器的调试:根据实验要求,对原子荧光光谱仪进行调试,保证其工作状态良好。
3. 样品的测量:将经过前处理的水样加载到原子荧光光谱仪中,按照仪器的操作步骤进行测量,并记录荧光信号的强度。
4. 数据处理和结果分析:根据荧光信号的强度,结合标准曲线,计算样品中砷和汞的含量。
三、优势和应用1. 高灵敏度:原子荧光光谱法具有很高的灵敏度,可检测到非常低浓度的砷和汞。
2. 高选择性:原子荧光光谱法可通过选择性吸收和发射波长,避免干扰物质的影响,提高分析结果的准确性。
3. 宽线性范围:原子荧光光谱法的线性范围宽,适用于不同浓度范围的样品。
4. 速度快:原子荧光光谱法具有较快的分析速度,适用于大批量样品的分析。
5. 应用广泛:原子荧光光谱法可用于环境水样、土壤样品、食品样品等多种样品类型的分析。
四、实验条件的优化在使用原子荧光光谱法进行砷和汞的测定时,需优化实验条件,以提高测量结果的准确性和精确度。
1. 激发波长和发射波长的选择:根据待测元素的特征谱线,选择合适的激发波长和发射波长,避免干扰。
2. 荧光信号的积分时间:根据样品中砷和汞的浓度范围及目标灵敏度,选择合适的荧光信号积分时间。
3. 荧光信号的增强方法:为提高信号强度,可尝试增加荧光信号的增强剂,如氢化物生成剂等。
原子荧光光度计的基本原理及使用注意事项和维护保养
方法
原子荧光光度计(Atomic Fluorescence Spectroscopy, AFS)是一种常用的光谱分析仪器,用于测量和分析样品中的原子浓度。
它的基本原理是利用原子在能级跃迁过程中产生的荧光信号来测量原子的浓度。
1.基本原理:
-原子化:将样品中的原子转化为气态原子,通常使用火焰或石墨炉等方法将固态或液态样品转化为气态原子。
-激发:使用一定波长的光源,激发样品中的原子从基态跃迁到激发态。
-荧光测量:测量样品中原子在激发态和基态之间跃迁时产生的荧光信号,荧光的强度与原子浓度成正比。
2.使用注意事项:
-样品准备:样品应该具有足够高的纯度和稳定性,以减少干扰因素对测量结果的影响。
-仪器校准:在进行测量前,需要校准仪器以获得准确的测量结果。
-光路调节:确保光路清洁和对齐,以保证光源的稳定性和荧光信号的准确测量。
-观察时间:不同样品的测量时间可能会有所不同,观察时间应该根据样品浓度和分析要求进行调整。
3.维护保养方法:
-仪器清洁:定期清洁仪器的光路、采样系统和其他部件,以确保测量过程中的准确性和重复性。
-光源更换:定期更换荧光光度计的光源,以保持稳定的光强和准确的测量结果。
-标准溶液校准:定期校准仪器使用的标准溶液,以确保测量结果的准确性。
-温度和湿度控制:保持仪器工作环境的稳定,控制温度和湿度对仪器性能和测量结果的影响。
总之,原子荧光光度计是一种常用的分析仪器,可以用于测量样品中的原子浓度。
使用前需要注意样品准备和仪器校准等事项,并定期进行仪器的维护保养,以确保测量结果的准确性和可靠性。
原子荧光原理及应用原子荧光光谱法,英文是atomic fluorescence spectrometry[ə'tɔmik flu:ə'resəns spektrəu'metrik] 简写为AFS。
需要了解的是AES、AAS。
一、原子荧光光谱的产生气态自由原子,吸收光源(常用空心阴极灯)的特征辐射后,原子的外层电子跃迁到较高能级,然后又跃迁返回基态或较低能级,同时发射出与原激发波长相同或不同的发射光谱即为原子荧光。
原子荧光是光致发光,也是二次发光。
当激发光源停止照射之后,再发射过程立即停止。
对该概念的理解有以下几点:(1)产生气态自由原子的方式有:火焰、石墨炉、电激发、热激发、电感耦合等离子焰。
在AFS中主要是火焰。
(2)原子荧光可分为三类:即共振荧光、非共振荧光和敏化荧光,实际的到的原子荧光谱线,这三种荧光都存在。
其中以共振原子荧光最强,在分析中应用最广。
共振荧光是所发射的荧光和吸收的辐射波长相同,当发射的荧光与激发光的波长不相同时,产生非共振荧光,非共振荧光又分为直跃线荧光、阶跃线荧光、anti-Stokes(反斯托克斯)荧光。
敏化荧光:受光激发的原子与另一种原子碰撞时,把激发能传递给另一个原子使其激发,后者再以发射形式去激发而发射荧光即为敏化荧光。
火焰原子化器中观察不到敏化荧光,在非火焰原子化器中才能观察到。
共振荧光是所发射的荧光和吸收的辐射波长相同。
只有当基态是单一态,不存在中间能级,才能产生共振荧光。
非共振荧光是激发态原子发射的荧光波长和吸收的辐射波长不相同。
非共振荧光又可分为直跃线荧光、阶跃线荧光和反斯托克斯荧光。
直跃线荧光是激发态原子由高能级跃迁到高于基态的亚稳能级所产生的荧光。
阶跃线荧光是激发态原子先以非辐射方式去活化损失部分能量,回到较低的激发态,再以辐射方式去活化跃迁到基态所发射的荧光。
直跃线和阶跃线荧光的波长都是比吸收辐射的波长要长。
反斯托克斯荧光的特点是荧光波长比吸收光辐射的波长要短。
原子荧光光谱的分析原理和注意事项分析原子荧光光谱工作原理原子荧光光谱仪,可用于黄金矿山中原矿及尾矿、载金炭及解析炭、解析贵、贫液以及氰化浸金液中金的测定。
同时也充分地质冶金行业对于小于0.1ppb微量金的测试需求。
该款仪器具有灵敏度高,优于石墨炉原子吸取,媲美ICP—MS;测试速度快,每次数据仅需5秒;测试成本低,每个样品测试成本仅需0.08元。
该产品适用于大量测试化探样品中金元素的试验室。
工作原理:液态样品经雾化器雾化后形成气溶胶,气溶胶在预混合雾化室中与燃气充分混合均匀,再通过燃烧的热量使进入火焰的试样蒸发、熔融、分解成基态原子,基态原子被高性能空心阴极灯激发至高能态,处于高能态的原子不稳定,在去激发的过程中以光辐射的形式发射出原子荧光。
原子荧光的强度与被测元素在样品中的含量成正比,从而测定样品中金的含量。
注意事项:1、原子荧光光谱法是一种痕量和超痕量分析方法。
因此,在测定较高含量样品时,应预先稀释后进行测定,如不慎碰到极高含量时(特别是Hg)则管路系统将受到严重污染。
可将载流/样品进样管放入10%HCl(V/V)溶液中,启动蠕动泵不断进行清洗,如仍旧难以清洗干净时,则需更换聚四氟乙稀管路,一般情况下,均可得明显改善,如仍有残余难以清除情况下,则需对石英炉管情况,依照说明书将石英炉管拆下,用2030%王水浸泡24小时左右。
然后再用去离子水清洗干净,晾干或置于烘箱内烘干后使用。
2、为保持仪器表面清洁,可用洗涤剂稀释后用干净的纱布浸湿后擦拭,再用干净湿纱布擦洗。
3、仪器中的透镜应保持清洁,如发觉不洁现象,可用脱脂棉蘸乙醇和乙醚的混合液拧干后擦拭。
(混合液为:30%乙醇和70%乙醚)4、原子化室内简单受酸气和盐类的侵蚀,因此透镜前帽盖和原子化器上会有白色沉淀物形成的斑点,可用干净的纱布擦拭,以保持清洁。
5、更换点火的电炉丝要依照说明书要求,将备有专用的炉丝换上即可,不可将炉丝剪短,否则阻值发生变化,与输人电压不能匹配。
原子荧光光谱仪的工作原理首先,光源产生具有适当波长和强度的辐射能量,这些能量被用来激发样品中的原子或离子。
常用的光源有氘灯、氙灯、镓灯等。
其中,氘灯和氙灯主要用于可见光区域的激发,而镓灯主要用于紫外光区域的激发。
进样系统用于将样品引入到光谱仪中进行分析。
一般情况下,样品先经过制样和预处理处理,然后使用自动进样装置将样品引入原子荧光光谱仪中。
激发系统是将光源产生的辐射能量传递到样品中的装置。
一种常用的激发方式是电感耦合等离子体(ICP)激发。
通过将样品制成细雾喷入ICP激发器的火焰中,样品中的原子或离子会被激发到高能级。
荧光收集系统用于收集激发后的原子或离子发射的荧光。
荧光收集系统一般包括透镜、光纤和荧光收集器等部分。
它们的作用是将发射的荧光聚焦、收集并传送到光谱仪的光谱分离系统中。
光谱分离系统是将收集到的荧光进行光谱分离,一般是通过光栅来实现。
光栅将荧光按频率进行分离,不同波长的荧光进入不同的光电检测器。
光电检测器是用来测量各个波长荧光的强度的设备。
目前常用的光电检测器有光电二极管(PMT)和光电倍增管(PMT)。
根据检测到的荧光强度,可以推断出样品中特定元素的存在及其浓度。
在原子荧光光谱仪的工作过程中,样品通常处于较高的温度和真空环境下,以确保样品原子或离子的稳定性和灵敏度。
同时,仪器还需要进行校准以确保测量结果的准确性。
总的来说,原子荧光光谱仪通过使用光源激发样品中的原子或离子,然后收集并测量其发射的荧光光谱,最终确定样品中特定元素的存在及其浓度。
该仪器在分析环境污染、药物研究、冶金工业等领域具有广泛的应用前景。
原子荧光光谱法及其在水分析中的应用摘要:原子荧光光谱法起源于上世纪六十年代,是一种有效的氢化物分析技术,随着近年来的发展,根据原子荧光光谱分析技术逐渐开始在水分析中得到应用,并能够测定大多数容易挥发的元素。
因此本文通过简述原子荧光光谱法的概念、基本原理以及特点,分析其在水分析中的具体应用,以期为相关研究和应用活动提供借鉴和参考。
关键词:原子荧光光谱法;水分析;应用前言当前随着我国城市化和工业化的加快发展,由此产生的工业废水中含有大量的重金属和相关化合物,对自然环境以及人类的生活生存环境产生了巨大的影响。
这些重金属物质具有一定的毒性,会破坏生态系统的多样性,并对人体健康产生严重威胁。
因此对环境水样中的化合物检测逐渐受到重视。
而原子荧光光谱法作为一种新型的检测方法,因其具有灵敏度较高、精确度高、抗干扰性强、操作简单的优势而被推广应用。
1原子荧光光谱概述1.1原子荧光光谱法的概念原子荧光光谱法是一种介于原子吸收和原子发射光谱之间的光谱分析方法,其具有谱线简单、低检出限较高、灵敏度较高的优势,被很多检测单位或机构所重视。
原子荧光光谱法利用连续光源对水中含有的元素进行分析,其效果比其他检测方法更为有效,主要是由于原子荧光的信噪比相对较大,使其灵敏度极高,线性范围宽。
从而能够更好的检测出水中含有的重金属元素和其他易挥发的化合物元素。
1.2原子荧光光谱法的基本原理原子荧光光谱法的基本原理即是利用硼氢化钾或者硼氢化钠作为还原剂,将样品溶液中含有的元素还原为挥发性气态的氢化物。
通过载气将待分析氢化物导入到原子化器中,当基态原子被特征波长的共振射线照射后,基态原子表面的电子会充分吸收辐射,从低能态跃迁到高能态。
不过这一过程中大多数原子会因为二次碰撞而重新跃迁回基态并且不会发生辐射。
但有部分被激发的原子在跃迁回低能态时能够发出原子荧光。
检测人员通过改变测试条件来测量原子荧光的强度,以实现确定待测元素含量的目的[1]。
原子荧光光度法原理原子荧光光度法是一种用于测定物质中微量金属元素的分析方法。
其基本原理是利用原子在高温条件下激发发射特定波长的荧光信号,通过测定荧光强度来确定样品中目标元素的浓度。
以下将详细阐述原子荧光光度法的原理。
1. 原子激发与荧光发射当样品经过气体放电或火焰原子化时,样品中的元素会被激发到高能级。
这些激发态原子会经历无辐射跃迁或自发辐射跃迁,最终返回基态。
在这个过程中,原子会发射出一定波长的荧光光子,即荧光发射。
2. 荧光发射谱的特点每个元素都有独特的原子谱线,其荧光发射谱特点取决于原子的能级结构。
谱线的强度与原子的浓度成正比。
因此,通过测量荧光发射谱线的强度,可以推断出样品中目标元素的浓度大小。
3. 荧光发射光度计的构成原子荧光光度法通常使用荧光发射光度计来测量荧光信号的强度。
光度计由光源、样品腔室、光栅或滤光片、光电倍增管(PMT)等组成。
光谱仪通常用于选择所需的荧光谱线。
4. 校正与标准曲线在原子荧光光度法中,校正和建立标准曲线是非常重要的。
校正是指通过测定含有已知浓度的标准溶液的荧光强度来估算荧光光度计的响应。
建立标准曲线是指通过一系列含有不同浓度的标准溶液进行测定,绘制荧光强度与浓度之间的线性关系,从而确定未知样品中目标元素的浓度。
5. 干扰与校正方法原子荧光光度法在分析过程中会受到一些干扰因素的影响,如基质干扰、化学反应干扰等。
为了解决这些干扰问题,可以采用干扰校正方法,如内标法、标准加入法、背景校正法等。
通过将标准溶液添加到样品中或对样品进行稀释,可以准确地校正干扰的影响,提高分析结果的准确性和可靠性。
6. 优点与应用原子荧光光度法具有快速、准确、灵敏等优点。
它可以用于分析各种样品中的微量金属元素,如水、土壤、食品、化学试剂等。
原子荧光光度法在环境监测、食品安全、化学分析等领域有广泛的应用。
总之,原子荧光光度法通过测量样品荧光发射谱线的强度来测定样品中微量金属元素的浓度。
它是一种高灵敏度、高选择性的分析方法,可以满足不同领域的分析需求。