第二章误差分析数据的统计处理
- 格式:doc
- 大小:339.00 KB
- 文档页数:13
第二章误差和分析数据的处理第一节误差及其产生的原因定量分析的任务是准确测定试样中各组分的含量,因此必须使分析结果具有一定的准确度。
不准确的分析结果将会导致生产上的损失、资源上的浪费和科学上的错误结论。
在定量分析中,由于受到分析方法、测量仪器、所用试剂和分析人员主观条件等方面的限制,故使测定的结果不可能和真实含量完全一致;即使是分析技术非常熟练的分析人员,用最完善的分析方法、最精密的仪器和最纯的试剂,在同一时间,同样条件下,对同一试样进行多次测定,其结果也不会完全一样。
这说明客观存在着难于避免的误差。
因此,人们在进行定量分析时,不仅要得到被测组分的含量,而且必须对分析结果进行评价,判断分析结果的准确性(可靠程度),检查产生误差的原因,采取减小误差的有效措施,从而不断提高分析结果的准确程度。
分析结果与真实结果之间的差值称为误差。
分析结果大于真实结果,误差为正;分析结果小于真实结果,误差为负。
一、误差的分类根据误差的性质与产生的原因,可将误差区分为系统误差和偶然误差两类。
(一)系统误差系统误差(systematic error)也叫可定误差(determination error),它是由某种确定的原因引起的,一般有固定的方向(正或负)和大小,重复测定可重复出现。
根据系统误差的来源,可区分为方法误差、仪器误差、试剂误差及操作误差等四种。
(1)方法误差:由于分析方法本身的缺陷或不够完善所引起的误差。
例如,在质量分析法中,由于沉淀的溶解或非被测组分的共沉淀;在滴定分析法中,由于滴定反应进行不完全,干扰离子的影响,测定终点和化学计量点不符合等,都会产生这种误差。
(2)仪器误差:由于所用仪器本身不够准确或未经校正所引起的误差。
例如,天平两臂不等长,砝码、滴定管刻度不够准确等,会使测定结果产生误差。
(3)试剂误差:由于试剂不纯和蒸馏水中含有杂质引入的误差。
(4)操作误差:由于操作人员的习惯与偏向而引起的误差。
例如,读取滴定管的读数时偏高或偏低,对某种颜色的变化辨别不够敏锐等所造成的误差。
第2章误差及分析数据的统计处理2.1有效数字及其运算规则2.2定量分析中的误差3.3分析结果的数据处理2.1 有效数字及运算规则2.1.1有效数字: 分析工作中实际能测量得到的数字,包括全部可靠数字及一位不确定数字在内(1)数字前0不计,数字后计入: 0.03400 (4位有效数字)(2)数字后的0含义不清楚时, 最好用指数形式表示: 1000(1.0×103, 1.00×103, 1.000 ×103) (分别是2位、3位、4位有效数字)(3)自然数和常数可看成具有无限多位数(如倍数、分数关系)(4)数据的第一位数大于等于8的,可多计一位有效数字,如9.45×104, 95.2%, 8.65 (它们都是4位有效数字)(5)对数与指数的有效数字位数按尾数计,如pH=10.28, 则[H+]=5.2×10-11(2位有效数字)(6)误差只需保留1~2位2m◇分析天平(称至0.1mg):12.8228g(6),0.2348g(4) , 0.0600g(3)◇千分之一天平(称至0.001g): 0.235g(3)◇1%天平(称至0.01g): 4.03g(3), 0.23g(2)◇台秤(称至0.1g): 4.0g(2), 0.2g(1)V☆滴定管(量至0.01mL):26.32mL(4), 3.97mL(3)☆容量瓶:100.0mL(4),250.0mL (4)☆移液管:25.00mL(4);☆量筒(量至1mL或0.1mL):25mL(2), 4.0mL(2)32.1.2 有效数字运算中的修约规则四舍六入五成双2.1.2.1有效数字的修约例如, 要修约为四位有效数字时:尾数≤4时舍, 0.52664 -------0.5266尾数≥6时入, 0.36266 -------0.3627尾数=5时, 若后面数为0, 舍5成双:10.2350----10.24, 250.650----250.6若5后面还有不是0的任何数皆入:18.0850001----18.0945禁止连续多次修约运算时可多保留一位有效数字进行0.57490.570.5750.58×2.1.2.2有效数字的计算规则A加减法: 结果的绝对误差应不小于各项中绝对误差最大的数。
第2章误差及分析数据的统计处理2.1 有效数字及其运算规则2.1.1有效数字指在分析工作中实际能测到的数字,它包括所有的准确数字和最后一位可疑数字。
在有效数字中, 只有最后一位数是不确定的,可疑的。
有效数字位数由仪器准确度决定,它直接影响测定的相对误差。
在科学实验中,对于任一物理量的测定,其准确度都是有一定限度的,例如:读取滴定管的刻度,甲得到23.43ml,乙得到23.42ml,丙得到23.44ml,这些四位数字中,前三位都是很准确的,第四位是估读出来的,所以稍有差别,称为可疑数字,但是它并不是臆造的,这4位数字都是有效数字。
有效数字就是实际能测到的数字,其位数的多少,反映测量的精确程度。
1.零的作用:在1.0008中,“0” 是有效数字;在0.0382中,“0”定位作用,不是有效数字;在0.0040中,前面3个“0”不是有效数字,后面一个“0”是有效数字。
在3600中,一般看成是4位有效数字,但它可能是2位或3位有效数字,分别写3.6×103,3.60×103或3.600×103较好。
注意:1.单位变换不影响有效数字的位数。
例如:1.0L=1.0×103ml ,不能写成1000ml2. pH ,pM ,lgc ,lgK 等对数值,有效数字的位数取决于小数部分(尾数)位 数,因整数部分代表该数的方次。
如pH=11.20,有效数字的位数为两位。
3. 有效数字的位数,直接与测定的相对误差有关。
例:测定某物质的含量为0.5180g ,即0.5180±0.0001g 相对误差%02.0%10051801±=⨯±=Er课堂练习:一、下列数据包括几位有效数字:(1)0.0330 (2)10.030(3)0.01020(4)8.7×10-5(5)PKa=4.74(6) PH=10.00二、见课后题第11页11题2.1.2 有效数字的运算规则2.1.2.1有效数字的修约规则在处理数据过程中,涉及到的各测量值的有效数字位数可能不同,因此需要按下面所述的计算规则,确定各测量值的有效数字位数,有效数字确定后,就要将它后面多余的数字舍弃,此过程称为“数字修约”。
第二章:误差及分析数据的统计处理思考题1.正确理解准确度和精密度,误差和偏差的概念。
答:准确度是测定平均值与真值接近的程度,常用误差大小来表示,误差越小,准确度越高。
精密度是指在确定条件下,将测试方法实施多次,所得结果之间的一致程度。
精密度的大小常用偏差来表示。
误差是指测定值与真值之差,其大小可用绝对误差和相对误差来表示。
偏差是指个别测定结果与几次测定结果的平均值之间的差别,其大小可用绝对偏差和相对偏差表示,也可以用标准偏差表示。
2.下列情况分别引起什么误差?如果是系统误差,应如何消除?(1)砝码被腐蚀;(2)天平两臂不等长;(3)容量瓶和吸管不配套;(4)重量分析中杂质被共沉淀;(5)天平称量时最后一位读数估计不准;(6)以含量为99%的邻苯二甲酸氢钾作基准物标定碱溶液。
答:(1)引起系统误差,校正砝码;(2)引起系统误差,校正仪器;(3)引起系统误差,校正仪器;(4)引起系统误差,做对照试验;(5)引起偶然误差;(6)引起系统误差,做对照试验或提纯试剂。
3.用标准偏差和算术平均偏差表示结果,哪一种更合理?答:用标准偏差表示更合理。
因为将单次测定值的偏差平方后,能将较大的偏差显著地表现出来。
4.如何减少偶然误差?如何减少系统误差?答:在一定测定次数范围内,适当增加测定次数,可以减少偶然误差。
针对系统误差产生的原因不同,可采用选择标准方法、进行试剂的提纯和使用校正值等办法加以消除。
如选择一种标准方法与所采用的方法作对照试验或选择与试样组成接近的标准试样做对照试验,找出校正值加以校正。
对试剂或实验用水是否带入被测成分,或所含杂质是否有干扰,可通过空白试验扣除空白值加以校正。
5.某铁矿石中含铁39.16%,若甲分析得结果为39.12%,39.15%和39.18%,乙分析得39.19%,39.24%和39.28%。
试比较甲、乙两人分析结果的准确度和精密度。
解:计算结果如下表所示由绝对误差E可以看出,甲的准确度高,由平均偏差d和标准偏差s可以看出,甲的精密度比乙高。
所以甲的测定结果比乙好。
6.甲、乙两人同时分析一矿物中的含硫量。
每次取样3.5g,分析结果分别报告为甲:0.042%,0.041%乙:0.04199%,0.04201% .哪一份报告是合理的?为什么?答:甲的报告是合理的。
因为取样时称量结果为2位有效数字,结果最多保留2位有效数字。
甲的分析结果是2位有效数字,正确地反映了测量的精确程度;乙的分析结果保留了4位有效数字,人为地夸大了测量的精确程度,不合理。
习 题1.已知分析天平能称准至±0.1mg ,要使试样的称量误差不大于0.1%,则至少要称取试样多少克?解:设至少称取试样m 克,由称量所引起的最大误差为±0.2mg ,则%100102.03⨯⨯-m≤0.1% m ≥0.2g答:至少要称取试样0.2g 。
2.某试样经分析测得含锰质量分数(%)为:41.24,41.27,41.23,41.26。
求分析结果的平均偏差、标准偏差和变异系数。
解: )(426.4123.4127.4124.41+++=x % = 41.25% 各次测量偏差分别是d 1=-0.01% d 2=+0.02% d 3=-0.02% d 4=+0.01%d)(401.002.002.001.01+++=∑==ndi ni % = 0.015% 14)01.0()02.0()02.0()01.0(1222212-+++-=∑==n di ni s %=0.018%CV=x S×100%=25.41018.0⨯100%=0.044%3.某矿石中钨的质量分数(%)测定结果为:20.39,20.41,20.43。
计算标准偏差s 及置信度为95%时的置信区间。
解:x =343.2041.2039.20++%=20.41% s=13)02.0()02.0(22-+%=0.02% 查表知,置信度为95%,n=3时,t=4.303 ∴ μ=(302.0303.441.20⨯±)% =(20.41±0.05)% 4.水中Cl -含量,经6次测定,求得其平均值为35.2 mg .L -1,s=0.7 mg .L -1,计算置信度为90%时平均值的置信区间。
解:查表得,置信度为90%,n=6时,t=2.015 ∴ μ=ntsx ±=(35.2±67.0015.2⨯)mg/L=(35.2±0.6)mg/L5.用Q 检验法,判断下列数据中,有无舍去?置信度选为90%。
(1)24.26,24.50,24.73,24.63; (2)6.400,6.416,6.222,6.408; (3)31.50,31.68,31.54,31.82.解:(1)将数据按升序排列:24.26,24.50,24.63,24.73可疑值为24.26 Q 计算=112x x x x n --=26.2473.2426.2450.24--=0.51查表得:n=4时,Q 0.90=0.76 Q 计算<Q 0.90表 故24.26应予保留。
(2)将数据按升序排列:6.222,6.400,6.408,6.416可疑值为6.222 Q 计算=112x x x x n --=222.6416.6222.6400.6--=0.92 Q 计算>Q 0.90表故6.222应舍去(3)将数据按升序排列:31.50,31.54,31.68,31.82可疑值为31.82 Q 计算=11x x x x n n n ---=50.3182.3168.3182.31--=0.44 Q 计算<Q 0.90表故31.82应予保留。
6.测定试样中P 2O 5质量分数(%),数据如下:8.44,8.32,8.45,8.52,8.69,8.38 .用Grubbs 法及Q 检验法对可疑数据决定取舍,求平均值、平均偏差d 、标准偏差s 和置信度选90%及99%的平均值的置信范围。
解:将测定值由小到大排列 8.32,8.38,8.44,8.45,8.52,8.69.可疑值为x n (1) 用Grubbs 法决定取舍 8.69为可疑值由原始数据求得 x =8.47% s=0.13% G 计算=s x x n -=13.047.869.8-=1.69查表2-3,置信度选95%,n=6时, G 表=1.82 G 计算<G 表, 故8.69%应予保留。
(2) 用Q 值检验法Q 计算 =11x x x x n n n ---=32.869.852.869.8--=0.46查表2-4,n=6时, Q 0.90=0.56 Q 计算<Q 表 故8.69%应予保留。
两种判断方法所得结论一致。
(3) )(6)38.869.852.845.832.844.8+++++=x %=8.47%)609.022.005.002.015.003.0(+++++=d %=0.09%s=%16)09.0()22.0()05.0()02.0()15.0()03.0(222222-+++++=0.13%(4) 查表2-2,置信度为90%,n=6时,t=2.015因此 μ=(8.47±613.0015.2⨯)=(8.47±0.11)% 同理,对于置信度为99%,可得 μ=(8.47±613.0032.4⨯)%=(8.47±0.21)% 7.有一标样,其标准值为0.123%,今用一新方法测定,得四次数据如下(%):0.112,0.118,0.115和0.119,判断新方法是否存在系统误差。
(置信度选95%)解:使用计算器的统计功能求得:x =0.116% s=0.0032%t=n sx μ-=40032.0123.0116.0-= 4.38查表2-2得,t ( 0.95, n=4)=3.18 t 计算>t 表 说明新方法存在系统误差,结果偏低。
8.用两种不同方法测得数据如下:方法Ⅰ:n 1=6 x 1=71.26% s 1=0.13% 方法Ⅱ: n 2=9 x 2=71.38% s 2=0.11% 判断两种方法间有无显著性差异?解:F 计算=22小大s s =2211.013.0)()(=1.40 查表2-5,F 值为3.69F 计算<F 表 说明两组的方差无显著性差异进一步用t 公式计算: t=212121n n n n s x x +-合s 合=2)1()1(21222211-+-+-n n s n s n =296)11.0()19()13.0()16(22-+⨯-+⨯-%=0.12 %t =969612.038.7126.71+⨯-= 1.90查表2-2,f = n 1+n 2-2 = 6+9-2 = 13 , 置信度95 %,t 表≈2.20 t 计算<t 表 故两种方法间无显著性差异9.用两种方法测定钢样中碳的质量分数(%): 方法Ⅰ: 数据为4.08,4.03,3.94,3.90,3.96,3.99 方法Ⅱ: 数据为3.98,3.92,3.90,3.97,3.94 判断两种方法的精密度是否有显著差别。
解:使用计算器的统计功能S I =0.065% S II =0.033% F=22小大S S =22)033.0()065.0(=3.88查表2-5,F 值为6.26 F 计算<F 表 答:两种方法的精密度没有显著差别 10. 下列数据中包含几位有效数字(1)0.0251 (2)0.2180 (3)1.8×10-5(4)pH=2.50 答:(1) 3位 (2) 4位 (3) 2位 (4) 2位 11.按有效数字运算规则,计算下列各式:(1)2.187×0.854 + 9.6×10-5- 0.0326×0.00814; (2)51.38/(8.709×0.09460); (3)6.136005164.062.50827.9⨯⨯;(4)688103.3101.6105.1---⨯⨯⨯⨯;解:(1)原式=1.868+0.000096+0.000265=1.868(2)原式=62.36 (3)原式=705.2 (4)原式=1.7×10-5第三章 滴定分析思 考 题1.什么叫滴定分析?它的主要分析方法有哪些答:使用滴定管将一种已知准确浓度的试剂溶液即标准溶液,滴加到待测物溶液中,直到待测物组分恰好完全反应,即加入标准溶液的物质的量与待测组分的物质的量符合反应式的化学计量关系,然后根据标准溶液的浓度和所消耗的体积,算出待测组分的含量,这一类分析方法统称为滴定分析法。
按照所利用的化学反应不同,滴定分析法一般可分成酸碱滴定法、沉淀滴定法、配位滴定法和氧化还原滴定法等分析方式。