高中数学必修二《直线与平面垂直的判定》练习题
- 格式:docx
- 大小:87.37 KB
- 文档页数:7
8.6.2 直线与平面垂直第1课时直线与平面垂直的判定知识点一直线与平面垂直的判定1.下列说法中正确的个数是( )①点到平面的距离是指这个点到这个平面的垂线段;②过一点垂直于已知平面的直线不一定只有一条;③若一条直线与一个平面内两条相交直线垂直,则这条直线垂直于这个平面;④若一条直线与一个平面内任意一条直线垂直,则这条直线垂直于这个平面;⑤若一条直线与一个平面内无数条直线垂直,则这条直线垂直于这个平面.A.1 B.2 C.3 D.42.如图,PA垂直于以AB为直径的圆所在的平面,C为圆上异于A,B的任一点,则下列关系不正确的是( )A.PA⊥BC B.BC⊥平面PACC.AC⊥PB D.PC⊥BC知识点二直线与平面所成的角3.线段AB的长等于它在平面α内的射影长的2倍,则AB所在直线与平面α所成的角为( )A.30° B.45° C.60° D.120°4.若两条不同的直线与同一平面所成的角相等,则这两条直线( )A.平行 B.相交C.异面 D.以上皆有可能5.如图,已知正四棱锥P-ABCD的体积为2,底面积为6,E为侧棱PC的中点,则直线BE与平面PAC所成的角为( )A.60° B.30° C.45° D.90°知识点三直线与平面垂直的证明6.如图,在四棱锥P-ABCD中,底面ABCD为菱形,PA=PC,PB=PD,AC∩BD=O.求证:(1)PO⊥平面ABCD;(2)AC⊥平面PBD.7.如图,在四面体A-BCD中,∠BDC=90°,AC=BD=2,E,F分别为AD,BC的中点,且EF= 2.求证:BD⊥平面ACD.一、选择题1.已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中,一定能推出m⊥β的是( )A.α∥β,且m⊂α B.m∥n,且n⊥βC.m⊥n,且n⊂β D.m⊥n,且n∥β2.直线a与平面α所成的角为50°,直线b∥a,则直线b与平面α所成的角等于( )A.40° B.50° C.90° D.150°3.给出下列条件(其中l为直线,α为平面):①l垂直于α内的一五边形的两条边;②l垂直于α内三条不都平行的直线;③l垂直于α内无数条直线;④l垂直于α内正六边形的三条边.其中能够推出l⊥α的条件的所有序号是( )A.② B.①③ C.②④ D.③4.在正方体ABCD-A1B1C1D1中,AB=2,则点A到平面A1DCB1的距离是( )A. 3B. 2C.22D.25. (多选)如图,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=25,AA1=7,BB1=27,点E和F分别为BC和A1C的中点,则( )A.EF∥平面A1B1BAB.AE⊥平面BCB1C.∠A1B1M为直线A1B1与平面BCB1所成的角D.直线A1B1与平面BCB1所成角为45°二、填空题6.在正方体A1B1C1D1-ABCD中,E,F分别是棱AB,BC的中点,O是底面ABCD的中心(如图),则EF与平面BB1O的关系是________.7. 如图,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,给出下列结论:①AC⊥SB;②AB∥平面SCD;③SA与平面ABD所成的角等于SC与平面ABD所成的角;④AC⊥SO.其中正确的结论是________.8.已知三棱柱ABC-A1B1C1的侧棱与底面边长都相等.若点A1在底面ABC内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值为________.三、解答题9. 如图,正方形ACDE的边长为2,AD与CE的交点为M,AE⊥平面ABC,AC ⊥BC,且AC=BC.(1)求证:AM⊥平面EBC;(2)求直线EC与平面ABE所成角的正切值.10.如图1,矩形ABCD中,AB=12,AD=6,E,F分别为CD,AB边上的点,且DE=3,BF=4,将△BCE沿BE折起至△PBE的位置(如图2所示)连接AP,PF,其中PF=2 5.(1)求证:PF⊥平面ABED;(2)在线段PA上是否存在点Q,使得FQ∥平面PBE?若存在,求出点Q的位置;若不存在,请说明理由;(3)求点A到平面PBE的距离.8.6.2 直线与平面垂直第1课时直线与平面垂直的判定知识点一直线与平面垂直的判定1.下列说法中正确的个数是( )①点到平面的距离是指这个点到这个平面的垂线段;②过一点垂直于已知平面的直线不一定只有一条;③若一条直线与一个平面内两条相交直线垂直,则这条直线垂直于这个平面;④若一条直线与一个平面内任意一条直线垂直,则这条直线垂直于这个平面;⑤若一条直线与一个平面内无数条直线垂直,则这条直线垂直于这个平面.A.1 B.2 C.3 D.4答案 B解析由点到平面的距离的概念及直线与平面垂直的判定定理和定义知正确的是③④,故选B.2.如图,PA垂直于以AB为直径的圆所在的平面,C为圆上异于A,B的任一点,则下列关系不正确的是( )A.PA⊥BC B.BC⊥平面PACC.AC⊥PB D.PC⊥BC答案 C解析由PA垂直于以AB为直径的圆所在的平面,可知PA⊥BC,故排除A.由题意可知BC⊥AC,PA⊥BC.因为PA⊂平面PAC,AC⊂平面PAC,AC∩PA=A,所以BC⊥平面PAC,故排除B.结合B,根据直线与平面垂直的定义知BC⊥PC,故排除D.故选C.知识点二直线与平面所成的角3.线段AB的长等于它在平面α内的射影长的2倍,则AB所在直线与平面α所成的角为( )A.30° B.45° C.60° D.120°答案 C解析如下图所示,AC⊥α,AB∩α=B,则BC是AB在平面α内的射影,则BC=12AB,所以∠ABC=60°,它是AB与平面α所成的角.4.若两条不同的直线与同一平面所成的角相等,则这两条直线( )A.平行 B.相交C.异面 D.以上皆有可能答案 D解析在正方体ABCD-A1B1C1D1中,A1A,B1B与底面ABCD所成的角相等,此时两直线平行;A1B1,B1C1与底面ABCD所成的角相等,此时两直线相交;A1B1,BC 与底面ABCD所成的角相等,此时两直线异面.5.如图,已知正四棱锥P-ABCD的体积为2,底面积为6,E为侧棱PC的中点,则直线BE与平面PAC所成的角为( )A.60° B.30° C.45° D.90°答案 A解析在正四棱锥P-ABCD中,根据底面积为6,可得BC= 6.如图,连接BD,与AC交于点O,连接PO,则PO为正四棱锥P-ABCD的高.根据棱锥的体积公式,可得PO=1.因为PO⊥底面ABCD,所以PO⊥BD.又BD⊥AC.PO∩AC=O,所以BD⊥平面PAC.连接EO,则∠BEO为直线BE与平面PAC所成的角.在Rt△POC中,因为PO=1,OC=3,所以PC=2,OE=12PC=1.在Rt△BOE中,因为BO=3,所以tan∠BEO=BOOE=3,所以∠BEO=60°,即直线BE与平面PAC所成的角为60°.知识点三直线与平面垂直的证明6.如图,在四棱锥P-ABCD中,底面ABCD为菱形,PA=PC,PB=PD,AC∩BD=O.求证:(1)PO⊥平面ABCD;(2)AC⊥平面PBD.证明(1)∵四边形ABCD为菱形,AC∩BD=O,∴O为AC的中点,又PA=PC,∴PO⊥AC.同理可证PO⊥BD.又AC⊂平面ABCD,BD⊂平面ABCD,AC∩BD=O,∴PO⊥平面ABCD.(2)由(1)知AC⊥PO,又四边形ABCD为菱形,∴AC⊥BD,又BD⊂平面PBD,PO⊂平面PBD,PO∩BD=O,∴AC⊥平面PBD.7.如图,在四面体A-BCD中,∠BDC=90°,AC=BD=2,E,F分别为AD,BC的中点,且EF= 2.求证:BD⊥平面ACD.证明取CD的中点为G,连接EG,FG.∵F,G分别为BC,CD的中点,∴FG∥BD.又E为AD的中点,AC=BD=2,则EG=FG=1.∵EF=2,∴EF2=EG2+FG2,∴EG⊥FG,∴BD⊥EG.∵∠BDC=90°,∴BD⊥CD.又EG⊂平面ACD,CD⊂平面ACD,EG∩CD=G,∴BD⊥平面ACD.一、选择题1.已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中,一定能推出m⊥β的是( )A.α∥β,且m⊂α B.m∥n,且n⊥βC.m⊥n,且n⊂β D.m⊥n,且n∥β答案 B解析A中,由α∥β,且m⊂α,知m∥β;B中,由n⊥β,知n垂直于平面β内的任意直线,再由m∥n,知m也垂直于β内的任意直线,所以m⊥β,B符合题意;C,D中,m⊂β或m∥β或m与β相交,不符合题意.故选B.2.直线a与平面α所成的角为50°,直线b∥a,则直线b与平面α所成的角等于( )A.40° B.50° C.90° D.150°答案 B解析根据两条平行直线和同一平面所成的角相等,知b与α所成的角也是50°.3.给出下列条件(其中l为直线,α为平面):①l垂直于α内的一五边形的两条边;②l垂直于α内三条不都平行的直线;③l垂直于α内无数条直线;④l垂直于α内正六边形的三条边.其中能够推出l⊥α的条件的所有序号是( )A.② B.①③ C.②④ D.③答案 C解析如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.①③都有可能垂直的是平面α内的平行直线,不能推出l⊥α.故选C.4.在正方体ABCD-A1B1C1D1中,AB=2,则点A到平面A1DCB1的距离是( )A. 3B. 2C.22D.2答案 B解析如图,连接AD1,交A1D于点O,在正方体ABCD-A1B1C1D1中,CD⊥平面ADD1A1,∵AD1⊂平面ADD1A1,∴AD1⊥CD.在正方形ADD1A1中,AD1⊥A1D,∵CD∩A1D=D,∴AD1⊥平面A1DCB1,垂足为O,则AO的长即为所求,AO=2AB2= 2.故选B.5. (多选)如图,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=25,AA1=7,BB1=27,点E和F分别为BC和A1C的中点,则( )A.EF∥平面A1B1BAB.AE⊥平面BCB1C.∠A1B1M为直线A1B1与平面BCB1所成的角D.直线A1B1与平面BCB1所成角为45°答案AB解析如图,连接A1B.在△A1BC中,因为E和F分别是BC和A1C的中点,所以EF∥BA1.又因为EF⊄平面A1B1BA,BA1⊂平面A1B1BA,所以EF∥平面A1B1BA,故A 正确;因为AB=AC,E为BC的中点,所以AE⊥BC.因为AA1⊥平面ABC,BB1∥AA1,所以BB1⊥平面ABC,又AE⊂平面ABC,从而BB1⊥AE.又因为BC∩BB1=B,BC,BB1⊂平面BCB1,所以AE⊥平面BCB1,故B正确;取BB1的中点M和B1C的中点N,连接A1M,A1N,NE.因为N和E分别为B1C和BC的中点,所以NE∥B1B,NE=12B1B,故NE∥A1A且NE=A1A,所以A1N∥AE,且A1N=AE.又因为AE⊥平面BCB1,所以A1N ⊥平面BCB1,从而∠A1B1N为直线A1B1与平面BCB1所成的角,故C错误;在△ABC 中,可得AE=2,所以A1N=AE=2.因为BM∥AA1,BM=AA1,所以四边形MBAA1为平行四边形,所以A1M∥AB,A1M=AB,又由AB⊥BB1,得A1M⊥BB1.在Rt△A1MB1中,可得A1B1=B1M2+A1M2=4.在Rt△A1NB1中,sin∠A1B1N=A1NA1B1=12,因此∠A1B1N=30°.所以,直线A1B1与平面BCB1所成的角为30°,故D错误.故选AB.二、填空题6.在正方体A1B1C1D1-ABCD中,E,F分别是棱AB,BC的中点,O是底面ABCD 的中心(如图),则EF与平面BB1O的关系是________.答案垂直解析由正方体性质知AC⊥BD,BB1⊥AC,∵E,F是棱AB,BC的中点,∴EF ∥AC,∴EF⊥BD,EF⊥BB1,又BD∩BB1=B,∴EF⊥平面BB1O.7. 如图,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,给出下列结论:①AC⊥SB;②AB∥平面SCD;③SA与平面ABD所成的角等于SC与平面ABD所成的角;④AC⊥SO.其中正确的结论是________.答案①②③④解析∵SD⊥平面ABCD,AC⊂平面ABCD,∴SD⊥AC.∵四边形ABCD为正方形,∴BD⊥AC,又SD∩BD=D,∴AC⊥平面SBD,而SB⊂平面SBD,∴AC⊥SB,故①正确;∵AB∥CD,AB⊄平面SDC,CD⊂平面SDC,∴AB∥平面SCD,故②正确;∵SD⊥平面ABCD,∴SA在底面上的射影为AD,SC在底面上的射影为DC,∴SA与底面ABCD所成的角为∠SAD,SC与底面ABCD所成的角为∠SCD,∵AD=CD,SD⊥AD,SD⊥DC,∴∠SAD=∠SCD,故③正确;∵AC⊥平面SBD,而SO⊂平面SBD,∴AC ⊥SO,故④正确.8.已知三棱柱ABC-A1B1C1的侧棱与底面边长都相等.若点A1在底面ABC内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值为________.答案2 3解析如图,设A1在底面ABC内的射影为O,O为△ABC的中心,OA=OB=OC,则AA1=A1B=A1C.连接AB1,A1B,设AB1∩A1B=E,则E为A1B的中点.取OB的中点D,连接ED,AD,则ED∥A1O.由题意知A1O⊥平面ABC,所以ED⊥平面ABC.则∠EAD即为AB1与底面ABC所成的角.设三棱柱ABC-A1B1C1的棱长为a,则OA=OB=33a.在Rt△AA1O中,A1O=AA21-OA2=63a,ED=12A1O=66a.在正三角形AA1B中,AE=32a,在Rt△ADE中,sin∠EAD=EDAE=66a32a=23,即AB1与底面ABC所成的角的正弦值为2 3.三、解答题9. 如图,正方形ACDE的边长为2,AD与CE的交点为M,AE⊥平面ABC,AC ⊥BC,且AC=BC.(1)求证:AM⊥平面EBC;(2)求直线EC与平面ABE所成角的正切值.解(1)证明:∵AE⊥平面ABC,∴AE⊥BC.又AC⊥BC,AC∩AE=A,AC,AE⊂平面ACDE,∴BC⊥平面ACDE,又AM⊂平面ACDE,∴BC⊥AM.∵四边形ACDE是正方形,∴AM⊥CE.又BC∩CE=C,∴AM⊥平面EBC.(2)取AB的中点F,连接CF,EF.∵AE⊥平面ABC,CF⊂平面ABC,∴EA⊥CF. 又AC=BC,∴CF⊥AB.∵EA∩AB=A,∴CF⊥平面AEB,∴∠CEF为直线EC与平面ABE所成的角.在Rt△CFE中,分析知CF=2,FE=6,∴tan∠CEF=26=33.10.如图1,矩形ABCD中,AB=12,AD=6,E,F分别为CD,AB边上的点,且DE=3,BF=4,将△BCE沿BE折起至△PBE的位置(如图2所示)连接AP,PF,其中PF=2 5.(1)求证:PF⊥平面ABED;(2)在线段PA上是否存在点Q,使得FQ∥平面PBE?若存在,求出点Q的位置;若不存在,请说明理由;(3)求点A到平面PBE的距离.解(1)证明:连接EF,由题意知,PB=BC=6,PE=CE=9,在△PBF中,PF2+BF2=20+16=36=PB2,所以PF⊥BF.易得EF=62+12-3-42=61,在△PEF中,EF2+PF2=61+20=81=PE2,所以PF⊥EF.又BF∩EF=F,BF⊂平面ABED,EF⊂平面ABED,所以PF⊥平面ABED.(2)存在,当Q为PA的三等分点(靠近P)时,FQ∥平面PBE.理由如下:因为AQ=23AP,AF=23AB,所以FQ∥BP,又FQ⊄平面PBE,PB⊂平面PBE,所以FQ∥平面PBE.(3)由(1)知PF⊥平面ABED,连接AE,则PF为三棱锥P-ABE的高.设点A到平面PBE的距离为h,由等体积法得V A-PBE=V P-ABE,即13×S△PBE×h=13×S△ABE×PF.又S△PBE=12×6×9=27,S△ABE=12×12×6=36,所以h=S△ABE·PFS△PBE=36×2527=853即点A到平面PBE的距离为85 3.。
教学过程在四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.规律方法证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面).解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.【训练1】(2013·江西卷改编)教学效果分析教学过程如图,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=2,AA1=3,E为CD上一点,DE=1,EC=3.证明:BE⊥平面BB1C1C.考点二平面与平面垂直的判定与性质【例2】(2014·深圳一模)如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC=AA1,且AC=2BC,点D是AB的中点.证明:平面ABC1⊥平面B1CD.规律方法证明两个平面垂直,首先要考虑直线与平面的垂直,也教学效果分析教学过程可简单地记为“证面面垂直,找线面垂直”,是化归思想的体现,这种思想方法与空间中的平行关系的证明非常类似,这种转化方法是本讲内容的显著特征,掌握化归与转化思想方法是解决这类问题的关键.【训练2】如图,在长方体ABCDA1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.证明:平面ABM⊥平面A1B1M.考点三平行、垂直关系的综合问题教学效果分析教学过程【例3】(2013·山东卷)如图,在四棱锥P-ABCD中,AB⊥AC,AB⊥P A,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.(1)求证:CE∥平面P AD;(2)求证:平面EFG⊥平面EMN.规律方法线面关系与面面关系的证明离不开判定定理和性质定理,而形成结论的“证据链”依然是通过挖掘题目已知条件来实现的,如图形固有的位置关系、中点形成的三角形的中位线等,都为论证提供了丰富的素材.【训练3】(2013·辽宁卷)如图,AB是圆O的直径,P A垂直圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面P AC;(2)设Q为P A的中点,G为△AOC的重心,求证:QG∥平面PBC.教学效果分析1.转化思想:垂直关系的转化2.在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.如有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直.故熟练掌握“线线垂直”、“面面垂直”间的转化条件是解决这类问题的关键.创新突破6——求解立体几何中的探索性问题【典例】(2012·北京卷)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.[反思感悟] (1)解决探索性问题一般先假设其存在,把这个假设作已知条件,和题目的其他已知条件一起进行推理论证和计算,在推理论证和计算无误的前提下,如果得到了一个合理的结论,则说明存在,如果得到了一个不合理的结论,则说明不存在.(2)在处理空间折叠问题中,要注意平面图形与空间图形在折叠前后的相互位置关系与长度关系等,关键是点、线、面位置关系的转化与平面几何知识的应用,注意平面几何与立体几何中相关知识点的异同,盲目套用容易导致错误.【自主体验】(2014·韶关模拟)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=12AB=2,点E为AC中点,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2.(1)求证:DA⊥BC;(2)在CD上找一点F,使AD∥平面EFB.基础巩固题组(建议用时:40分钟)一、填空题1.设平面α与平面β相交于直线m,直线a在平面α内,直线b 在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的________条件.2.(2014·绍兴调研)设α,β为不重合的平面,m,n为不重合的直线,则下列正确命题的序号是________.①若α⊥β,α∩β=n,m⊥n,则m⊥α;②若m⊂α,n⊂β,m⊥n,则n⊥α;③若n⊥α,n⊥β,m⊥β,则m⊥α;④若m∥α,n∥β,m⊥n,则α⊥β.3.如图,AB是圆O的直径,P A垂直于圆O所在的平面,C是圆周上不同于A,B的任一点,则图形中有________对线面垂直.4.若M是线段AB的中点,A,B到平面α的距离分别是4 cm,6 cm,则M到平面α的距离为________.5.(2014·郑州模拟)已知平面α,β,γ和直线l,m,且l⊥m,α⊥γ,α∩γ=m,β∩γ=l,给出下列四个结论:①β⊥γ;②l⊥α;③m⊥β;④α⊥β.其中正确的是________.6.如图,在四棱锥P ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为正确的条件即可)7.设α,β是空间两个不同的平面,m,n是平面α及β外的两条不同直线.从“①m⊥n;②α⊥β;③n⊥β;④m⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:________(用代号表示).8.如图,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的正投影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.二、解答题9.(2013·北京卷)如图,在四棱锥P ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面P AD⊥底面ABCD,P A⊥AD.E和F分别是CD和PC的中点.求证:(1)P A⊥底面ABCD;(2)BE∥平面P AD;(3)平面BEF⊥平面PCD.10.(2013·泉州模拟)如图所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.(1)求证:B1D1∥平面A1BD;(2)求证:MD⊥AC;(3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D.能力提升题组(建议用时:25分钟)一、填空题1.如图,在斜三棱柱ABCA1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在直线______上.2.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为________.①AC⊥BD;②AC∥截面PQMN;③AC=BD;④异面直线PM与BD所成的角为45°.3.(2013·南通二模)如图,已知六棱锥P ABCDEF的底面是正六边形,P A⊥平面ABC,P A=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面P AE;④∠PDA=45°.其中正确的有________(把所有正确的序号都填上).二、解答题4.(2014·北京西城一模)。
专题08 空间直线与平面、平面与平面的垂直一、考情分析二、考点梳理考点一直线与平面垂直(1)直线和平面垂直的定义如果一条直线l与平面α内的任意直线都垂直,就说直线l与平面α互相垂直.(2)判定定理与性质定理考点二平面与平面垂直(1)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(2)判定定理与性质定理考点三知识拓展1.两个重要结论(1)若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法).2.使用线面垂直的定义和线面垂直的判定定理,不要误解为“如果一条直线垂直于平面内的无数条直线,就垂直于这个平面”.四、题型分析重难点题型突破1 线面垂直例1. (河北省石家庄二中2019届期中)已知m,n是空间中两条不同的直线,α,β为空间中两个互相垂直的平面,则下列命题正确的是( )A.若m⊂α,则m⊥βB.若m⊂α,n⊂β,则m⊥nC.若m⊄α,m⊥β,则m∥αD.若α∩β=m ,n ⊥m ,则n ⊥α 【答案】C【解析】对于A :若m ⊂α,则m 与平面β可能平行或相交,所以A 错误;对于B :若m ⊂α,n ⊂β,则m 与n 可能平行、相交或异面,所以B 错误;对于C :若m ⊄α,m ⊥β,则m ∥α,C 正确;对于D :α∩β=m ,n ⊥m ,则n 不一定与平面α垂直,所以D 错误.【变式训练1-1】、设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( )A.若α⊥β,m ∥α,n ∥β,则m ⊥nB.若m ⊥α,m ∥n ,n ∥β,则α⊥βC.若m ⊥n ,m ⊂α,n ⊂β,则α⊥βD.若α∥β,m ⊂α,n ⊂β,则m ∥n 【答案】B【解析】若α⊥β,m ∥α,n ∥β,则m 与n 相交、平行或异面,故A 错误; ∵m ⊥α,m ∥n ,∴n ⊥α,又∵n ∥β,∴α⊥β,故B 正确; 若m ⊥n ,m ⊂α,n ⊂β,则α与β的位置关系不确定,故C 错误; 若α∥β,m ⊂α,n ⊂β,则m ∥n 或m ,n 异面,故D 错误.例2.如图所示,在四棱锥PABCD 中,AB ⊥平面PAD ,AB ∥CD ,PD =AD ,E 是PB 的中点,F 是DC 上的点,且DF =12AB ,PH 为△PAD 中AD 边上的高.求证:(1) PH ⊥平面ABCD ; (2) EF ⊥平面PAB.【证明】 (1) 因为AB ⊥平面PAD ,PH ⊂平面PAD ,所以PH ⊥AB. 因为PH 为△PAD 中边AD 上的高,所以PH ⊥AD.因为AB∩AD =A ,AB ⊂平面ABCD ,AD ⊂平面ABCD ,所以PH ⊥平面ABCD. (2) 如图,取PA 的中点M ,连结MD ,ME.因为E 是PB 的中点,所以ME =12AB ,ME ∥AB.又因为DF =12AB ,DF ∥AB ,所以ME =DF ,ME ∥DF ,所以四边形MEFD 是平行四边形,所以EF ∥MD.因为PD=AD,所以MD⊥PA.因为AB⊥平面PAD,所以MD⊥AB.因为PA∩AB=A,PA⊂平面PAB,AB⊂平面PAB,所以MD⊥平面PAB,所以EF⊥平面PAB.重难点题型突破2 面面垂直例3. (安徽省合肥三中2019届高三质检)如图,在正四面体PABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论不成立的是( )A.BC∥平面PDFB.DF⊥平面PAEC.平面PDF⊥平面PAED.平面PDE⊥平面ABC【答案】D【解析】因为BC∥DF,DF⊂平面PDF,BC⊄平面PDF,所以BC∥平面PDF,故选项A正确;在正四面体中,AE⊥BC,PE⊥BC,AE∩PE=E,且AE,PE⊂平面PAE,所以BC⊥平面PAE,因为DF∥BC,所以DF⊥平面PAE,又DF⊂平面PDF,从而平面PDF⊥平面PAE.因此选项B,C均正确.【变式训练3-1】、(江西鹰潭一中2019届高三调研)如图,边长为a的等边三角形ABC的中线AF与中位线DE交于点G,已知△A′DE是△ADE绕DE旋转过程中的一个图形,则下列命题中正确的是( )①动点A′在平面ABC上的射影在线段AF上;②BC∥平面A′DE;③三棱锥A′FED的体积有最大值.A.①B.①②C.①②③D.②③【答案】C【解析】①中由已知可得平面A′FG⊥平面ABC,所以点A′在平面ABC上的射影在线段AF上.②BC∥DE,根据线面平行的判定定理可得BC∥平面A′DE.③当平面A′DE⊥平面ABC时,三棱锥A′FED的体积达到最大,故选C.例4.(上海格致中学2019届高三模拟)如图1,矩形ABCD中,AB=12,AD=6,E,F分别为CD,AB 边上的点,且DE=3,BF=4,将△BCE沿BE折起至△PBE的位置(如图2所示),连接AP,PF,其中PF=2 5.(1)求证:PF⊥平面ABED;(2)求点A到平面PBE的距离.【解析】(1)证明:在题图2中,连接EF,由题意可知,PB=BC=AD=6,PE=CE=CD-DE=9,在△PBF中,PF2+BF2=20+16=36=PB2,所以PF⊥BF.在题图1中,连接EF,作EH⊥AB于点H,利用勾股定理,得EF=62+(12-3-4)2=61,在△PEF中,EF2+PF2=61+20=81=PE2,所以PF⊥EF,因为BF∩EF=F,BF⊂平面ABED,EF⊂平面ABED,所以PF⊥平面ABED.(2)如图,连接AE,由(1)知PF⊥平面ABED,所以PF 为三棱锥P ABE 的高. 设点A 到平面PBE 的距离为h ,因为V A PBE =V P ABE ,即13×12×6×9×h =13×12×12×6×25,所以h =853,即点A 到平面PBE 的距离为853. 【变式训练4-1】、 (2018·北京高考)如图,在四棱锥P ABCD 中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,E ,F 分别为AD ,PB 的中点.(1)求证:PE ⊥BC ;(2)求证:平面PAB ⊥平面PCD ; (3)求证:EF ∥平面PCD .证明:(1)因为PA =PD ,E 为AD 的中点, 所以PE ⊥AD .因为底面ABCD 为矩形, 所以BC ∥AD ,所以PE ⊥BC .(2)因为底面ABCD 为矩形,所以AB ⊥AD .又因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊂平面ABCD , 所以AB ⊥平面PAD ,因为PD ⊂平面PAD ,所以AB ⊥PD . 又因为PA ⊥PD ,AB ∩PA =A , 所以PD ⊥平面PAB . 因为PD ⊂平面PCD , 所以平面PAB ⊥平面PCD .(3)如图,取PC 的中点G ,连接FG ,DG . 因为F ,G 分别为PB ,PC 的中点, 所以FG ∥BC ,FG =12BC .因为四边形ABCD 为矩形,且E 为AD 的中点, 所以DE ∥BC ,DE =12BC .所以DE ∥FG ,DE =FG .所以四边形DEFG 为平行四边形. 所以EF ∥DG .又因为EF ⊄平面PCD ,DG ⊂平面PCD , 所以EF ∥平面PCD .。
人教A 版必修2第二章2.2.1《直线与平面的判定》精选题高频考点(含答案)-1学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )A .B .C .D .2.如图,在长方体1111ABCD A B C D -中,E 、F 分别是棱1AA 和1BB 的中点,过EF 的平面EFGH 分别交BC 和AD 于点G 、H ,则GH 与AB 的位置关系是( )A .平行B .相交C .异面D .平行或异面 3.若空间四边形ABCD 的两条对角线AC ,BD 的长分别是8,12,过AB 的中点E 且平行于BD ,AC 的截面四边形的周长为( )A .10B .20C .8D .44.在长方体1111ABCD A B C D -中,11AD DD ==,AB =E ,F ,G 分别是AB ,BC ,1CC 棱的中点,P 是底面ABCD 内一个动点,若直线1D P 与平面EFG 平行,则1BB P V 面积最小值为( )A B .1 C D .125.如图,正方体1111ABCD A B C D 中,E ,F ,G ,H 分别为所在棱的中点,则下列各直线中,不与平面1ACD 平行的是( )A .直线EFB .直线GHC .直线EHD .直线1A B 6.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为3,线段B 1D 1上有两个动点E ,F 且EF =1,则当E ,F 移动时,下列结论中错误的是( )A .AE ∥平面C 1BDB .四面体ACEF 的体积不为定值C .三棱锥A ﹣BEF 的体积为定值D .四面体ACDF 的体积为定值7.下列四个正方体图形中,A B ,为正方体的两个顶点,M N P ,,分别为其所在棱的中点,能得出AB ∥平面MNP 的图形的序号是( )A .①③B .②④C .②③D .①④ 8.已知直线m 与平面α,则下列结论成立的是A .若直线m 垂直于α内的两条直线,则m α⊥B .若直线m 垂直于α内的无数条直线,则m α⊥C .若直线m 平行于α内的一条直线,则//m αD .若直线m 与平面α无公共点,则//m α9.如图,在正方体1111ABCD A B C D -中,M ,N 分别是11,BC CD 的中点,则下列说法错误的是( )A .MN ∥平面ABCDB .MN ∥ABC .MN ⊥ACD .MN ⊥CC 1 10.如图,在四面体ABCD 中,点P ,Q ,M ,N 分别是棱AB ,BC ,CD ,AD 的中点,截面PQMN 是正方形,则下列结论错误的为( )A .AC ⊥BDB .AC ∥截面PQMNC .AC =CDD .异面直线PM 与BD 所成的角为45°11.设l 为直线,α,β是两个不同的平面,下列命题中正确的是( )A .若l ∥α,l ∥β,则α∥βB .若l ⊥α,l ⊥β,则α∥βC .若l ⊥α,l ∥β,则α∥βD .若α⊥β,l ∥α,则l ⊥β12.已知m ,n 是两条不同的直线,α,β是两个不同的平面,给出下列命题: ①若αβ∥,m α⊂,n β⊂,则m n P ;②若m αP ,m n P ,则n αP ;③若m ,n 是异面直线,则存在α,β,使m α⊂,n β⊂,且αβ∥;④若α,β不垂直,则不存在m α⊂,使m β⊥.其中正确的命题有( ).A .1个B .2个C .3个D .4个 13.设平面αβ∥,A α∈,B β∈,C 是AB 的中点,当点,A B 分别在平面,αβ内运动时,则所有的动点C ( )A .不共面B .当且仅当,A B 分别在两条直线上移动时才共面C .当且仅当,A B 分别在两条给定的异面直线上移动时才共面D .不论,A B 如何移动,都共面14.一正方体表面沿着几条棱裁开放平得到如图所示的展开图,则在原正方体中( )A .AB CD ∥ B .AB CD 平面∥C .CD GH ∥ D .AB GH ∥ 15.如图所示,在三棱台111ABC A B C -中,点D 在11A B 上,且1AA BD ∥,点M 是111A B C △内(含边界)的一个动点,且有平面BDM P 平面1A C ,则动点M 的轨迹是( )A .平面B .直线C .线段,但只含1个端点D .圆16.以下命题中真命题的个数是( )①若直线l 平行于平面α内的无数条直线,则直线l αP ;②若直线a 在平面α外,则a P α;③若直线,a b b α⊂∥,则a P α;④若直线,a b b α⊂∥,则a 平行于平面α内的无数条直线.A .1B .2C .3D .4 17.如图,已知正方体1111ABCD A B C D -,E 、F 分别是1BC 、BD 的中点,则至少过正方体3个顶点的截面中与EF 平行的截面个数为( ).A .2B .3C .4D .5 18.已知直线l ,m ,平面α,β,γ,则下列条件能推出l ∥m 的是( ) A .l ⊂α,m ⊂β,α∥βB .α∥β,α∩γ=l ,β∩γ=mC .l ∥α,m ⊂αD .l ⊂α,α∩β=m19.如图,透明塑料制成的长方体容器ABCD -A 1B 1C 1D 1内灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个命题:①没有水的部分始终呈棱柱形;②水面EFGH 所在四边形的面积为定值;③棱A 1D 1始终与水面所在平面平行;④当容器倾斜如图所示时,BE ·BF 是定值.其中正确的个数是( )A .1B .2C .3D .420.如图,几何体111A B C ABC -是一个三棱台,在1A 、1B 、1C 、A 、B 、6C 个顶点中取3 个点确定平面α,αI 平面111A B C m =,且//m AB ,则所取的这3个点可以是( )A .1A 、B 、CB .1A 、B 、1C C .A 、B 、1CD .A 、1B 、1C二、填空题 21.判断下列命题是否正确,正确的在括号内画“√”,错误的画“×”.(1)如果直线//a b ,那么a 平行于经过b 的任何平面.(______)(2)如果直线a 与平面α满足//a α,那么a 与α内的任何直线平行.(______) (3)如果直线a b ,和平面α满足//a α,//b α,那么//a b .(______)(4)如果直线a b ,和平面α满足//a b ,//a α,b α⊄,那么//b α.(______) 22.如图,透明塑料制成的长方体ABCD ﹣A 1B 1C 1D 1内灌进一些水,固定容器底面一边BC 于水平地面上,再将容器倾斜,随着倾斜度不同,有下面五个命题: ①有水的部分始终呈棱柱形;②没有水的部分始终呈棱柱形;③水面EFGH 所在四边形的面积为定值;④棱A 1D 1始终与水面所在平面平行;⑤当容器倾斜如图(3)所示时,BE•BF 是定值.其中所有正确命题的序号是 ____.23.如图,已知在长方体1111ABCD A B C D -中,1 3, 4,5AB AD AA ===,点E 为1CC 上的一个动点,平面1BED 与棱1AA 交于点F ,给出下列命题:①四棱锥11B BED F -的体积为20;②存在唯一的点E ,使截面四边形1BED F 的周长取得最小值;③当E 点不与C ,1C 重合时,在棱AD 上均存在点G ,使得CG P 平面1BED ④存在唯一一点E ,使得1B D ⊥平面1BED ,且165CE = 其中正确的命题是_____________(填写所有正确的序号)24.α,β为两个不同的平面,m ,n 为两条不同的直线,下列命题中正确的是________(填上所有正确命题的序号).①若α∥β,m ⊂α,则m ∥β; ②若m ∥α,n ⊂α,则m ∥n ; ③若α⊥β,α∩β=n ,m ⊥n ,则m ⊥β; ④若n ⊥α,n ⊥β,m ⊥α,则m ⊥β. 25.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E 、F ,且EF =12,则下列结论中正确的序号是_____.①AC ⊥BE ②EF ∥平面ABCD ③△AEF 的面积与△BEF 的面积相等.④三棱锥A ﹣BEF 的体积为定值26.如图,底面是平行四边形的四棱锥P ABCD -中,E PD ∈,F PC ∈,且:5:2PE ED =,若//BF 平面AEC ,则PF FC=______.27.如图,在矩形ABCD 中,4AB =,2AD =,E 为边AB 的中点.将三角形ADE 沿DE 翻折,得到四棱锥1A DEBC -.设线段1A C 的中点为M ,在翻折过程中,有下列三个命题: ①总有//BM 平面1A DE ;②三棱锥1C A DE -体积的最大值为3; ③存在某个位置,使DE 与1A C 所成的角为90o .其中正确的命题是______.(写出所有..正确命题的序号)28.如图,P 是平行四边形ABCD 所在平面外一点,E 为PB 的中点,O 为AC ,BD 的交点,则图中与EO 平行的平面有______.29.如图在四面体ABCD 中,若截面PQMN 是正方形,则在下列命题中正确的有______.(填上所有正确命题的序号)①,⊥AC BD②,AC BD=③截面PQMN,//AC④异面直线PM与BD所成的角为45o.30.如图,正方体的底面与正四面体的底面在同一平面α上,且AB//CD,则直线EF与正方体的六个面所在的平面相交的平面个数为.M N Q为所在棱的31.如图,在下列四个正方体中,A、B为正方体的两个顶点,,,中点,则在这四个正方体中,直线AB与平面MNQ平行的是________.①②③④.32.以下四个正方体中,点M为四等分点,其余各点为顶点或者中点,其中四点共面的有____.①②③④33.已知l 、m 是两条直线,α是平面,若要得到“l ∥α”,则需要在条件“m ⊂α,l ∥m ”中另外添加的一个条件是______.34.如图,DC ⊥平面ABC ,EB ∥DC ,EB =2DC ,P ,Q 分别为AE ,AB 的中点.则直线DP 与平面ABC 的位置关系是________.35.正方体1111ABCD A B C D -中,2AB =,点E 为AD 的中点,点F 在1CC 上,若//EF 平面1AB C ,则EF =_____.36.如图,1111ABCD-A B C D 为正方体,下面结论中正确的是_______.(把你认为正确的结论都填上)①11A C ⊥平面1BD ;②1BD ⊥平面1ACB ;③1BD 与底面11BCC B ;④过点1A 与异面直线AD 与1CB 成60︒角的直线有2条.37.如图所示,正方体1111ABCD A B C D -的棱长为1,,M N 为线段BC ,1CC 上的动点,过点1,,A M N 的平面截该正方体的截面记为S ,则下列命题正确的是______①当0BM =且0CN 1<<时,S 为等腰梯形;②当,M N 分别为BC ,1CC 的中点时,几何体11A D MN 的体积为112; ③当M 为BC 中点且34CN =时,S 与11C D 的交点为R ,满足116C R =; ④当M 为BC 中点且01CN 剟时,S 为五边形;⑤当13BM =且1CN =时,S 的面积3. 38.如图所示,在几何体ABCDE 中,四边形ABCD 是平行四边形,G F ,分别是BE DC ,的中点,则GF ___________平面ADE .39.如图(1)所示,已知正方形ABCD 中,E F ,分别是AB ,CD 的中点,将ADE V 沿DE 折起,如图(2)所示,则BF 与平面ADE 的位置关系是________.40.下列三个命题在“_______”处都缺少同一个条件,补上这个条件使其构成真命题(其中,l m 为直线,,αβ为平面),则此条件是__________.①____l m m α⎫⎪⎬⎪⎭P P l α⇒P ;②____m l m α⊂⎫⎪⎬⎪⎭P l α⇒P ;③____l m m α⊥⎫⎪⊥⎬⎪⎭l α⇒P三、解答题41.如图,三棱锥P −ABC ,侧棱PA =2,底面三角形ABC 为正三角形,边长为2,顶点P 在平面ABC 上的射影为D ,有AD ⊥DB ,且DB =1.(1)求证:AC//平面PDB ;(2)求二面角P −AB −C 的余弦值;(3)线段PC 上是否存在点E 使得PC ⊥平面ABE ,如果存在,求CE CP 的值;如果不存在,请说明理由.42.如图几何体中,底面ABCD 为正方形,PD ⊥平面ABCD ,//EC PD ,且22PD AD EC ===.(1)求证://BE 平面PDA ;(2)求PA 与平面PBD 所成角的大小.43.如图所示,PA ⊥平面ABCD ,ABCD 为正方形,PA AB a ==,E 、F 、G 分别为PA 、PD 、CD 的中点.(1)求证:直线//PB 平面FEG ;(2)求直线PB 与直线EG 所成角余弦值的大小.44.在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,AB BC ⊥,侧面PAB ⊥底面ABCD ,1PA AD AB ===,2BC =.()1若PB 的中点为E ,求证://AE 平面PCD ;()2若90PAB ∠=︒,求二面角B PD C --的余弦值.45.如图,在多面体ABCDEF 中,已知ABCD 是边长为2的正方形,BCF ∆为正三角形,4EF =且//EF AB ,EF FB ⊥,G ,H 分别为BC ,EF 的中点.(1)求证://GH 平面EAD ;(2)求三棱锥F BCH -的体积.46.已知四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,2PA PD AD ===,点E ,F 分别是PD ,AB 的中点.(1)求证://AE 平面PFC ;(2)若CF 与平面PCD AB 的长. 47.如图所示,AE ⊥平面ABCD ,四边形AEFB 为矩形,//BC AD ,BA AD ⊥,224AE AD AB BC ====.(1)求证://CF 平面ADE ;(2)求平面CDF 与平面AEFB 所成锐二面角的余弦值.48.如图所示,在四棱锥P ABCD -中,//AD BC ,90ADC PAB ︒∠=∠=,12BC CD AD ==.在平面P AD 内找一点M ,使得直线//CM 平面P AB ,并说明理由.49.如图,在平行六面体1111ABCD A B C D -中,1AA AB =,111AB B C ⊥.求证://AB 平面11A B C ;50.如图,直三棱柱ABC﹣A′B′C′,∠BAC=90°,AB=AC=λAA′,点M,N分别为A′B 和B′C′的中点.(1)证明:MN∥平面A′ACC′;(2)若二面角A′﹣MN﹣C为直二面角,求λ的值.参考答案1.A2.A3.B4.A5.C6.B7.D8.D9.B10.C11.B12.B13.D14.C15.C16.A17.D18.B19.C20.C21.× × × √22.①②④⑤23.①②④24.①④25.①②④26.3 227.①②28.平面P AD、平面PCD29.①③④30.431.②③④32.②33.l α⊄34.平行3536.①②④37.①②38.平行.39.平行40.l α⊄41.(Ⅰ)见解析;(Ⅱ)−√217;(Ⅲ)见解析. 42.(1)见解析(2)6π43.(1)见证明(2)344.()1证明见解析;()12.345.(1)见解析;(2)346.(1)证明见解析,(2)2a =47.(1)见解析(2)2348.AD 的中点M (M ∈平面P AD )为所求的一个点,详见解析 49.证明见解析50.(1)见解析(2)λ=。
垂直的证明【方法总结】1、证明线面垂直的方法:①利用线面垂直定义:如果一条直线垂直于平面内任一条直线,则这条直线垂直于该平面;②用线面垂直判定定理:如果一条直线与平面内的两条相交直线都垂直,则这条直线与平面垂直;③用线面垂直性质:两条平行线中的一条垂直于一个平面,则另一条也必垂直于这个平面.2、证明线线(或线面)垂直有时需多次运用线面垂直的定义和线面垂直的判定定理,实现线线垂直与线面垂直的相互转化.3、证明面面垂直一般要先找到两个面的交线,然后再在两个面内找能与交线垂直的直线,最后通过证明线面垂直证明面面垂直。
【分类练习】考向一线面垂直例1、在四棱锥P ABCD -中,PA ⊥底面ABCD ,//AB CD ,AB BC ⊥,1AB BC ==,2DC =,点E 在PB 上求证:CA ⊥平面PAD ;【答案】(1)证明见解析;(2)2.【解析】(1)过A 作AF ⊥DC 于F ,则CF =DF =AF ,所以∠DAC =90°,即AC ⊥DA ,又PA ⊥底面ABCD ,AC ⊂面ABCD ,所以AC ⊥PA ,因为PA 、AD ⊂面PAD ,且PA ∩AD =A ,所以AC ⊥平面PAD .例2、如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;解析:(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A ,故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .例3、如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11A C ,1BB 的中点求证:AC ⊥平面BEF ;【解析】(1)在三棱柱111ABC A B C -中,∵1CC ⊥平面ABC ,∴四边形11A ACC 为矩形.又E ,F 分别为AC ,11A C 的中点,∴AC ⊥EF .∵AB BC =.∴AC ⊥BE ,∴AC ⊥平面BEF .例4、如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,12BC CD AD ==.(Ⅰ)求证:BD ⊥平面PAB ;【解析】因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥PA .所以222AD AB BD =+,所以BD AB ⊥.因为PA AB A = ,所以BD ⊥平面PAB .【巩固练习】1、如图,在三棱柱ABC-A 1B 1C 1中,AB=AC,A 1在底面ABC 的射影为BC 的中点,D 是B 1C 1的中点.证明:A 1D⊥平面A 1BC;【答案】见解析【解析】证明:设E 为BC 的中点,连接A 1E,AE.由题意得A 1E⊥平面ABC,所以A 1E⊥AE.因为AB=AC,所以AE⊥BC.故AE⊥平面A 1BC.连接DE,由D,E 分别为B 1C 1,BC 的中点,得DE∥B 1B 且DE=B 1B,从而DE∥A 1A 且DE =A 1A,所以AA 1DE 为平行四边形.于是A 1D∥AE.因为AE⊥平面A 1BC,所以A 1D⊥平面A 1BC.2.(2019·上海格致中学高三月考)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD DC =,E 是PC 的中点,作EF PB ⊥交PB 于点F .(1)证明:PA ∥平面EDB ;(2)证明:PB ⊥平面EFD .【答案】(1)详见解析;(2)详见解析.【解析】(1)设AC 与BD 相交于O ,连接OE ,由于O 是AC 中点,E 是PC 中点,所所以PA ∥平面EDB .(2)由于PD ⊥底面ABCD ,所以PD BC ⊥,由于,BC CD PD CD D ⊥⋂=,所以BC ⊥平面PCD ,所以BC DE ⊥.由于DP DC =且E 是PC 中点,所以DE PC ⊥,而PC BC C ⋂=,所以DE ⊥平面PBC ,所以DE PB ⊥.依题意EF PB ⊥,DE EF E = ,所以PB ⊥平面EFD .3.(2019·江苏高三月考)如图,在四棱锥P ABCD -中,四边形ABCD 是平行四边形,AC ,BD 相交于点O ,OP OC =,E 为PC 的中点,PA PD ⊥.(1)求证://PA 平面BDE ;(2)求证:PA ⊥平面PCD【答案】(1)详见解析(2)详见解析【解析】(1)连结OE .因为四边形ABCD 是平行四边形,AC ,BD 相交于点O ,所以O 为AC 的中点.因为E 为PC 的中点,所以//OE PA .因为OE ⊂平面BDE ,PA ⊄平面BDE ,所以//PA 平面BDE .(2)因为OP OC =,E 为PC 的中点,所以OE PC ⊥.由(1)知,//OE PA ,所以PA PC ⊥.因为PA PD ⊥,PC ,PD ⊂平面PCD ,PC PD P ⋂=,所以PA ⊥平面PCD .考向二面面垂直例1、如图,在四棱锥P ABCD -中,已知底面ABCD 为矩形,且AB =,1BC =,E ,F 分别是AB ,PC 的中点,PA DE ⊥.(1)求证://EF 平面PAD ;(2)求证:平面PAC ⊥平面PDE .【答案】(1)详见解析(2)详见解析【解析】证明:(1)取PD 中点G ,连AG ,FG ,F ,G 分别是PC ,PD 的中点又E 为AB 中点//AE FG ∴,AE FG=四边形AEFG 为平行四边形//EF AG ∴,又EF ⊄平面PAD ,AG ⊂平面PAD//EF ∴平面PAD(2)设AC DE H= 由AEH CDH ∆∆ 及E 为AB 中点又BAD ∠为公共角GAE BAC∴∆∆ 90AHE ABC ∴∠=∠=︒即DE AC ⊥又DE PA ⊥,PA AC A= DE ⊥平面PAC ,又DE ⊂平面PDE∴平面PAC ⊥平面PDE例2、如图,边长为2的正方形ABCD 所在的平面与半圆弧 CD所在平面垂直,M 是 CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为 CD上异于C ,D 的点,且DC 为直径,所以DM ⊥CM .又BC CM =C ,所以DM ⊥平面BMC .而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .例3、如图,在梯形ABCD 中,AB ∥CD ,AD=DC=CB=a ,∠ABC=3π,平面ACFE ⊥平面ABCD ,四边形ACFE 是矩形,AE=AD ,点M 在线段EF 上。
线面垂直●知识点1.直线和平面垂直定义如果一条直线和一个平面内的任何一条直线都垂直,就说这条直线和这个平面垂直.2.线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.判定定理:如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.判定定理:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.3.三垂线定理和它的逆定理.三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直.逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线在该平面上的射影垂直.●题型示例【例1】如图所示,已知点S是平面ABC外一点,∠ABC=90°,SA⊥平面ABC,点A在直线SB和SC上的射影分别为点E、F,求证:EF⊥SC.【解前点津】用分析法寻找解决问题的途径,假设EF⊥SC成立,结合AF⊥SC可推证SC⊥平面AEF,这样SC⊥AE,结合AE⊥SB,可推证AE⊥平面SBC,因此证明AE⊥平面SBC是解决本题的关键环节.由题设SA⊥平面ABC,∠ABC=90°,可以推证BC⊥AE,结合AE⊥SB完成AE⊥平例1题图面SBC的证明.【规范解答】【解后归纳】题设中条件多,图形复杂,结合题设理清图形中基本元素之间的位置关系是解决问题的关键.【例2】已知:M∩N=AB,PQ⊥M于Q,PO⊥N于O,OR⊥M于R,求证:QR⊥AB.【解前点津】由求证想判定,欲证线线垂直,方法有(1)a∥b,a⊥c⇒b⊥c;(2)a⊥α,b⊂α⇒a⊥b;(3)三垂线定理及其逆定理.由已知想性质,知线面垂直,可推出线线垂直或线线平行.【解后归纳】处于非常规位置图形上的三垂线定理或逆定理的应用问题,要抓住“一个面”、“四条线”.所谓“一个面”:就是要确定一个垂面,三条垂线共处于垂面之上.所谓“四条线”:就是垂线、斜线、射影以及平面内的第四条线,这四条线中垂线是关键的一条线,牵一发而动全身,应用时一般可按下面程序进行操作:确定垂面、抓准斜线、作出垂线、连结射影,寻第四条线.【例3】已知如图(1)所示,矩形纸片AA′A′1A1,B、C、B1、C1分别为AA′,A1A′的三等分点,将矩形纸片沿BB1,CC1折成如图(2)形状(正三棱柱),若面对角线AB1⊥BC1,求证:A1C⊥AB1.例3题图解(1)【解前点津】 题设主要条件是AB 1⊥BC ,而结论是A B1⊥A 1C,题设,题断有对答性,可在ABB 1A1上作文章,只要取A 1B1中点D 1,就把异面直线AB 1与BC 1垂直关系转换到ABB 1A1同一平面内AB 1与BD 1垂直关系,这里要感谢三垂线逆定理.自然想到题断A B1与A 1C 垂直用同法(对称原理)转换到同一平面,取AB 中点D 即可,只要证得A1D 垂直于A B1,事实上D BD1A 1,为平行四边形,解题路子清楚了.【解后归纳】 证线线垂直主要途径是:(1)三垂线正逆定理,(2)线面,线线垂直互相转化.利用三垂线正逆定理完成线线归面工作,在平面内完成作解任务.证线线垂直,线面垂直,常常利用线面垂直,线线垂直作为桥梁过渡过来,这种转化思想有普遍意义,利用割补法把几何图形规范化便于应用定义定理和公式,也是不容忽视的常用方法.【例4】 空间三条线段A B,BC ,CD ,AB ⊥BC ,BC ⊥C D,已知AB =3,BC =4,CD =6,则AD 的取值范围是 .【解前点津】 如图,在直角梯形ABCD 1中,C D1=6,AD 1的长是AD 的最小值,其中AH ⊥C D1,AH =B C=4,HD 1=3,∴AD1=5;在直角△AH D2中,CD 2=6,AD 2是A D的最大值为974)36(22222=++=+AH HD【解后归纳】 本题出题形式新颖、灵活性大,很多学生对此类题感到无从入手,其实冷静分析,找出隐藏的条件很容易得出结论.例4题图●对应训练 分阶提升一、基础夯实1.设M 表示平面,a、b 表示直线,给出下列四个命题:①M b M a b a ⊥⇒⎭⎬⎫⊥// ②b a M b M a //⇒⎭⎬⎫⊥⊥ ③⇒⎭⎬⎫⊥⊥b a M a b ∥M ④⇒⎭⎬⎫⊥b a M a //b ⊥M . 其中正确的命题是 ( )A.①② B.①②③ C.②③④ D.①②④2.下列命题中正确的是 ( )A.若一条直线垂直于一个平面内的两条直线,则这条直线垂直于这个平面B.若一条直线垂直于一个平面内的无数条直线,则这条直线垂直于这个平面C.若一条直线平行于一个平面,则垂直于这个平面的直线必定垂直于这条直线D.若一条直线垂直于一个平面,则垂直于这条直线的另一条直线必垂直于这个平面3.如图所示,在正方形ABCD 中,E 、F 分别是AB 、B C的中点.现在沿D E、DF 及EF 把△A DE 、△CDF 和△BEF 折起,使A 、B、C 三点重合,重合后的点记为P.那么,在四面体P —DEF 中,必有 ( )A.D P⊥平面PE F B .DM ⊥平面PEF C.PM ⊥平面DE F D.PF ⊥平面DEF4.设a 、b 是异面直线,下列命题正确的是 ( )A.过不在a、b 上的一点P一定可以作一条直线和a、b 都相交B .过不在a 、b 上的一点P一定可以作一个平面和a 、b 都垂直C.过a一定可以作一个平面与b垂直D.过a一定可以作一个平面与b 平行5.如果直线l ,m 与平面α,β,γ满足:l=β∩γ,l ∥α,m⊂α和m ⊥γ,那么必有 ( ) A.α⊥γ且l ⊥m B.α⊥γ且m ∥β C.m∥β且l ⊥m D.α∥β且α⊥γ6.AB是圆的直径,C 是圆周上一点,PC 垂直于圆所在平面,若B C=1,AC =2,P C=1,则P 到AB的距离为 ( )A.1B.2 C.552 D.553 7.有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;③异面直线a 、b 不垂直,那么过a的任一个平面与b 都不垂直其中正确命题的个数为 ( )A.0B.1 C.2 D.38.d 是异面直线a 、b的公垂线,平面α、β满足a ⊥α,b⊥β,则下面正确的结论是 ( )第3题图A.α与β必相交且交线m ∥d或m 与d重合B.α与β必相交且交线m∥d 但m 与d 不重合C.α与β必相交且交线m 与d 一定不平行D.α与β不一定相交9.设l、m 为直线,α为平面,且l ⊥α,给出下列命题① 若m ⊥α,则m ∥l;②若m ⊥l ,则m∥α;③若m∥α,则m ⊥l ;④若m∥l ,则m ⊥α, 其中真命题...的序号是 ( ) A.①②③ B.①②④ C .②③④ D.①③④10.已知直线l ⊥平面α,直线m 平面β,给出下列四个命题:①若α∥β,则l ⊥m;②若α⊥β,则l ∥m ;③若l∥m,则α⊥β;④若l ⊥m ,则α∥β. 其中正确的命题是 ( )A.③与④B.①与③ C.②与④ D.①与②二、思维激活11.如图所示,△ABC 是直角三角形,AB 是斜边,三个顶点在平面α的同侧,它们在α内的射影分别为A′,B′,C ′,如果△A ′B ′C ′是正三角形,且AA ′=3cm ,B B′=5cm ,CC ′=4cm ,则△A ′B ′C′的面积是 .12.如图所示,在直四棱柱A 1B 1C 1D 1—ABCD 中,当底面四边形ABCD 满足条件 时,有A 1C⊥B 1D1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)13.如图所示,在三棱锥V —AB C中,当三条侧棱VA 、VB 、VC 之间满足条件 时,有VC ⊥AB .(注:填上你认为正确的一种条件即可)三、能力提高14.如图所示,三棱锥V -AB C中,AH ⊥侧面VBC ,且H 是△VB C的垂心,BE 是VC 边上的高.(1)求证:VC ⊥AB ;(2)若二面角E —AB—C 的大小为30°,求VC 与平面AB C所成角的大小.第11题图 第12题图第13题图 第14题图15.如图所示,PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面P AD.(2)求证:MN⊥CD.(3)若∠PDA=45°,求证:MN⊥平面PCD.第15题图16.如图所示,在四棱锥P—ABCD中,底面ABCD是平行四边形,∠BAD=60°,AB=4,AD=2,侧棱PB=15,PD =3.(1)求证:BD ⊥平面P AD.(2)若PD与底面ABCD成60°的角,试求二面角P—BC—A的大小.第16题图17.已知直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=6,M是CC1的中点,求证:AB1⊥A1M.18.如图所示,正方体ABCD—A′B′C′D′的棱长为a,M是AD的中点,N是BD′上一点,且D′N∶NB=1∶2,MC与BD交于P.(1)求证:NP⊥平面ABCD.(2)求平面PNC与平面CC′D′D所成的角.(3)求点C到平面D′MB的距离.第18题图第4课 线面垂直习题解答1.A 两平行中有一条与平面垂直,则另一条也与该平面垂直,垂直于同一平面的两直线平行.2.C 由线面垂直的性质定理可知.3.A 折后DP ⊥PE ,D P⊥PF ,P E⊥PF .4.D 过a 上任一点作直线b ′∥b ,则a,b ′确定的平面与直线b平行.5.A 依题意,m⊥γ且m ⊂α,则必有α⊥γ,又因为l =β∩γ则有l ⊂γ,而m ⊥γ则l⊥m ,故选A.6.D 过P 作PD ⊥A B于D ,连CD ,则CD ⊥AB ,AB =522=+BC AC ,52=⋅=AB BC AC CD , ∴PD =55354122=+=+CD PC . 7.D 由定理及性质知三个命题均正确.8.A 显然α与β不平行.9.D 垂直于同一平面的两直线平行,两条平行线中一条与平面垂直,则另一条也与该平面垂直.10.B ∵α∥β,l⊥α,∴l ⊥m 11.23c m2 设正三角A ′B′C′的边长为a . ∴A C2=a 2+1,BC 2=a 2+1,A B2=a2+4,又AC 2+BC 2=AB 2,∴a 2=2. S△A′B′C ′=23432=⋅a cm 2. 12.在直四棱柱A 1B 1C 1D1—A BCD 中当底面四边形AB CD 满足条件AC ⊥B D(或任何能推导出这个条件的其它条件,例如A BCD 是正方形,菱形等)时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形). 点评:本题为探索性题目,由此题开辟了填空题有探索性题的新题型,此题实质考查了三垂线定理但答案不惟一,要求思维应灵活.13.VC ⊥VA ,VC ⊥AB . 由VC ⊥VA ,VC ⊥AB 知VC ⊥平面V AB .14.(1)证明:∵H 为△V BC 的垂心,∴VC ⊥B E,又AH ⊥平面VBC ,∴BE 为斜线A B在平面VBC 上的射影,∴AB ⊥VC .(2)解:由(1)知VC ⊥A B,VC ⊥BE ,∴VC ⊥平面ABE ,在平面A BE上,作ED⊥AB ,又A B⊥VC ,∴AB ⊥面D EC .∴AB ⊥CD ,∴∠EDC 为二面角E —A B—C 的平面角,∴∠ED C=30°,∵AB ⊥平面VCD ,∴VC 在底面AB C上的射影为CD .∴∠VCD 为VC 与底面ABC 所成角,又VC ⊥A B,VC ⊥BE ,∴VC ⊥面AB E,∴VC ⊥DE ,∴∠CE D=90°,故∠ECD=60°,∴VC 与面A BC 所成角为60°.15.证明:(1)如图所示,取PD 的中点E ,连结AE ,EN ,则有EN∥CD ∥AB ∥AM,E N=21C D=21AB =AM,故AMNE 为平行四边形. ∴MN ∥AE. ∵AE 平面P AD ,MN 平面P AD ,∴MN ∥平面PAD .(2)∵PA ⊥平面ABCD ,∴P A⊥AB .又A D⊥AB ,∴A B⊥平面P A D.∴A B⊥AE ,即AB ⊥MN .又C D∥AB ,∴MN ⊥CD.(3)∵P A ⊥平面ABCD ,∴P A ⊥AD .又∠PDA =45°,E 为PD 的中点.∴AE ⊥P D,即MN ⊥PD .又MN ⊥CD ,∴MN ⊥平面P CD .16.如图(1)证:由已知A B=4,AD =2,∠BAD =60°,故BD 2=AD 2+A B2-2AD ·A Bc os60°=4+16-2×2×4×21=12.又AB 2=AD 2+B D2,∴△A BD是直角三角形,∠AD B=90°,即AD ⊥BD.在△PDB 中,PD =3,PB =15,BD =12,∴PB 2=PD 2+BD 2,故得PD ⊥B D.又P D∩AD =D ,∴BD ⊥平面P AD.(2)由BD ⊥平面P AD ,BD平面A BCD .∴平面P AD ⊥平面A BCD .作PE ⊥AD 于E,又P E平面P AD ,∴PE ⊥平面ABCD ,∴∠PD E是PD 与底面AB CD所成的角.∴∠PD E=60°,∴P E=PD si n60°=23233=⨯.作EF ⊥BC 于F,连PF ,则PF ⊥BF,∴∠PF E是二面角P —BC —A的平面角.又E F=BD =12,在Rt △P EF 中,tan ∠PFE =433223==EF PE .故二面角P —BC—A 的大小为ar ctan 43. 第15题图解第16题图解17.连结AC 1,∵11112263A C CC MC AC ===. ∴Rt △ACC 1∽Rt △MC 1A 1,∴∠AC 1C =∠MA 1C1,∴∠A1MC 1+∠AC 1C =∠A 1M C1+∠MA1C1=90°.∴A1M ⊥AC 1,又ABC -A 1B1C 1为直三棱柱,∴C C1⊥B 1C 1,又B 1C1⊥A1C 1,∴B 1C 1⊥平面AC 1M .由三垂线定理知AB 1⊥A 1M .点评:要证AB 1⊥A 1M,因B 1C 1⊥平面A C1,由三垂线定理可转化成证AC 1⊥A 1M ,而AC 1⊥A 1M 一定会成立.18.(1)证明:在正方形ABCD 中,∵△MPD ∽△C PB ,且MD =21B C, ∴D P∶PB =MD ∶BC =1∶2.又已知D ′N ∶NB =1∶2,由平行截割定理的逆定理得NP∥DD′,又DD ′⊥平面ABCD ,∴NP ⊥平面ABCD .(2)∵N P∥DD ′∥CC ′,∴N P、C C′在同一平面内,CC ′为平面NPC 与平面C C′D ′D 所成二面角的棱. 又由CC ′⊥平面AB CD ,得CC ′⊥CD ,CC ′⊥CM ,∴∠MCD 为该二面角的平面角.在Rt △M CD 中可知∠MCD =arc tan 21,即为所求二面角的大小. (3)由已知棱长为a可得,等腰△MBC 面积S 1=22a ,等腰△MBD ′面积S 2=246a ,设所求距离为h ,即为三棱锥C —D′MB的高.∵三棱锥D ′—BCM 体积为h S D D S 213131='⋅, ∴.3621a S a S h =⋅=。
D B A α 相交直线:同一平面内,有且只有一个公共点; ] ]; a 来表 a a 线线平行 A ·α C ·B · A · α P· αLβ 共面直线p线面平行 面面平行 作用:可以由平面与平面平行得出直线与直线平行叫做垂足。
叫做垂足。
的垂线,则这两个ba第 3 页 共 3 页aa b a b //,a a a ÞþýüË^^1、性质定理:垂直于同一个平面的两条直线平行。
符号表示:符号表示:b a b a //,Þ^^a a 2、性质定理:一条直线与一个平行垂直,那么过这条直线的平面也与此平面垂直 符号表示:b a b a ^ÞÌ^a a ,2.3.4平面与平面垂直的性质1、性质定理:、性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
符号表示:b b a a b a ^Þïþïýü=^Ì^a l l a a ,2、性质定理:垂直于同一平面的直线和平面平行。
符号表示:符号表示:符号表示:一、异面直线所成的角一、异面直线所成的角1.已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b ¢¢, 我们把a ¢与b ¢所成的锐角(或直角)叫异面直线,a b 所成的角。
所成的角。
2.角的取值范围:090q <£°;垂直时,异面直线当b a ,900=q二、直线与平面所成的角二、直线与平面所成的角1. 定义:平面的一条斜线和它在平面上的射影所成的锐角,叫这条斜线和这个平面所成的角2.角的取值范围:°°££900q 。
三、两个半平面所成的角即二面角:三、两个半平面所成的角即二面角: 1、从一条直线出发的两个半平面所组成的图形叫做二面角。
2.3.3直线与平面垂直的性质2.3.4平面与平面垂直的性质题号 1 2 3 4 5 6 7 8 9 10 11 得分答案一、选择题(本大题共7小题,每小题5分,共35分)1.对于任意的直线l与平面α,在平面α内必有直线m,使m与l()A.平行B.相交C.垂直D.互为异面直线2.在下列四个正方体中,能得出AB⊥CD的是()图L23183.设平面α⊥平面β,若平面α内的一条直线a垂直于平面β内的一条直线b,则() A.直线a必垂直于平面βB.直线b必垂直于平面αC.直线a不一定垂直于平面βD.过a的平面与过b的平面垂直4.已知两条不同的直线m,n和两个不同的平面α,β,给出下列命题:①若α∥β,m⊂α,则m∥β;②若m∥n,m∥β,则n∥β;③若m⊂α,n⊂β,则m,n异面;④若α⊥β,m∥α,则m⊥β.其中错误命题的个数是()A.0 B.1C.2 D.35.已知直线a,b,c及平面α,下列条件中,能使b∥c成立的是()A.b⊥a且c⊥aB.b⊥α且c⊥αC.b,c与α所成角相等D.b∥α且c∥α6.对于直线m,n和平面α,β,γ,有如下四个命题:①若m∥α,m⊥n,则n⊥α;②若m⊥α,m⊥n,则n∥α;③若α⊥β,γ⊥β,则α∥γ;④若m⊥α,m∥n,n⊂β,则α⊥β.其中真命题的个数是()A.1 B.2C.3 D.4图L23197.如图L2319所示,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在平面ABC上的射影H必在()A.直线AB上B.直线BC上C.直线CA上D.△ABC内部二、填空题(本大题共4小题,每小题5分,共20分)8.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行;②若一个平面经过另一个平面的垂线,则这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,则一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中所有真命题的序号是________.9.在四棱锥P-ABCD中,PA⊥底面ABCD,底面各边都相等,M是PC上的一动点.当点M 满足________时,平面MBD⊥平面PCD.10.已知m,n是空间两条不同的直线,α,β是两个不同的平面,下面有四个命题:①m⊥α,n∥β,α∥β⇒m⊥n;②m⊥n,α∥β,m⊥α⇒n∥β;③m⊥n,α∥β,m∥α⇒n⊥β;④m⊥α,m∥n,α∥β⇒n⊥β.其中所有真命题的序号是________.11.如图L2320,在直角梯形ABCD中,BC⊥DC,AE⊥DC,M,N分别是AD,BE的中点,将三角形ADE沿AE折起.下列说法正确的是________.(填上所有正确说法的序号)①不论D折至何位置(不在平面ABC内)都有MN∥平面DEC;②不论D折至何位置都有MN⊥AE;③不论D折至何位置(不在平面ABC内)都有MN∥AD;④在折起过程中,一定存在某个位置,使EC⊥AD.图L2320三、解答题(本大题共2题,共25分)12.(12分)如图L2321所示,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,四边形ABCD 为正方形,PA =AB ,G 为PD 的中点.求证:AG ⊥平面PCD .图L232113.(13分)如图L2322所示的五面体中,四边形CBB 1C 1为矩形,B 1C 1⊥平面ABB 1N ,四边形ABB 1N 为梯形,且AB ⊥BB 1,BC =AB =AN =12BB 1=4.(1)求证:BN ⊥平面C 1B 1N ; (2)求此五面体的体积.图L232214.(5分)若l,m,n是三条不同的直线,α,β,γ是三个不同的平面,则下列命题中为假命题的是()A.若α⊥γ,β⊥γ,α∩β=l,则l⊥γB.若l∥α,l∥β,α∩β=m,则l∥mC.若α∩β=l,β∩γ=m,γ∩α=n,l∥m,则l∥nD.若α⊥γ,β⊥γ,则α⊥β或α∥β15.(15分)如图L2323(1)所示,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图L2323(2)所示.(1)求证:DE∥平面A1CB.(2)求证:A1F⊥BE.(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?请说明理由.图L23232.3.3 直线与平面垂直的性质 2.3.4 平面与平面垂直的性质1.C [解析] 若l 在平面α内,则存在直线m ⊥l ;若l 不在平面α内,且l ⊥α,则l 垂直于平面α内任意一条直线;若l 不在平面α内,且l 与α不垂直,则它的射影在平面α内为一条直线,在平面α内必有直线m 垂直于它的射影,故m 垂直于l .综上所述,m 与l 垂直.2.A3.C [解析] 当两个平面垂直时,在一个平面内只有垂直于交线的直线才垂直于另一个平面. 4.D [解析] 易知①正确;②中直线n 也可能在平面β内,故②错误; ③中m 与n 也可能相交或平行,故③错误; ④显然错误.5.B [解析] 由直线与平面垂直的性质易知B 正确.6.A [解析] ①不正确;②中直线n 也可能在平面α内,故②不正确;③不正确;④当m ⊥α,m ∥n 时,有n ⊥α,又n ⊂β,所以α⊥β,故④正确.7.A [解析] ∵CA ⊥AB ,CA ⊥BC 1,AB ∩BC 1=B , ∴CA ⊥平面ABC 1,∴平面ABC ⊥平面ABC 1,∴由面面垂直的性质定理可知C 1在平面ABC 上的射影H 必在直线AB 上.8.②④ [解析] ②是面面垂直的判定定理;③中垂直于同一直线的两条直线不一定相互平行,如正方体中共顶点的三条棱;由面面垂直的性质定理可知④正确.9.DM ⊥PC 或BM ⊥PC10.①④11.①②④ [解析] 如图,设Q ,P 分别为CE ,DE 的中点,可证MNPQ 是矩形,所以①②正确;当平面ADE ⊥平面ABCD 时,有EC ⊥AD ,④正确.故填①②④.12.证明:∵PA ⊥平面ABCD ,CD ⊂平面ABCD ,∴PA ⊥CD . 又AD ⊥CD ,PA ∩AD =A ,∴CD ⊥平面PAD . 又AG ⊂平面PAD ,∴AG ⊥CD .∵PA =AB =AD ,G 为PD 的中点,∴AG ⊥PD . 又PD ∩CD =D ,∴AG ⊥平面PCD .13.解:(1)证明:过N 作NM ⊥BB 1,垂足为M , ∵B 1C 1⊥平面ABB 1N ,BN ⊂平面ABB 1N , ∴B 1C 1⊥BN ,又BC =4,AB =4,BM =AN =4,BA ⊥AN ,∴ BN =42+42=42,B 1N =NM 2+B 1M 2=42+42=42, ∵BB 1=82=64,B 1N 2+BN 2=32+32=64,∴BN ⊥B 1N , ∵B 1C 1⊂平面B 1C 1N ,B 1N ⊂平面B 1C 1N ,B 1N ∩B 1C 1=B 1, ∴BN ⊥平面C 1B 1N .(2)连接CN ,则V C -ABN =13×BC ·S △ABN =13×4×12×4×4=323,又B 1C 1⊥平面ABB 1N ,所以平面CBB 1C 1⊥平面ABB 1N ,且平面CBB 1C 1∩平面ABB 1N =BB 1,NM ⊥BB 1,NM ⊂平面ABB 1N ,∴ NM ⊥平面B 1C 1CB,∴VN -B 1C 1CB =13×NM ·S 矩形B 1C 1CB =13×4×4×8=1283,∴此几何体的体积V =V C -ABN +VN -B 1C 1CB =323+1283=1603.14.D15.解:(1)证明:因为D ,E 分别为AC ,AB 的中点,所以DE ∥BC . 又DE ⊄平面A 1CB ,所以DE ∥平面A 1CB . (2)证明:由已知得DC ⊥BC 且DE ∥BC ,所以DE ⊥DC .又DE ⊥A 1D ,A 1D ∩CD =D ,所以DE ⊥平面A 1DC , 而A 1F ⊂平面A 1DC ,所以DE ⊥A 1F .又因为A 1F ⊥CD ,所以A 1F ⊥平面.(3)线段A 1B 上存在点Q ,使A 1C ⊥平面DEQ . 理由如下:如图所示,分别取A 1C ,A 1B 的中点P ,Q ,连接DP ,PQ ,QE ,则PQ ∥BC .又因为DE ∥BC ,所以DE ∥PQ ,所以平面DEQ 即为平面DEP . 由(2)知,DE ⊥平面A 1DC , 所以DE ⊥A 1C .又因为P 是等腰三角形DA 1C 底边A 1C 的中点,所以A 1C ⊥DP ,所以A 1C ⊥平面DEP ,从而A 1C ⊥平面DEQ .故线段A 1B 上存在点Q ,且Q 为A 1B 的中点时,使得A 1C ⊥平面DEQ .。
直线、平面垂直的判定及其性质(二)(人教A版)一、单选题(共8道,每道12分)1.已知平面α与平面β相交,直线m⊥α,则( )A.β内必存在直线与m平行,且存在直线与m垂直B.β内不一定存在直线与m平行,不一定存在直线与m垂直C.β内不一定存在直线与m平行,但必存在直线与m垂直D.β内必存在直线与m平行,不一定存在直线与m垂直答案:C解题思路:试题难度:三颗星知识点:面面垂直的判定2.已知α,β,γ是三个互不重合的平面,是一条直线,下列命题中正确的是( )A.∥B.∥C.∥D.答案:B解题思路:试题难度:三颗星知识点:面面垂直的判定3.如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点,若AB=2,AD=,PA=2,则△PCD的面积为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:直线与平面垂直的性质4.如图,在平行四边形ABCD中,AB⊥BD,将△ABD沿BD折起到△A1BD,使面A1BD⊥面BCD,连接A1C,则下列结论:①AB⊥A1B;②CD⊥平面A1BD;③平面A1CD⊥平面A1BD;④平面A1BC⊥平面BCD.其中正确的有( )A.1个B.2个C.3个D.4个答案:C解题思路:试题难度:三颗星知识点:面面垂直的判定5.将边长为1的正方形ABCD沿对角线AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱锥D-ABC中,给出下列三个命题:①△DBC是等边三角形;②AC⊥BD;③三棱锥D-ABC的体积是.其中正确的有( )A.0个B.1个C.2个D.3个答案:C解题思路:试题难度:三颗星知识点:空间位置关系与距离6.如图,四面体P-ABC中,PA=PB=13,平面PAB⊥平面ABC,∠ACB=90°,AC=8,BC=6,则PC的长为( )A.13B.12C.11D.10答案:A解题思路:试题难度:三颗星知识点:平面与平面垂直的性质7.如图,已知直二面角,点,,,,,,若AB=4,AC=3,BD=12,则CD的长为( )A.8B.10C.12D.13答案:D解题思路:试题难度:三颗星知识点:面面垂直的性质8.如图,若正四棱锥的侧棱与底面成45°角,则侧面与底面所成二面角的正弦值为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:二面角的平面角及求法。
人教A 版高中数学必修二第二章 《2.3直线、平面垂直的判定及其性质》练习题1 231直线与平面垂直的判定基础练习1. 填空。
(1) 过直线外一点可作 ______条直线与该直线平行,可作 (2) 过平面外一点可作 ______ 条直线与该平面平行,可作 2. —条直线与一个平面垂直的条件旦 A.垂直于平面内的一条直线 C.垂直于平面内的无数条直线 3. 如果平面a 外的一条直线 A. a 丄a B. a Ila 4.判断题:(对的打(3)(4)(5)(6)⑺(8) 是 B.垂直于平面内的两条直线 D.垂直于平面内的两条相交直线a 与a 内两条直线垂直,那么 C. a 与a 斜交 D.以上三种均有可能 ,错的打“X”)过已知直线外一点,有且只有一条直线与已知直线平行 过已知平面外一点,有且只有一条直线与已知平面平行 过一点有且只有一条直线与已知直线垂直 过一点有且只有一条直线与已知平面垂直 过一点有且只有一个平面与已知直线垂直 过已知直线外一点,有且只有一个平面与已知直线平行。
.条直线与该直线垂直; .条直线与该平面垂直。
( ( ( ( ( ( () ) ) ) ) )巩固练习5.如图2— 36:已知PA 丄O O 所在的平面,AB 是O O 的直径, C 是异于A 、B 的O O 上任意一点,过 求证:AE 丄平面PBC 。
A 作AE 丄PC 于E ,6.图 2 — 37: BC 是 Rt △ ABC 的斜边, 连结AD ,则图中共有直角三角形 ______ AP 丄平面 ABC ,连结PB 、 个。
PC ,作PD 丄BC 于D ,C图 2-377.如图2-38 : AB是圆0的直径,C是异于A、B的圆周上的任意一点,PA垂直于圆0所在的平面,则BC和PC ______________图2-38能力提高&如图2- 39:已知ABCD是空间四边形,AB = AD , CB = CD 求证:BD丄AC9.如图2- 40: P是厶ABC 所在平面外的一点,PA丄PB, PB丄PC, PC丄PA, PH丄平面ABC , H是垂足。
第二章2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定课时分层训练‖层级一‖……………………|学业水平达标|1.直线l与平面α内的两条直线都垂直,则直线l与平面α的位置关系是()A.平行B.垂直C.在平面α内D.无法确定解析:选D当平面α内的两条直线相交时,直线l⊥平面α,即l与α相交,当面α内的两直线平行时,l⊂α或l∥α或l与α斜交.2.下列说法中正确的个数是()①若直线l与平面α内的一条直线垂直,则l⊥α;②若直线l与平面α内的两条相交直线垂直,则l⊥α;③若直线l与平面α内的任意一条直线垂直,则l⊥α.A.3 B.2C.1 D.0解析:选B对于①不能断定该直线与平面垂直,该直线与平面可能平行,也可能斜交,也可能在平面内,所以是错误的,②③是正确的.3.如图所示,如果MC⊥菱形ABCD所在平面,那么MA与BD的位置关系是()A.平行B.垂直相交C.垂直但不相交D.相交但不垂直解析:选C连接AC,因为ABCD是菱形,所以BD⊥AC.又MC⊥平面ABCD,则BD⊥MC.因为AC∩MC=C,所以BD⊥平面AMC.又MA⊂平面AMC,所以MA⊥BD.显然直线MA与直线BD不共面,因此直线MA与BD的位置关系是垂直但不相交.4.在△ABC中,AB=AC=5,BC=6,P A⊥平面ABC,P A=8,则P到BC 的距离是()A. 5 B.2 5C.3 5 D.4 5解析:选D取BC中点为D,连接AD.∵AB=AC=5,BC=6.∴AD⊥BC,AD=4,∵P A⊥平面ABC,∴P A⊥BC.AD∩BC=D,∴BC⊥平面P AD,∴BC⊥PD,∴PD的长即为P到BC的距离,P A=8,AD=4,∴PD=82+42=4 5.5.正方体ABCD-A1B1C1D1中,BB1与平面ACD1所成的角的余弦值为()A.23 B.33C.23 D.63解析:选D如图,设正方体的棱长为1,上、下底面的中心分别为O1,O,则OO1∥BB1,O1O与平面ACD1所成的角就是BB1与平面ACD1所成的角,即∠O1OD1,cos∠O1OD1=|O1O||OD1|=132=63.6.在三棱锥V-ABC中,当三条侧棱VA,VB,VC之间满足条件________时,有VC⊥AB.(注:填上你认为正确的一种条件即可)解析:只要VC⊥平面VAB,即有VC⊥AB;故只要VC⊥VA,VC⊥VB即可.答案:VC⊥VA,VC⊥VB(答案不唯一,只要能保证VC⊥AB即可)7.如图,∠BCA=90°,PC⊥平面ABC,则在△ABC,△P AC的边所在的直线中:(1)与PC垂直的直线有______________________;(2)与AP垂直的直线有______________________.解析:(1)∵PC⊥平面ABC,AB,AC,BC⊂平面ABC.∴PC⊥AB,PC⊥AC,PC⊥BC.(2)∠BCA=90°即BC⊥AC,又BC⊥PC,AC∩PC=C,∴BC⊥平面P AC,∴BC⊥AP.答案:(1)AB,AC,BC(2)BC8.正方体ABCD-A1B1C1D1中,面对角线A1B与对角面BB1D1D所成的角为________.解析:连接A1C1,交B1D1于E,则A1C1⊥B1D1,即A1E⊥B1D1.又DD1⊥A1C1,即DD1⊥A1E,∴A1E⊥平面BB1D1D.连接BE,则∠A1BE是A1B与对角面BB1D1D所成的角.在Rt△A1BE中,∵A1E=12A1B,∴∠A1BE=30°,即A1B与对角面BB1D1D所成的角为30°.答案:30°9.如图所示,在直角△BMC中,∠BCM=90°,∠MBC=60°,BM=5,MA=3且MA⊥AC,AB=4,求MC与平面ABC所成角的正弦值.解:因为BM=5,MA=3,AB=4,所以AB2+AM2=BM2,所以MA⊥AB.又因为MA⊥AC,AB,AC⊂平面ABC,且AB∩AC=A,所以MA⊥平面ABC,所以∠MCA即为MC与平面ABC所成的角.又因为∠MBC=60°,所以MC=53 2,所以sin∠MCA=MAMC=3532=235.10.如图所示,在锥体P-ABCD中,ABCD是菱形,且∠DAB=60°,P A=PD,E,F分别是BC,PC的中点.证明:AD⊥平面DEF.证明:取AD的中点G,连接PG,BG.∵P A=PD,∴AD⊥PG.设菱形ABCD边长为1.在△ABG中,∵∠GAB=60°,AG=12,AB=1,∴∠AGB=90°,即AD⊥GB.又PG∩GB=G,∴AD⊥平面PGB,从而AD⊥PB.∵E,F分别是BC,PC的中点,∴EF∥PB,从而AD⊥EF.又DE∥GB,AD⊥GB,∴AD⊥DE,∵DE∩EF=E,∴AD⊥平面DEF.‖层级二‖………………|应试能力达标|1.在正方体ABCD-A1B1C1D1中,与AD1垂直的平面是()A.平面DD1C1C B.平面A1DB1C.平面A1B1C1D1D.平面A1DB答案:B2.下面四个命题:①过一点和一条直线垂直的直线有且只有一条;②过一点和一个平面垂直的直线有且只有一条;③过一点和一条直线垂直的平面有且只有一个;④过一点和一个平面垂直的平面有且只有一个.其中正确的是()A.①④B.②③C.①②D.③④解析:选B过一点和一条直线垂直的直线有无数条,故①不正确;过一点和一个平面垂直的平面有无数个,故④不正确;易知②③均正确.故选B.3.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是() A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥mD.若l∥α,m∥α,则l∥m解析:选B根据两条平行线中的一条直线垂直于一个平面,则另一条直线也垂直于这个平面,知选项B正确.4.如图,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是()A.AC⊥SBB.AB∥平面SCDC.SA与平面SBD所成的角等于SC与平面SBD所成的角D.AB与SC所成的角等于DC与SA所成的角解析:选D选项A正确,∵SD⊥底面ABCD,AC⊂平面ABCD,∴AC⊥SD,又由ABCD为正方形,∴AC⊥BD,又BD∩SD=D,∴AC⊥平面SBD⇒AC⊥SB;选项B正确,∵AB∥CD,CD⊂平面SCD,AB⊄SCD,∴AB∥平面SCD;选项C正确,设AC∩BD=O,连接SO,则SA与平面SBD所成的角就是∠ASO,SC与平面SBD所成的角就是∠CSO,易知这两个角相等;选项D错误,AB与SC所成的角等于∠SCD,面DC与SA所成的角是∠SAB,这两个角不相等.5.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E是AD的中点,F是BB1的中点,则直线EF与平面ABCD所成角的正切值为________.解析:连接EB,由BB1⊥平面ABCD,知∠FEB即直线EF与平面ABCD所成的角.在Rt△FBE中,BF=1,BE=5,则tan ∠FEB=55.答案:5 56.如图所示,在正方体ABCD-A1B1C1D1中,M,N分别是棱AA1和AB上的点,若∠B1MN是直角,则∠C1MN=________.解析:∵B1C1⊥平面ABB1A1,MN⊂平面ABB1A1,∴B1C1⊥MN.又∵MN⊥B1M,B1M∩B1C1=B1,∴MN⊥平面C1B1M,∴MN⊥C1M,即∠C1MN=90°.答案:90°7.如图所示,将平面四边形ABCD沿对角线AC折成空间四边形,当平面四边形ABCD满足________时,空间四边形中的两条对角线互相垂直.(填上你认为正确的一种条件即可,不必考虑所有可能情况)解析:在平面四边形中,设AC与BD交于E,假设AC⊥BD,则AC⊥DE,AC⊥BE.折叠后,AC与DE,AC与BE依然垂直,所以AC⊥平面BDE,所以AC⊥BD.若四边形ABCD为菱形或正方形,因为它们的对角线互相垂直,同上可证AC ⊥BD.答案:AC⊥BD(或四边形ABCD为菱形、正方形等)8.如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1.(1)求证:AB1⊥平面A1BC1;(2)若D为B1C1的中点,求AD与平面A1B1C1所成角的正弦值.解:(1)证明:由题意知四边形AA1B1B是正方形,∴AB1⊥BA1.由AA1⊥平面A1B1C1得AA1⊥A1C1.又∵A1C1⊥A1B1,AA1∩A1B1=A1,∴A1C1⊥平面AA1B1B,又∵AB1⊂平面AA1B1B,∴A1C1⊥AB1.又∵BA1∩A1C1=A1,∴AB1⊥平面A1BC1.(2)连接A1D.设AB=AC=AA1=1,∵AA1⊥平面A1B1C1,∴∠A1DA是AD与平面A1B1C1所成的角.在等腰直角三角形A1B1C1中,D为斜边的中点,∴A1D=12×B1C1=22.在Rt △A 1DA 中,AD =A 1D 2+A 1A 2=62.∴sin ∠A 1DA =A 1A AD =63,即AD 与平面A 1B 1C 1所成角的正弦值为63.。
空间直线、平面的垂直同步题一.选择题(共15小题)1.三棱锥P﹣ABC的三个侧面两两垂直,则顶点P在底面ABC的射影为△ABC的()A.内心B.外心C.重心D.垂心2.设m,n是两条不同的直线,α,β是两个不同的平面,下列条件中能推出m⊥n的是()A.m⊥α,n∥β,α⊥βB.m⊥α,n⊥β,α∥βC.m⊂α,n⊥β,α∥βD.m⊂α,n∥β,α⊥β3.如图是一几何体的平面展开图,其中四边形ABCD为矩形,E,F分别为P A,PD的中点,在此几何体中,给出下面4个结论:①直线BE与直线CF异面;②直线BE与直线AF异面;③直线EF∥平面PBC;④平面BCE⊥平面P AD.其中正确的结论个数为()A.4个B.3个C.2个D.1个4.已知在矩形ABCD中,AB=2BC=4,E为AB的中点,沿着DE将△ADE翻折到△PDE,使平面PDE ⊥平面EBCD,则PC的长为()A.2B.2C.4D.65.在如图,在以下四个正方体中,直线AB与平面CDE垂直的有()A.1个B.2个C.3个D.4个6.在长方体ABCD﹣A1B1C1D1中,,E为棱CD的中点,则()A.A1E⊥DD1B.A1E⊥DB C.A1E⊥D1C1D.A1E⊥DB17.如图,四棱锥S﹣ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是()A.AC⊥SB B.AD⊥SCC.平面SAC⊥平面SBD D.BD⊥SA8.如图,正方体ABCD﹣A1B1C1D1的棱长为2,点O为底面ABCD的中心,点P在侧面BB1C1C的边界及其内部运动.若D1O⊥OP,则△D1C1P面积的最大值为()A.B.C.D.9.三棱锥V﹣ABC中,侧面VBC⊥底面ABC,∠ABC=45°,VA=VB,AC=AB.则()A.AC⊥BC B.VB⊥AC C.VA⊥BC D.VC⊥AB10.如图,P A垂直于以AB为直径的圆所在平面,C为圆上异于A,B的任意一点,AE⊥PC垂足为E,点F是PB上一点,则下列判断中不正确的是()A.BC⊥平面P AC B.AE⊥EF C.AC⊥PB D.平面AEF⊥平面PBC11.在三棱锥A﹣BCD中,若AD⊥BC,AD⊥BD,那么必有()A.平面ADC⊥平面BCD B.平面ABC⊥平面BCDC.平面ABD⊥平面ADC D.平面ABD⊥平面ABC12.在正四面体ABCD中,已知E,F分别是AB,CD上的点(不含端点),则()A.不存在E,F,使得EF⊥CDB.存在E,使得DE⊥CDC.存在E,使得DE⊥平面ABCD.存在E,F,使得平面CDE⊥平面ABF13.已知AB是圆柱上底面的一条直径,C是上底面圆周上异于A,B的一点,D为下底面圆周上一点,且AD⊥圆柱的底面,则必有()A.平面ABC⊥平面BCD B.平面BCD⊥平面ACDC.平面ABD⊥平面ACD D.平面BCD⊥平面ABD14.如图1,已知P ABC是直角梯形,AB∥PC,AB⊥BC,D在线段PC上,AD⊥PC.将△P AD沿AD折起,使平面P AD⊥平面ABCD,连接PB,PC,设PB的中点为N,如图2.对于图2,下列选项错误的是()A.平面P AB⊥平面PBC B.BC⊥平面PDCC.PD⊥AC D.PB=2AN15.四面体ABCD中,AB=CD=3,其余棱长均为4,E、F分别为AB、CD上的点(不含端点),则()A.不存在E,使得EF⊥CDB.存在E,使得DE⊥CDC.存在E,使得DE⊥平面ABCD.存在E,F,使得平面CDE⊥平面ABF二.填空题(共10小题)16.平行四边形ABCD中,AB>AD,将三角形ABD沿着BD翻折至三角形A'BD,则下列直线中有可能与直线A'B垂直的是(填所有符合条件的序号).①直线BC;②直线CD;③直线BD;④直线A'C.17.如图,平面ABC⊥平面α,平面ABC∩平面α=AB,∠ACB=,AC=1,AB=2,D为线段AB的中点.现将△ACD绕CD旋转至△A′CD,设直线A′C∩平面α=P,则在旋转过程中,下列说法正确的是(1)三棱锥A′﹣BCD的体积有最大值;(2)点P的轨迹为椭圆;(3)直线CB与平面CDP所成角的最大值为30°;(4)若二面角P﹣CD﹣B的平面角为α,则∠PDB≥α.18.在四棱锥S﹣ABCD中,底面四边形ABCD为矩形,SA⊥平面ABCD,P,Q别是线段BS,AD的中点,点R在线段SD上.若AS=4,AD=2,AR⊥PQ,则AR=.19.在《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑.如图,在鳖臑P﹣ABC中,P A⊥平面ABC,AB⊥BC,且AP=AC=1,过点A分别作AE⊥PB于点E,AF⊥PC于点F,连结EF,当△AEF的面积最大时,tan∠BPC=.20.如图所示的平行六面体ABCD﹣A1B1C1D1中,已知AB=AA1=AD,∠BAD=∠DAA1=60°,∠BAA1=30°,N为AA1D1上一点,且A1N=λA1D1.若BD⊥AN,则λ的值为;若M为棱DD1的中点,BM∥平面AB1N,则λ的值为.21.已知平面α,β和直线m,给出条件:①m∥α;②m⊥α:③m⊂α;④α∥β;⑤α⊥β.当满足条件时,m⊥β.22.已知四边长均为2的空间四边形ABCD的顶点都在同一个球面上,若∠BAD=,平面ABD⊥平面CBD,则该球的体积为.23.在三棱锥P﹣ABC中,AB=AC=4,∠BAC=120°,PB=PC=4,平面PBC⊥平面ABC,则三棱锥P﹣ABC外接球的表面积为.24.已知P,A,B,C,D是球O的球面上的五个点,四边形ABCD为梯形,AD∥BC,AB=DC=AD=2,BC=4,△P AD为等边三角形且平面P AD⊥平面ABCD,则球O的表面积为.25.如图所示,在四棱锥P﹣ABCD中,底面ABCD是菱形,侧面P AD是等边三角形,且平面P AD⊥平面ABCD,E为棱PC上一点,若平面EBD⊥平面ABCD,则=.三.解答题(共5小题)26.如图,在四棱锥P﹣ABCD中,已知P A⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD =,AD=2,AB=BC=1.(1)当四棱锥P﹣ABCD的体积为1时,求异面直线AC与PD所成角的大小;(2)求证:CD⊥平面P AC.27.如图,在四棱锥P﹣ABCD中,AD∥BC,AD⊥AB,并且BC=2AD=2AB,点P在平面ABCD内的投影恰为BD的中点M.(Ⅰ)证明:CD⊥平面PBD;(Ⅱ)若PM=AD,求直线P A与CD所成角的余弦值.28.已知正方体ABCD﹣A1B1C1D1中,O为AC与BD的交点,G为CC1的中点,求证:A1O⊥平面GBD.29.如图,在矩形ABCD中,将△ACD沿对角线AC折起,使点D到达点E的位置,且AE⊥BE.(1)求证:平面ABE⊥平面ABC;(2)若BC=3,三棱锥B﹣AEC的体积为,求点E到平面ABC的距离.30.如图所示,在三棱锥A﹣BCD中,AB=BC=BD=2,AD=2,∠CBA=∠CBD=,点E,F分别为AD,BD的中点.(Ⅰ)求证:平面ACD⊥平面BCE;(Ⅱ)求四面体CDEF的体积.人教A版(2019)必修第二册《8.6 空间直线、平面的垂直》2022年最热同步卷参考答案与试题解析一.选择题(共15小题)1.三棱锥P﹣ABC的三个侧面两两垂直,则顶点P在底面ABC的射影为△ABC的()A.内心B.外心C.重心D.垂心【分析】三个侧面两两垂直,可得三条侧棱两两垂直,根据线面垂直、线线垂直的转化,可得结论.【解答】解:由三棱锥P﹣ABC的三个侧面两两垂直,可得三条侧棱两两垂直,由P A⊥PB,P A⊥PC,PB、PC⊂平面PBC,PB∩PC=P,∴P A⊥平面PBC,又BC⊂平面PBC.∴P A⊥BC.设点P在底面ABC的射影是O,则PO⊥平面ABC,∵BC⊂平面ABC,∴PO⊥BC.又P A、PO为平面P AO内两条相交直线,∴BC⊥平面P AO,AO在平面P AO内,则BC⊥OA;同理可证AB⊥OC,AC⊥OB,故O为△ABC的垂心.故选:D.【点评】本题主要考查了平面与平面垂直的性质,线面垂直、线线垂直的判定,以及棱锥的结构特征,属于中档题.2.设m,n是两条不同的直线,α,β是两个不同的平面,下列条件中能推出m⊥n的是()A.m⊥α,n∥β,α⊥βB.m⊥α,n⊥β,α∥βC.m⊂α,n⊥β,α∥βD.m⊂α,n∥β,α⊥β【分析】根据空间中线面平行或垂直的判定定理与性质定理逐一判断每个选项即可.【解答】解:对于A,m⊥α,n∥β,α⊥β,可得m与n平行,无法得出m⊥n,因此错误;对于B,m⊥α,n⊥β,α∥β,可得m∥n,因此无法得出m⊥n,因此错误;对于C,m⊂α,n⊥β,α∥β,可得n⊥α,由线面垂直的性质定理可知,可得m⊥n,因此正确;对于D,m⊂α,n∥β,α⊥β,可得m与n相交或为异面直线,无法得出m⊥n,因此错误;故选:C.【点评】本题考查了空间中线面的位置关系,熟练运用线面平行或垂直的判定定理、性质定理是解题关键,考查了学生的空间立体感和论证推理能力,属于基础题.3.如图是一几何体的平面展开图,其中四边形ABCD为矩形,E,F分别为P A,PD的中点,在此几何体中,给出下面4个结论:①直线BE与直线CF异面;②直线BE与直线AF异面;③直线EF∥平面PBC;④平面BCE⊥平面P AD.其中正确的结论个数为()A.4个B.3个C.2个D.1个【分析】几何体的展开图,复原出几何体,利用异面直线的定义判断①,②的正误;利用直线与平面平行的判定定理判断③的正误;利用直线与平面垂直的判定定理判断④的正误;【解答】解:画出几何体的图形,如图,由题意可知,①直线BE与直线CF异面,不正确,因为E,F是P A与PD的中点,可知EF∥AD,所以EF∥BC,直线BE与直线CF是共面直线;②直线BE与直线AF异面;满足异面直线的定义,正确.③直线EF∥平面PBC;由E,F是P A与PD的中点,可知EF∥AD,所以EF∥BC,∵EF⊄平面PBC,BC⊂平面PBC,所以判断是正确的.④因为△P AB与底面ABCD的关系不是垂直关系,BC与平面P AB的关系不能确定,所以平面BCE⊥平面P AD,不正确.故选:C.【点评】本题是基础题,考查空间图形中直线与直线、平面的位置关系,考查异面直线的判断,基本知识与定理的灵活运用.4.已知在矩形ABCD中,AB=2BC=4,E为AB的中点,沿着DE将△ADE翻折到△PDE,使平面PDE ⊥平面EBCD,则PC的长为()A.2B.2C.4D.6【分析】取DE的中点M,连接PM,易知PM⊥DE,由面面垂直的性质可得PM⊥平面BCDE,可得PM ⊥MC,求得PM的长和CM的长,由勾股定理可得PC的长.【解答】解:(1)如图所示,取DE的中点M,连接PM,MC,由题意知,PD=PE,∴PM⊥DE,又平面PDE⊥平面BCDE,平面PDE∩平面BCDE=DE,PM⊂平面PDE,∴PM⊥平面BCDE,即有PM⊥MC,在等腰Rt△PDE中,PE=PD=AD=2,∴PM=DE=,在三角形CDM中,可得CM2=DM2+CD2﹣2CD•MD•cos∠CDM=()2+42﹣2××4×=10,则PC===2,故选:A.【点评】本题考查空间中线与面的垂直关系,熟练运用空间中线面、面面垂直的判定定理与性质定理是解题的关键,考查逻辑推理能力和运算能力,属于中档题.5.在如图,在以下四个正方体中,直线AB与平面CDE垂直的有()A.1个B.2个C.3个D.4个【分析】对四个图,分别运用异面直线所成角的定义和线面垂直的性质定理和判定定理,即可得到结论.【解答】解:对于①,由AD∥CE,且AB与CE成45°的角,不垂直,则直线AB与平面CDE不垂直;对于②,由于AB⊥DE,AB⊥CE,由线面垂直的判定定理可得AB⊥平面CDE;对于③,AB与CE成60°的角,不垂直,则直线AB与平面CDE不垂直;对于④,连接BF,由正方形的性质可得DE⊥BF,而AF⊥平面EFDB,可得AF⊥DE,则DE⊥平面ABF,即有DE⊥AB,同理可得AB⊥CE,所以AB⊥平面CDE.综上,②④满足题意.故选:B.【点评】本题考查空间线线、线面的位置关系,主要是线面垂直的判定,考查逻辑推理能力,属于基础题.6.在长方体ABCD﹣A1B1C1D1中,,E为棱CD的中点,则()A.A1E⊥DD1B.A1E⊥DB C.A1E⊥D1C1D.A1E⊥DB1【分析】连结AE,BD,则==,△ABD∽△DAE,从而∠DAE=∠ABD,进而AE⊥BD,BD ⊥平面A1AE,由此得到A1E⊥DB.【解答】解:连结AE,BD,因为AB=,所以==,所以△ABD∽△DAE,所以∠DAE=∠ABD,所以∠EAB+∠ABD=90°,即AE⊥BD,所以BD⊥平面A1AE,所以A1E⊥DB.故选:B.【点评】本题考查线线垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.7.如图,四棱锥S﹣ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是()A.AC⊥SB B.AD⊥SCC.平面SAC⊥平面SBD D.BD⊥SA【分析】在A中,推导出AC⊥SD,AC⊥BD,从而AC⊥平面SBD,由此得到AC⊥SB;在B中,推导出AD⊥CD,AD⊥SD,从而AD⊥平面SDC,由此得到AD⊥SC;在C中,推导出AC⊥平面SBD,从而平面SAC⊥平面SBD;在D中,以D为原点,DA为x轴,DC为y轴,DS为z轴,建立空间直角坐标系,利用向量法摔倒导出BD与SA不垂直,【解答】解:由四棱锥S﹣ABCD的底面为正方形,SD⊥底面ABCD,知:在A中,∵SD⊥底面ABCD,∴AC⊥SD,∵四棱锥S﹣ABCD的底面为正方形,∴AC⊥BD,∵SD∩BD=D,∴AC⊥平面SBD,∵SB⊂平面SBD,∴AC⊥SB,故A正确;在B中,∵四棱锥S﹣ABCD的底面为正方形,SD⊥底面ABCD,∴AD⊥CD,AD⊥SD,∵SD∩CD=D,∴AD⊥平面SDC,∵SC⊂平面SCD,∴AD⊥SC,故B正确;在C中,∵SD⊥底面ABCD,∴AC⊥SD,∵四棱锥S﹣ABCD的底面为正方形,∴AC⊥BD,∵SD∩BD=D,∴AC⊥平面SBD,∵AC⊂平面SAC,∴平面SAC⊥平面SBD,故C正确;在D中,以D为原点,DA为x轴,DC为y轴,DS为z轴,建立空间直角坐标系,设AB=a,DS=b,则D(0,0,0),B(a,a,0),A(a,0,0),S(0,0,b),=(a,a,0),=(a,0,﹣b),∵=a2≠0,∴BD与SA不垂直,故D错误.故选:D.【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.8.如图,正方体ABCD﹣A1B1C1D1的棱长为2,点O为底面ABCD的中心,点P在侧面BB1C1C的边界及其内部运动.若D1O⊥OP,则△D1C1P面积的最大值为()A.B.C.D.【分析】由题意画出图形,由直线与平面垂直的判定可得P的轨迹,求出P到棱C1D1的最大值,代入三角形面积公式求解.【解答】解:如图,由正方体性质知,当P位于C点时,D1O⊥OC,当P位于BB1的中点P1时,由已知得,DD1=2,DO=BO=,BP 1=B1P1=1,,求得,OP 1=,.∴,得OD1⊥OP1.又OP1∩OC=O,∴D1O⊥平面OP1C,得到P的轨迹在线段P1C上.由C1P1=CP1=,可知∠C1CP1为锐角,而CC1=2,知P到棱C1D1的最大值为.则△D1C1P面积的最大值为.故选:C.【点评】本题考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.9.三棱锥V﹣ABC中,侧面VBC⊥底面ABC,∠ABC=45°,VA=VB,AC=AB.则()A.AC⊥BC B.VB⊥AC C.VA⊥BC D.VC⊥AB【分析】由题易知,△ABC为等腰直角三角形,且∠ACB=∠ABC=45°,即选项A错误;过点V作VO⊥BC于O,连接OA,由面面垂直的性质定理可证得VO⊥平面ABC,即V在底面ABC上的投影为点O,从而得VO⊥BC;由VA=VB和VO⊥平面ABC可推出OA=OB,∠OAB=∠OBA=45°,即OA⊥BC,结合线面垂直的判定定理得BC⊥平面VOA,从而得VA⊥BC,即选项C正确;由三垂线定理可知选项B和D均错误.【解答】解:∵∠ABC=45°,AC=AB,∴△ABC为等腰直角三角形,且∠ACB=∠ABC=45°,∴AC与BC不垂直,即选项A错误;过点V作VO⊥BC于O,连接OA,∵侧面VBC⊥底面ABC,面VBC∩面ABC=BC,∴VO⊥面ABC,即V在底面ABC上的投影为点O,∵BC⊂面ABC,∴VO⊥BC.∵VA=VB,∴OA=OB,∠OAB=∠OBA=45°,∴OA⊥BC,∵VO、OA⊂面VOA,VO∩OA=O,∴BC⊥面VOA,∵VA⊂面VOA,∴VA⊥BC,即选项C正确;由三垂线定理知,若VB⊥AC,VC⊥AB,则BC⊥AC,BC⊥AB,这与∠ACB=∠ABC=45°相矛盾,即选项B和D均错误.故选:C.【点评】本题考查空间中线面的位置关系,熟练运用线面垂直的判定定理与性质定理,以及理解三垂线定理是解题的关键,考查学生的空间立体感和逻辑推理能力,属于中档题.10.如图,P A垂直于以AB为直径的圆所在平面,C为圆上异于A,B的任意一点,AE⊥PC垂足为E,点F是PB上一点,则下列判断中不正确的是()A.BC⊥平面P AC B.AE⊥EFC.AC⊥PB D.平面AEF⊥平面PBC【分析】在A中,推导出BC⊥AC,P A⊥BC,从而BC⊥平面P AC,可得正确;在B中,由BC⊥平面P AC,可证BC⊥AE,又AE⊥PC,可证AE⊥平面PBC,即可证明AE⊥EF,可得正确;在C中,由AC⊥BC,得若AC⊥PB,则AC⊥平面PBC,与AC⊥P A矛盾,可得错误;在D中,由AE⊥平面PBC,AE⊂面AEF,即可证明平面AEF⊥平面PBC,可得正确.【解答】解:在A中,∵C为圆上异于A,B的任意一点,∴BC⊥AC,∵P A⊥BC,P A∩AC=A,∴BC⊥平面P AC,故A正确;在B中,∵BC⊥平面P AC,AE⊂平面P AC,∴BC⊥AE,∵AE⊥PC,PC∩BC=C,∴AE⊥平面PBC,∵EF⊂平面PBC,∴AE⊥EF,故B正确;在C中∴若AC⊥PB,则AC⊥平面PBC,则AC⊥PC,与AC⊥P A矛盾,故AC与PB不垂直,故C错误;在D中,∵AE⊥平面PBC,AE⊂面AEF,∴平面AEF⊥平面PBC,故D正确.故选:C.【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.11.在三棱锥A﹣BCD中,若AD⊥BC,AD⊥BD,那么必有()A.平面ADC⊥平面BCD B.平面ABC⊥平面BCDC.平面ABD⊥平面ADC D.平面ABD⊥平面ABC【分析】运用线面垂直的判定定理和面面垂直的判定定理,结合条件和三角形的性质,可得结论.【解答】解:在三棱锥A﹣BCD中,若AD⊥BC,AD⊥BD,且BC∩BD=B,可得AD⊥平面BCD,由AD⊂平面ABD,可得平面ABD⊥平面BCD,由AD⊂平面ACD,可得平面ACD⊥平面BCD,故A正确;若平面ABC⊥平面BCD,又平面ACD⊥平面BCD,AC=平面ABC∩平面ACD,可得AC⊥平面BCD,AC⊥CD,与AD⊥CD矛盾,故B错误;若平面ACD⊥平面ABD,又平面ABD⊥平面BCD,可得CD⊥平面ABD,CD⊥BD,不一定成立,故C 错误;若平面ABD⊥平面ABC,又平面ABD⊥平面BCD,可得BC⊥平面ABD,则BC⊥BD,不一定成立,故D错误.故选:A.【点评】本题考查空间面面的位置关系,考查转化思想和推理能力,属于中档题.12.在正四面体ABCD中,已知E,F分别是AB,CD上的点(不含端点),则()A.不存在E,F,使得EF⊥CDB.存在E,使得DE⊥CDC.存在E,使得DE⊥平面ABCD.存在E,F,使得平面CDE⊥平面ABF【分析】对于A,D两项:当E,F分别是AB,CD的中点时,易证EF⊥CD,且平面CDE⊥平面ABF.对于B:可利用E在AB上移动时,∠CDE的范围判断.对于C:可将D看成三棱锥的顶点,则过D做底面的垂线只有一条,即高线,从而否定C.【解答】解:(1)对于A,D选项,取E,F分别为AB,CD的中点如图:因为A﹣BCD是正四面体,所以它的各个面是全等的等边三角形.所以CE=DE,所以EF⊥CD,同理可证EF⊥AB.故A错误;又因为AB⊥CE,AB⊥DE,且CE∩DE=E,故AB⊥平面CED,又AB⊂平面ABF,所以平面ABF⊥平面CED.故D正确.(2)对于B选项,将C看成正三棱锥的顶点,易知当E在AB上移动时,∠CDE的最小值为直线CD 与平面ABD所成的角,即(1)中的∠CDE,显然为锐角,最大角为∠CDB=∠CDA=60°,故当E在AB上移动时,不存在E,使得DE⊥CD.故B错误.(3)对于C选项,将D看成顶点,则由D向底面作垂线,垂足为底面正三角形ABC的中心,不落在AB上,又因为过空间中一点有且只有一条直线与已知平面垂直,故不存在E,使得DE⊥平面ABC,故C错误.故选:D.【点评】本题考查了空间线线垂直、线面垂直以及面面垂直之间的相互转化.同时也考查了正四面体的性质,以及学生的空间想象能力以及逻辑推理能力.属于中档题.13.已知AB是圆柱上底面的一条直径,C是上底面圆周上异于A,B的一点,D为下底面圆周上一点,且AD⊥圆柱的底面,则必有()A.平面ABC⊥平面BCD B.平面BCD⊥平面ACDC.平面ABD⊥平面ACD D.平面BCD⊥平面ABD【分析】画出图形,结合直线与平面垂直的判断定理,转化证明平面与平面垂直,推出结果即可.【解答】解:因为AB是圆柱上底面的一条直径,所以AC⊥BC,又AD垂直圆柱的底面,所以AD⊥BC,因为AC∩AD=A,所以BC⊥平面ACD,因为BC⊂平面BCD,所以平面BCD⊥平面ACD.故选:B.【点评】本题考查平面与平面垂直的判断定理的应用,几何体的结构特征的应用,考查空间想象能力以及逻辑推理能力.14.如图1,已知P ABC是直角梯形,AB∥PC,AB⊥BC,D在线段PC上,AD⊥PC.将△P AD沿AD折起,使平面P AD⊥平面ABCD,连接PB,PC,设PB的中点为N,如图2.对于图2,下列选项错误的是()A.平面P AB⊥平面PBC B.BC⊥平面PDCC.PD⊥AC D.PB=2AN【分析】由已知利用平面与平面垂直的性质得到PD⊥平面ABCD,判定C正确;进一步得到平面PCD ⊥平面ABCD,结合BC⊥CD判定B正确;再证明AB⊥平面P AD,得到△P AB为直角三角形,判定D 正确;由错误的选项存在可知A错误.【解答】解:如图,图1中AD⊥PC,则图2中PD⊥AD,又∵平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,∴PD⊥平面ABCD,则PD⊥AC,故选项C正确;由PD⊥平面ABCD,PD⊂平面PDC,得平面PDC⊥平面ABCD,而平面PDC∩平面ABCD=CD,BC⊂平面ABCD,BC⊥CD,∴BC⊥平面PDC,故选项B正确;∵AB⊥AD,平面P AD⊥平面ABCD,且平面P AD∩平面ABCD=AD,∴AB⊥平面P AD,则AB⊥P A,即△P AB是以PB为斜边的直角三角形,而N为PB的中点,则PB=2AN,故选项D正确.因此错误的只能是A.故选:A.【点评】本题考查空间中直线与直线、直线与平面位置关系的判定及其应用,考查空间想象能力与思维能力,是中档题.15.四面体ABCD中,AB=CD=3,其余棱长均为4,E、F分别为AB、CD上的点(不含端点),则()A.不存在E,使得EF⊥CDB.存在E,使得DE⊥CDC.存在E,使得DE⊥平面ABCD.存在E,F,使得平面CDE⊥平面ABF【分析】若E,F分别为AB,CD的中点,由三角形的全等和等腰三角形的性质可判断A;由线面垂直的判定和性质,可判断B;由线面垂直的性质和勾股定理的逆定理可判断C;由线面垂直的判定和面面垂直的判定定理,可判断D.【解答】解:若E,F分别为AB,CD的中点,由△ABC和△ABD全等,可得CE=DE,则EF⊥CD,故A错误;由等腰三角形的性质可得AB⊥DE,AB⊥CE,则AB⊥平面CDE,可得CD⊥AB,又若CD⊥DE,则CD⊥平面ABD,即CD⊥BD,不成立,故B错误;若DE⊥平面ABC,则DE⊥AB,可得E为AB的中点,且DE⊥CE,而△CDE中,CD=3,CE=DE==,不满足CE2+DE2=CD2,故C错误;当E为AB的中点时,由等腰三角形的性质可得AB⊥DE,AB⊥CE,则AB⊥平面CDE,而AB⊂平面ABF,可得平面CDE⊥平面ABF,故D正确.故选:D.【点评】本题考查空间线线、线面和面面的位置关系,主要是垂直的判定和性质,考查运算能力和推理能力,属于基础题.二.填空题(共10小题)16.平行四边形ABCD中,AB>AD,将三角形ABD沿着BD翻折至三角形A'BD,则下列直线中有可能与直线A'B垂直的是①②(填所有符合条件的序号).①直线BC;②直线CD;③直线BD;④直线A'C.【分析】若BC⊥BD,则可能垂直,可判断①;若∠ABD>45°,∠A′BA为超过90°,故存在∠A′BA=90°,可判断②,∠A′BD,∠BA′C始终为锐角可判断③④.【解答】解:对于①,若BC⊥BD,当平面ABD⊥平面BCD时,BC⊥平面A′BD,则此时BC⊥A'B,故①成立;对于②若∠ABD>45°,则在翻折的过程中,∠A′BA为超过90°,故存在∠A′BA=90°,∵AB∥CD,∴CD⊥A'B,故②成立;对于③,在△ABD中,∵AB>AD,∴∠ABD为锐角,即∠A′BD为锐角,故直线BD不可能和直线A'B垂直,故③不成立;对于④,∵AB>AD,∴△A′BC中,A′B>BC,∴∠BA′C始终为锐角,故直线A′C不可能和直线A'B垂直,故④不成立.故答案为:①②.【点评】本题考查了线线垂直的判断,解题的关键是找到特殊情况,以及根据∠A′BD,∠BA′C始终为锐角进行判断,属于中档题.17.如图,平面ABC⊥平面α,平面ABC∩平面α=AB,∠ACB=,AC=1,AB=2,D为线段AB的中点.现将△ACD绕CD旋转至△A′CD,设直线A′C∩平面α=P,则在旋转过程中,下列说法正确的是(1)(2)(3)(1)三棱锥A′﹣BCD的体积有最大值;(2)点P的轨迹为椭圆;(3)直线CB与平面CDP所成角的最大值为30°;(4)若二面角P﹣CD﹣B的平面角为α,则∠PDB≥α.【分析】当△A′DC所在平面与平面ABC垂直时,A′到平面BCD的距离最大,故A正确;由椭圆定义判断(2)正确;由线面角的定义及∠BCD=30°判断(3)正确;由角在平面上的射影与已知角的大小关系判断(4)错误.【解答】解:由题意,△BDC的面积为定值,△ADC是边长为1的正三角形,在旋转过程中,△A′DC形状不变,当△A′DC所在平面与平面ABC垂直时,三棱锥A′﹣BCD的体积有最大值,故(1)正确;在旋转过程中,射线CA′可看作是以CD为旋转轴的圆锥的母线,平面α是所得圆锥的斜截面,则P点的轨迹为椭圆,故(2)正确;CB是平面CPD的一条斜线,当CB在平面CPD上的射影与CD重合时,直线CB与平面CDP所成角的最大值为∠BCD=30°,故(3)正确;当△ACD旋转时,首先是∠PDB>α,当旋转到满足∠CDP为钝角时,一定有∠PDB<α,故(4)错误.∴正确的结论是(1)(2)(3).故答案为:(1)(2)(3).【点评】本题考查空间中直线与平面、平面与平面位置关系的判定及应用,考查空间想象能力与思维能力,是中档题.18.在四棱锥S﹣ABCD中,底面四边形ABCD为矩形,SA⊥平面ABCD,P,Q别是线段BS,AD的中点,点R在线段SD上.若AS=4,AD=2,AR⊥PQ,则AR=.【分析】取SA的中点E,连接PE,QE.由已知证明PE⊥AR,结合已知AR⊥PQ,可得AR⊥平面PEQ,得到AR⊥EQ,进一步得到AR⊥SD,在直角三角形SAD中,由等面积法求解AR.【解答】解:取SA的中点E,连接PE,QE.∵SA⊥平面ABCD,AB⊂平面ABCD,∴SA⊥AB,而AB⊥AD,AD∩SA=A,∴AB⊥平面SAD,故PE⊥平面SAD,又AR⊂平面SAD,∴PE⊥AR.又∵AR⊥PQ,PE∩PQ=P,∴AR⊥平面PEQ,∵EQ⊂平面PEQ,∴AR⊥EQ.∵E,Q分别为SA,AD的中点,∴EQ∥SD,则AR⊥SD,在直角三角形ASD中,AS=4,AD=2,可求得.由等面积法可得.故答案为:.【点评】本题考查空间中直线与直线、直线与平面位置关系的判定及其应用,考查空间想象能力与思维能力,考查运算能力,是中档题.19.在《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑.如图,在鳖臑P﹣ABC中,P A⊥平面ABC,AB⊥BC,且AP=AC=1,过点A分别作AE⊥PB于点E,AF⊥PC于点F,连结EF,当△AEF的面积最大时,tan∠BPC=.【分析】由已知可证AE⊥平面PBC,PC⊥平面AEF,可得△AEF、△PEF均为直角三角形,由已知得AF=,从而S△AEF=AE•EF≤(AE2+EF2)=(AF)2=,当且仅当AE=EF时,取“=”,解得当AE=EF=时,△AEF的面积最大,即可求得tan∠BPC的值【解答】解:显然BC⊥平面P AB,则BC⊥AE,又PB⊥AE,则AE⊥平面PBC,于是AE⊥EF,且AE⊥PC,结合条件AF⊥PC得PC⊥平面AEF,所以△AEF、△PEF均为直角三角形,由已知得AF=,而S△AEF=AE•EF≤(AE2+EF2)=(AF)2=,当且仅当AE=EF时,取“=”,所以,当AE=EF=时,△AEF的面积最大,此时tan∠BPC===,【点评】本题主要考查了直线与平面垂直的判定,不等式的解法及应用,同时考查了空间想象能力、计算能力和逻辑推理能力,属于中档题20.如图所示的平行六面体ABCD﹣A1B1C1D1中,已知AB=AA1=AD,∠BAD=∠DAA1=60°,∠BAA1=30°,N为AA1D1上一点,且A1N=λA1D1.若BD⊥AN,则λ的值为;若M为棱DD1的中点,BM∥平面AB1N,则λ的值为.【分析】①⊥,不妨取AB=AA1=AD=1,利用•=(﹣)•(+λ)=•+λ﹣•﹣λ•=0,即可得出λ.②连接A1B,与AB1交于点E.连接A1M,交AN于点F,连接EF.BM∥平面AB1N,可得BM∥EF.根据E点为A1B的中点,可得F点为A1M的中点.延长AN交线段DD1的延长线于点P.利用平行线的性质即可得出.【解答】解:①⊥,不妨取AB=AA1=AD=1,∴•=(﹣)•(+λ)=•+λ﹣•﹣λ•=cos60°+λ﹣cos30°﹣λcos60°=﹣+λ=0.∴λ=.②连接A1B,与AB1交于点E.连接A1M,交AN于点F,连接EF.∵BM∥平面AB1N,∴BM∥EF.∵E点为A1B的中点,∴F点为A1M的中点.延长AN交线段DD1的延长线于点P.∵AA1∥DD1,A1F=FM.∴AA1=MP=2D1P.∴==2,∴=.则λ=.故答案为:﹣1,.【点评】本题考查了向量三角形法则、数量积运算性质、平行线的性质、线面平行的性质定理,考查了推理能力与计算能力,属于中档题.21.已知平面α,β和直线m,给出条件:①m∥α;②m⊥α:③m⊂α;④α∥β;⑤α⊥β.当满足条件②④时,m⊥β.【分析】由于当一条直线垂直于两个平行平面中的一个时,此直线也垂直于另一个平面,结合所给的选项可得m⊥β时,应满足的条件.【解答】解:由于当一条直线垂直于两个平行平面中的一个时,此直线也垂直于另一个平面,结合所给的选项,故由②④可推出m⊥β.即②④是m⊥β的充分条件,故当m⊥β时,应满足的条件是②④,故答案是:②④.【点评】本题主要考查直线和平面之间的位置关系,直线和平面垂直的判定方法,属于中档题.22.已知四边长均为2的空间四边形ABCD的顶点都在同一个球面上,若∠BAD=,平面ABD⊥平面CBD,则该球的体积为.【分析】根据题意画出图形,结合图形得出△ABD与△BCD均为等边三角形,求出四面体ABCD外接球的半径,再计算外接球的体积.【解答】解:如图所示,设E是△ABD的外心,F是△BCD的外心,过E,F分别作平面ABD与平面BCD的垂线OE、OF,相交于O;由空间四边形ABCD的边长为2,∠BAD=,所以△ABD与△BCD均为等边三角形;又平面ABD⊥平面CBD,所以O为四面体ABCD外接球的球心;又AE==2,OE=1,所以外接球的半径为R==;所以外接球的体积为V==×=.故答案为:.【点评】本题考查了多面体外接球体积的计算问题,也考查了数形结合的解题方法,是中档题.23.在三棱锥P﹣ABC中,AB=AC=4,∠BAC=120°,PB=PC=4,平面PBC⊥平面ABC,则三棱锥P﹣ABC外接球的表面积为80π.【分析】设△ABC的外接圆的圆心为O1,连接O1C,O1A,BC∩O1A=H,连接PH.推导出AH⊥BC,PH⊥平面ABC,设O为三棱锥P﹣ABC外接球的球心,连接OO1,OP,OC,过O作OD⊥PH,垂足为D,外接球半径R满足,由此能求出三棱锥P﹣ABC外接球的表面积.【解答】解:如图,设△ABC的外接圆的圆心为O1连接O1C,O1A,BC∩O1A=H,连接PH.由题意可得AH⊥BC,且,.因为平面PBC⊥平面ABC,且PB=PC,所以PH⊥平面ABC,且.设O为三棱锥P﹣ABC外接球的球心,连接OO1,OP,OC,过O作OD⊥PH,垂足为D,则外接球的半径R满足,即,解得OO1=2,从而R2=20,故三棱锥P﹣ABC外接球的表面积为4πR2=80π.故答案为:80π.【点评】本题考查三棱锥外接球的表面积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.24.已知P,A,B,C,D是球O的球面上的五个点,四边形ABCD为梯形,AD∥BC,AB=DC=AD=2,BC=4,△P AD为等边三角形且平面P AD⊥平面ABCD,则球O的表面积为π.【分析】通过平面垂直,结合空间几何体的位置关系,判断外接球的球心求值,求出外接球的半径即可推出结果.【解答】解:由题意可知,几何体的图形,如图:△P AD为等边三角形,F为AD的中点,底面ABCD是等腰梯形,侧面P AD是正三角形与底面ABCD垂直,所以四棱锥的外接球的球心是O,在底面ABCD的外心E的垂直直线与侧面P AD的外心G的垂直直线的交点,因为AD∥BC,AB=DC=AD=2,BC=4,△P AD为等边三角形且平面P AD⊥平面ABCD,所以E是底面ABCD的外心,半径为2,OE=GF,G是正三角形的外心,OE=,EA=2,所以外接球的半径为R==,则球O的表面积为:4π×=.故答案为:.。
§2.2直线、平面平行的判定及其性质2.2.1直线与平面平行的判定一、基础过关1.直线m∥平面α,直线n∥m,则() A.n∥αB.n与α相交C.n⊂αD.n∥α或n⊂α2.棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在的平面的位置关系是() A.平行B.相交C.平行或相交D.不相交3.已知a,b是两条相交直线,a∥α,则b与α的位置关系是() A.b∥αB.b与α相交C.b⊂αD.b∥α或b与α相交4.一条直线l上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是() A.l∥αB.l⊥αC.l与α相交但不垂直D.l∥α或l⊂α5. 如图,在长方体ABCD-A1B1C1D1的面中:(1)与直线AB平行的平面是______;(2)与直线AA1平行的平面是______;(3)与直线AD平行的平面是______.6.已知不重合的直线a,b和平面α.①若a∥α,b⊂α,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥b,b⊂α,则a∥α;④若a∥b,a∥α,则b∥α或b⊂α,其中正确命题的个数是________.7.在正方体ABCD-A1B1C1D1中,E为DD1的中点,求证:BD1∥平面AEC.8. 如图,四棱锥A—DBCE中,O为底面正方形DBCE对角线的交点,F为AE的中点.求证:AB∥平面DCF.二、能力提升9.在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE∶EB=EF∶FB=1∶3,则对角线AC和平面DEF的位置关系是()A.平行B.相交C.在内D.不能确定10.过直线l外两点,作与l平行的平面,则这样的平面() A.不存在B.只能作出一个C.能作出无数个D.以上都有可能11.过平行六面体ABCD-A1B1C1D1任意两条棱的中点作直线,其中与平面DBB1D1平行的直线共有________条.12.如图,在平行四边形ABCD中,E为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,F为线段A′C的中点.求证:BF∥平面A′DE.三、探究与拓展13. 正方形ABCD与正方形ABEF所在平面相交于AB,在AE,BD上各有一点P,Q,且AP=DQ.求证:PQ∥平面BCE.(用两种方法证明)答案1.D 2.B 3.D 4.D5.(1)平面A1C1和平面DC1(2)平面BC1和平面DC1(3)平面B1C和平面A1C1 6.17.证明如图,连接BD交AC于F,连接EF.因为F为正方形ABCD对角线的交点,所以F为AC、BD的中点.在三角形DD1B中,E、F分别为DD1、DB的中点,所以EF∥D1B.又EF⊂平面AEC,BD1⊄平面AEC,所以BD1∥平面AEC.8.证明连接OF,∵O为正方形DBCE对角线的交点,∴BO=OE,又AF=FE,∴AB∥OF,⎭⎬⎫AB⊄平面DCFOF⊂平面DCFAB∥OF⇒AB∥平面DCF.9.A10.D11.1212.证明取A′D的中点G,连接GF,GE,由条件易知FG∥CD,FG=12CD,BE∥CD,BE=12CD,所以FG∥BE,FG=BE,故四边形BEGF为平行四边形,所以BF∥EG.因为EG⊂平面A′DE,BF⊄平面A′DE,所以BF∥平面A′DE.13.证明如图所示,连接AQ并延长交BC于K,连接EK.∵KB∥AD,∴DQBQ=AQQK.∵AP=DQ,AE=BD,∴BQ=PE.∴DQBQ=APPE.∴AQQK=APPE.∴PQ∥EK.又PQ⊄平面BCE,EK⊂平面BCE,∴PQ∥平面BCE.2.1.2 空间中直线与直线之间的位置关系一、基础过关1.分别在两个平面内的两条直线间的位置关系是( )A .异面B .平行C .相交D .以上都有可能2.若AB ∥A ′B ′,AC ∥A ′C ′,则有( )A .∠BAC =∠B ′A ′C ′ B .∠BAC +∠B ′A ′C ′=180°C .∠BAC =∠B ′A ′C ′或∠BAC +∠B ′A ′C ′=180°D .∠BAC >∠B ′A ′C ′3.空间四边形的两条对角线相互垂直,顺次连接四边中点的四边形一定是 ( )A .空间四边形B .矩形C .菱形D .正方形4.“a 、b 为异面直线”是指:①a ∩b =∅,且aD \∥b ;②a ⊂面α,b ⊂面β,且a ∩b =∅;③a ⊂面α,b ⊂面β,且α∩β=∅;④a ⊂面α,b ⊄面α;⑤不存在面α,使a ⊂面α,b ⊂面α成立. 上述结论中,正确的是( )A .①④⑤B .①③④C .②④D .①⑤5.如果两条直线a 和b 没有公共点,那么a 与b 的位置关系是________. 6.已知正方体ABCD —A ′B ′C ′D ′中: (1)BC ′与CD ′所成的角为________; (2)AD 与BC ′所成的角为________.7.如图所示,四边形ABEF 和ABCD 都是直角梯形,∠BAD =∠F AB=90°,BC 綊12AD ,BE 綊12F A ,G 、H 分别为F A 、FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C 、D 、F 、E 四点是否共面?为什么?8.如图,正方体ABCD -EFGH 中,O 为侧面ADHE 的中心,求:(1)BE 与CG 所成的角; (2)FO 与BD 所成的角. 二、能力提升9.如图所示,已知三棱锥A -BCD 中,M 、N 分别为AB 、CD 的中点,则下列结论正确的是( )A .MN ≥12(AC +BD )B .MN ≤12(AC +BD )C .MN =12(AC +BD )D .MN <12(AC +BD )10.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线( )A .12对B .24对C .36对D .48对11.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB ⊥EF ;②AB 与CM 所成的角为60°; ③EF 与MN 是异面直线; ④MN ∥CD .以上结论中正确的序号为________.12.已知A 是△BCD 平面外的一点,E ,F 分别是BC ,AD 的中点,(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角. 三、探究与拓展13.已知三棱锥A —BCD 中,AB =CD ,且直线AB 与CD 成60°角,点M 、N 分别是BC 、AD 的中点,求直线AB 和MN 所成的角.答案1.D 2.C 3.B 4.D 5.平行或异面 6.(1)60° (2)45°7.(1)证明 由已知FG =GA ,FH =HD ,可得GH 綊12AD .又BC 綊12AD ,∴GH 綊BC ,∴四边形BCHG 为平行四边形.(2)解 由BE 綊12AF ,G 为F A 中点知,BE 綊FG ,∴四边形BEFG 为平行四边形,∴EF ∥BG . 由(1)知BG 綊CH ,∴EF ∥CH , ∴EF 与CH 共面.又D ∈FH ,∴C 、D 、F 、E 四点共面.8.解 (1)如图,∵CG ∥BF ,∴∠EBF (或其补角)为异面直线BE 与CG 所成的角,又△BEF 中,∠EBF =45°,所以BE 与CG 所成的角为45°.(2)连接FH ,BD ,FO ,∵HD 綊EA ,EA 綊FB , ∴HD 綊FB ,∴四边形HFBD 为平行四边形, ∴HF ∥BD ,∴∠HFO (或其补角)为异面直线FO 与BD 所成的角. 连接HA 、AF ,易得FH =HA =AF , ∴△AFH 为等边三角形,又依题意知O 为AH 中点,∴∠HFO =30°,即FO 与BD 所成的角是30°.9.D 10.B 11.①③12.(1)证明 假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A 、B 、C 、D 在同一平面内,这与A 是△BCD 平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)解 取CD 的中点G ,连接EG 、FG ,则EG ∥BD ,所以相交直线EF 与EG 所成的角,即为异面直线EF 与BD 所成的角.在Rt △EGF 中,由EG =FG =12AC ,求得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.13.解 如图,取AC 的中点P .连接PM 、PN ,则PM ∥AB ,且PM =12AB ,PN ∥CD ,且PN =12CD ,所以∠MPN 为直线AB 与CD 所成的角(或所成角的补角). 则∠MPN =60°或∠MPN =120°, 若∠MPN =60°,因为PM ∥AB ,所以∠PMN 是AB 与MN 所成的角(或所成角的补角). 又因AB =CD ,所以PM =PN ,则△PMN 是等边三角形, 所以∠PMN =60°,即AB 与MN 所成的角为60°.若∠MPN =120°,则易知△PMN 是等腰三角形.所以∠PMN =30°, 即AB 与MN 所成的角为30°.故直线AB 和MN 所成的角为60°或30°.2.1.3空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系一、基础过关1.已知直线a∥平面α,直线b⊂α,则a与b的位置关系是() A.相交B.平行C.异面D.平行或异面2.直线l与平面α不平行,则() A.l与α相交B.l⊂αC.l与α相交或l⊂αD.以上结论都不对3.如果直线a∥平面α,那么直线a与平面α内的() A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交4.如果平面α外有两点A、B,它们到平面α的距离都是a,则直线AB和平面α的位置关系一定是() A.平行B.相交C.平行或相交D.AB⊂α5.直线a⊂平面α,直线b⊄平面α,则a,b的位置关系是________.6.若a、b是两条异面直线,且a∥平面α,则b与α的位置关系是________.7.平面α内有无数条直线与平面β平行,那么α∥β是否正确?说明理由.8. 如图,直线a∥平面α,a⊂β,α∩β=b,求证:a∥b.二、能力提升9.下列命题正确的是() A.若直线a在平面α外,则直线a∥αB.若直线a与平面α有公共点,则a与α相交C.若平面α内存在直线与平面β无交点,则α∥βD.若平面α内的任意直线与平面β均无交点,则α∥β10.教室内有一根直尺,无论怎样放置,在地面上总有这样的直线与直尺所在的直线() A.异面B.相交C.平行D.垂直11.若不在同一条直线上的三点A、B、C到平面α的距离相等,且A、B、CD/∈α,则面ABC 与面α的位置关系为________.12. 如图,平面α、β、γ满足α∥β,α∩γ=a,β∩γ=b,判断a与b、a与β的关系并证明你的结论.三、探究与拓展13.正方体ABCD—A1B1C1D1中,点Q是棱DD1上的动点,判断过A、Q、B1三点的截面图形的形状.答案1.D2.C3.D4.C5.平行、相交或异面6.b⊂α,b∥α或b与α相交7.解不正确.如图,设α∩β=l,则在α内与l平行的直线可以有无数条,如a1,a2,…,a n,它们是一组平行线,这时a1,a2,…,a n与平面β平行,但此时α与β不平行,α∩β=l.8.证明∵直线a∥平面α,∴直线a与平面α无公共点.∵α∩β=b,∴b⊂α,b⊂β.∴直线a与b无公共点.∵a⊂β,∴a∥b.9.D10.D11.平行或相交12.解由α∩γ=a知a⊂α且a⊂γ,由β∩γ=b知b⊂β且b⊂γ,∵α∥β,a⊂α,b⊂β,∴a、b无公共点.又∵a⊂γ且b⊂γ,∴a∥b.∵α∥β,∴α与β无公共点,又a⊂α,∴a与β无公共点,∴a∥β.13.解由点Q在线段DD1上移动,当点Q与点D1重合时,截面图形为等边三角形AB1D1,如图(1)所示;当点Q与点D重合时,截面图形为矩形AB1C1D,如图(2)所示;图(1)图(2)当点Q不与点D,D1重合时,截面图形为等腰梯形AQRB1,如图(3)所示.图(3)2.2.2平面与平面平行的判定一、基础过关1.直线l∥平面α,直线m∥平面α,直线l与m相交于点P,且l与m确定的平面为β,则α与β的位置关系是() A.相交B.平行C.异面D.不确定2.平面α与平面β平行的条件可以是() A.α内的一条直线与β平行B.α内的两条直线与β平行C.α内的无数条直线与β平行D.α内的两条相交直线分别与β平行3.给出下列结论,正确的有()①平行于同一条直线的两个平面平行;②平行于同一平面的两个平面平行;③过平面外两点,不能作一个平面与已知平面平行;④若a,b为异面直线,则过a与b平行的平面只有一个.A.1个B.2个C.3个D.4个4.若正n边形的两条对角线分别与面α平行,则这个正n边形所在的平面一定平行于平面α,那么n的取值可能是() A.12 B.8 C.6 D.55.已知平面α、β和直线a、b、c,且a∥b∥c,a⊂α,b、c⊂β,则α与β的关系是________.6.有下列几个命题:①平面α内有无数个点到平面β的距离相等,则α∥β;②α∩γ=a,α∩β=b,且a∥b(α,β,γ分别表示平面,a,b表示直线),则γ∥β;③平面α内一个三角形三边分别平行于平面β内的一个三角形的三条边,则α∥β;④平面α内的一个平行四边形的两边与平面β内的一个平行四边形的两边对应平行,则α∥β.其中正确的有________.(填序号)7.如图所示,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF,求证:AE∥平面DCF.8. 在长方体ABCD—A1B1C1D1中,E、F、E1、F1分别是AB、CD、A1B1、C1D1的中点.求证:平面A1EFD1∥平面BCF1E1.二、能力提升9.α、β是两个不重合的平面,a、b是两条不同的直线,在下列条件下,可判定α∥β的是() A.α,β都平行于直线a、bB.α内有三个不共线的点到β的距离相等C.a,b是α内两条直线,且a∥β,b∥βD.a、b是两条异面直线,且a∥α,b∥α,a∥β,b∥β10. 正方体EFGH—E1F1G1H1中,下列四对截面中,彼此平行的一对截面是()A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1H与平面FHE1D.平面E1HG1与平面EH1G11. 如图所示,在正方体ABCD—A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、CD的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足________时,有MN∥平面B1BDD1.12.已知在正方体ABCD—A1B1C1D1中,M、E、F、N分别是A1B1、B1C1、C1D1、D1A1的中点.求证:(1)E、F、D、B四点共面;(2)平面AMN∥平面EFDB.三、探究与拓展13.如图所示,B为△ACD所在平面外一点,M、N、G分别为△ABC、△ABD、△BCD的重心.(1)求证:平面MNG∥平面ACD;(2)求S△MNG∶S△ADC.答案1.B 2.D 3.B 4.D 5.相交或平行 6.③7.证明 由于AB ∥CD ,BE ∥CF ,故平面ABE ∥平面DCF .而直线AE 在平面ABE 内,根据线面平行的定义,知AE ∥平面DCF . 8.证明 ∵E 、E 1分别是AB 、A 1B 1的中点,∴A 1E 1∥BE 且A 1E 1=BE .∴四边形A 1EBE 1为平行四边形. ∴A 1E ∥BE 1.∵A 1E ⊄平面BCF 1E 1, BE 1⊂平面BCF 1E 1. ∴A 1E ∥平面BCF 1E 1. 同理A 1D 1∥平面BCF 1E 1, A 1E ∩A 1D 1=A 1,∴平面A 1EFD 1∥平面BCF 1E 1. 9.D 10.A 11.M ∈线段FH12.证明 (1)∵E 、F 分别是B 1C 1、C 1D 1的中点,∴EF 綊12B 1D 1,∵DD 1綊BB 1,∴四边形D 1B 1BD 是平行四边形, ∴D 1B 1∥BD . ∴EF ∥BD ,即EF 、BD 确定一个平面,故E 、F 、D 、B 四点共面. (2)∵M 、N 分别是A 1B 1、A 1D 1的中点, ∴MN ∥D 1B 1∥EF . 又MN ⊄平面EFDB , EF ⊂平面EFDB . ∴MN ∥平面EFDB .连接NE ,则NE 綊A 1B 1綊AB . ∴四边形NEBA 是平行四边形.∴AN ∥BE .又AN ⊄平面EFDB ,BE ⊂平面EFDB .∴AN ∥平面EFDB . ∵AN 、MN 都在平面AMN 内,且AN ∩MN =N , ∴平面AMN ∥平面EFDB .13.(1)证明 连接BM 、BN 、BG 并延长交AC 、AD 、CD 分别于P 、F 、H .∵M 、N 、G 分别为△ABC 、△ABD 、△BCD 的重心,则有BM MP =BN NF =BGGH =2.连接PF 、FH 、PH ,有MN ∥PF . 又PF ⊂平面ACD ,MN ⊄平面ACD , ∴MN ∥平面ACD .同理MG ∥平面ACD ,MG ∩MN =M , ∴平面MNG ∥平面ACD .(2)解 由(1)可知MG PH =BG BH =23,∴MG =23PH .又PH =12AD ,∴MG =13AD .同理NG =13AC ,MN =13CD .∴△MNG ∽△DCA ,其相似比为1∶3, ∴S △MNG ∶S △ADC =1∶9.2.2.3 直线与平面平行的性质一、基础过关1.a ,b 是两条异面直线,P 是空间一点,过P 作平面与a ,b 都平行,这样的平面( ) A .只有一个 B .至多有两个 C .不一定有D .有无数个2. 如图,在四面体ABCD 中,若截面PQMN 是正方形,则在下列命题中,错误的为( )A .AC ⊥BDB .AC ∥截面PQMNC .AC =BDD .异面直线PM 与BD 所成的角为45°3. 如图所示,长方体ABCD -A 1B 1C 1D 1中,E 、F 分别是棱AA 1和BB 1的中点,过EF 的平面EFGH 分别交BC 和AD 于G 、H ,则HG 与AB 的位置关系是( )A .平行B .相交C .异面D .平行和异面4.直线a ∥平面α,α内有n 条直线交于一点,则这n 条直线中与直线a 平行的直线( ) A .至少有一条 B .至多有一条 C .有且只有一条D .没有5.设m 、n 是平面α外的两条直线,给出三个论断:①m ∥n ;②m ∥α;③n ∥α.以其中的两个为条件,余下的一个为结论,构造三个命题,写出你认为正确的一个命题:______________.(用序号表示)6. 如图所示,ABCD —A 1B 1C 1D 1是棱长为a 的正方体,M 、N 分别是下底面的棱A 1B 1、B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a3,过P ,M ,N 的平面交上底面于PQ ,Q 在CD 上,则PQ =________.7. ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH ,求证:AP ∥GH .8. 如图所示,三棱锥A —BCD 被一平面所截,截面为平行四边形EFGH .求证:CD∥平面EFGH.二、能力提升9.如图所示,平面α∩β=l1,α∩γ=l2,β∩γ=l3,l1∥l2,下列说法正确的是()A.l1平行于l3,且l2平行于l3B.l1平行于l3,且l2不平行于l3C.l1不平行于l3,且l2不平行于l3D.l1不平行于l3,但l2平行于l310.如图所示,已知A、B、C、D四点不共面,且AB∥平面α,CD∥α,AC∩α=E,AD∩α=F,BD∩α=H,BC∩α=G,则四边形EFHG的形状是________.10题图11题图11.如图所示,在空间四边形ABCD中,E、F、G、H分别是四边上的点,它们共面,并且AC∥平面EFGH,BD∥平面EFGH,AC=m,BD=n,当四边形EFGH是菱形时,AE∶EB =________.12. 如图所示,P为平行四边形ABCD所在平面外一点,M、N分别为AB、PC的中点,平面P AD∩平面PBC=l.(1)求证:BC∥l;(2)MN与平面P AD是否平行?试证明你的结论.三、探究与拓展13.如图所示,三棱柱ABC—A1B1C1,D是BC上一点,且A1B∥平面AC1D,D1是B1C1的中点,求证:平面A1BD1∥平面AC1D.答案1.C 2.C 3.A 4.B5.①②⇒③(或①③⇒②) 6.223a7.证明 如图所示,连接AC 交BD 于O ,连接MO ,∵ABCD 是平行四边形,ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH ,求证:AP ∥GH .∴O 是AC 中点,又M 是PC 的中点, ∴AP ∥OM .根据直线和平面平行的判定定理, 则有P A ∥平面BMD .∵平面P AHG ∩平面BMD =GH , 根据直线和平面平行的性质定理, 则有AP ∥GH .8.证明 ∵四边形EFGH 为平行四边形, ∴EF ∥GH .又GH ⊂平面BCD ,EF ⊄平面BCD . ∴EF ∥平面BCD .而平面ACD ∩平面BCD =CD ,EF ⊂平面ACD ,∴EF ∥CD . 而EF ⊂平面EFGH ,CD ⊄平面EFGH , ∴CD ∥平面EFGH . 9.A 10.平行四边形 11.m ∶n12.(1)证明 因为BC ∥AD ,AD ⊂平面P AD ,BC ⊄平面P AD ,所以BC ∥平面P AD .又平面P AD ∩平面PBC =l ,BC ⊂平面PBC ,所以BC ∥l . (2)解 MN ∥平面P AD . 证明如下:如图所示,取PD 中点E . 连接EN 、AE .又∵N 为PC 中点,∴EN 綊12AB∴EN綊AM,∴四边形ENMA为平行四边形,∴AE∥MN.又∵AE⊂平面P AD,MN⊄平面P AD,∴MN∥平面P AD.13.证明连接A 1C交AC1于点E,∵四边形A1ACC1是平行四边形,∴E是A1C的中点,连接ED,∵A1B∥平面AC1D,平面A1BC∩平面AC1D=ED,∴A1B∥ED,∵E是A1C的中点,∴D是BC的中点.又∵D1是B1C1的中点,∴BD1∥C1D,又∵C1D⊂平面AC1D,BD1⊄平面AC1D,∴BD1∥平面AC1D,又A1B∩BD1=B,∴平面A1BD1∥平面AC1D.2.2.4 平面与平面平行的性质一、基础过关1.已知平面α∥平面β,过平面α内的一条直线a 的平面γ,与平面β相交,交线为直线b ,则a 、b 的位置关系是( ) A .平行B .相交C .异面D .不确定2.已知a 、b 表示直线,α、β表示平面,下列推理正确的是( )A .α∩β=a ,b ⊂α⇒a ∥bB .α∩β=a ,a ∥b ⇒b ∥α且b ∥βC .a ∥β,b ∥β,a ⊂α,b ⊂α⇒α∥βD .α∥β,α∩γ=a ,β∩γ=b ⇒a ∥b3. 如图所示,P 是三角形ABC 所在平面外一点,平面α∥平面ABC ,α分别交线段P A 、PB 、PC 于A ′、B ′、C ′,若P A ′∶AA ′=2∶3,则S △A ′B ′C ′∶S △ABC 等于( )A .2∶25B .4∶25C .2∶5D .4∶54.α,β,γ为三个不重合的平面,a ,b ,c 为三条不同的直线,则有下列命题,不正确的是( )①⎭⎪⎬⎪⎫a ∥c b ∥c ⇒a ∥b; ② ⎭⎪⎬⎪⎫a ∥γb ∥γ⇒a ∥b ; ③⎭⎪⎬⎪⎫α∥c β∥c ⇒α∥β; ④ ⎭⎪⎬⎪⎫α∥γβ∥γ⇒α∥β;⑤⎭⎪⎬⎪⎫α∥c a ∥c ⇒α∥a; ⑥⎭⎪⎬⎪⎫α∥γa ∥γ⇒a ∥α. A .④⑥ B .②③⑥ C .②③⑤⑥ D .②③5.分别在两个平行平面的两个三角形.(填“相似”“全等”) (1)若对应顶点的连线共点,那么这两个三角形具有______关系; (2)若对应顶点的连线互相平行,那么这两个三角形具有________关系.6.已知平面α∥β∥γ,两条直线l 、m 分别与平面α、β、γ相交于点A 、B 、C 与D 、E 、F .已知AB =6,DE DF =25,则AC =______.7.如图,在三棱柱ABC -A 1B 1C 1中,M 是A 1C 1的中点,平面AB 1M ∥平面BC 1N ,AC ∩平面BC 1N =N .求证:N 为AC 的中点.8. 如图所示,在底面是平行四边形的四棱锥P -ABCD 中,点E 在PD 上,且PE ∶ED =2∶1,在棱PC 上是否存在一点F ,使BF ∥平面AEC ?并证明你的结论.二、能力提升9.设α∥β,A ∈α,B ∈β,C 是AB 的中点,当A 、B 分别在平面α、β内运动时,得到无数个AB 的中点C ,那么所有的动点C( )A .不共面B .当且仅当A 、B 分别在两条直线上移动时才共面C .当且仅当A 、B 分别在两条给定的异面直线上移动时才共面D .不论A 、B 如何移动,都共面10.已知平面α∥平面β,P 是α,β外一点,过点P 的直线m 与α,β分别交于点A ,C ,过点P 的直线n 与α,β分别交于点B ,D ,且P A =6,AC =9,PD =8,则BD 的长为( )A .16B .24或245 C .14 D .2011.对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使α、β都平行于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l ,m ,使得l ∥α,l ∥β,m ∥α,m ∥β.其中可以判断两个平面α与β平行的条件有________个.12. 如图所示,平面α∥平面β,△ABC 、△A ′B ′C ′分别在α、β内,线段AA ′、BB ′、CC ′共点于O ,O 在α、β之间,若AB =2,AC =1,∠BAC =90°,OA ∶OA ′=3∶2. 求△A ′B ′C ′的面积.三、探究与拓展13.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,A1B1的中点是P,过点A1作与截面PBC1平行的截面,能否确定截面的形状?如果能,求出截面的面积.§2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定一、基础过关1.已知直线a∥b,平面α∥β,a⊥α,则b与β的位置关系是() A.b⊥βB.b∥βC.b⊂βD.b⊂β或b∥β2.直线a⊥直线b,b⊥平面β,则a与β的关系是() A.a⊥βB.a∥βC.a⊂βD.a⊂β或a∥β3.空间四边形ABCD的四边相等,则它的两对角线AC、BD的关系是() A.垂直且相交B.相交但不一定垂直C.垂直但不相交D.不垂直也不相交4.如图所示,定点A和B都在平面α内,定点P∉α,PB⊥α,C是平面α内异于A和B的动点,且PC⊥AC,则△ABC为()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定5. 在正方体ABCD-A 1B1C1D1中,(1)直线A1B与平面ABCD所成的角是________;(2)直线A1B与平面ABC1D1所成的角是________;(3)直线A1B与平面AB1C1D所成的角是______.6. 如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是棱AA1和AB上的点,若∠B1MN是直角,则∠C1MN=______.7.如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱B1C1、B1B的中点.求证:CF⊥平面EAB.8. 如图所示,在四棱锥P—ABCD中,底面ABCD是矩形,侧棱P A垂直于底面,E、F分别是AB、PC的中点,P A=AD.求证:(1)CD⊥PD;(2)EF⊥平面PCD.二、能力提升9. 如图所示,P A⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数为()A.4 B.3 C.2 D.110.已知矩形ABCD,AB=1,BC=2,将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中() A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直11.在直三棱柱ABC—A1B1C1中,BC=CC1,当底面A1B1C1满足条件________时,有AB1⊥BC1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况).12. 如图所示,在正方体ABCD-A1B1C1D1中,P为DD1的中点,O为ABCD的中心,求证:B1O⊥平面P AC.三、探究与拓展13.已知平面α外两点A、B到平面α的距离分别为1和2,A、B两点在α内的射影之间距离为3,求直线AB和平面α所成的角.答案1.A 2.D 3.C 4.B 5.(1)45° (2)30° (3)90° 6.90°7.证明 在平面B 1BCC 1中, ∵E 、F 分别是B 1C 1、B 1B 的中点, ∴△BB 1E ≌△CBF , ∴∠B 1BE =∠BCF ,∴∠BCF +∠EBC =90°,∴CF ⊥BE , 又AB ⊥平面B 1BCC 1,CF ⊂平面B 1BCC 1, ∴AB ⊥CF ,又AB ∩BE =B , ∴CF ⊥平面EAB .8.证明 (1)∵P A ⊥底面ABCD , ∴CD ⊥P A .又矩形ABCD 中,CD ⊥AD ,且AD ∩P A =A ,∴CD ⊥平面P AD ,∴CD ⊥PD .(2)取PD 的中点G ,连接AG ,FG .又∵G 、F 分别是PD 、PC 的中点,∴GF 綊12CD ,∴GF 綊AE ,∴四边形AEFG 是平行四边形,∴AG ∥EF . ∵P A =AD ,G 是PD 的中点, ∴AG ⊥PD ,∴EF ⊥PD , ∵CD ⊥平面P AD ,AG ⊂平面P AD . ∴CD ⊥AG .∴EF ⊥CD .∵PD ∩CD =D ,∴EF ⊥平面PCD . 9.A 10.B 11.∠A 1C 1B 1=90°12.证明 连接AB 1,CB 1,设AB =1.∴AB 1=CB 1=2,∵AO =CO ,∴B 1O ⊥AC .连接PB1.∵OB21=OB2+BB21=32,PB21=PD21+B1D21=94,OP2=PD2+DO2=34,∴OB21+OP2=PB21.∴B1O⊥PO,又∵PO∩AC=O,∴B1O⊥平面P AC.13.解(1)如图①,当A、B位于平面α同侧时,由点A、B分别向平面α作垂线,垂足分别为A1、B1,则AA1=1,BB1=2,B1A1= 3.过点A作AH⊥BB1于H,则AB和α所成角即为∠HAB.而tan∠BAH=2-13=33.∴∠BAH=30°.(2)如图②,当A、B位于平面α异侧时,经A、B分别作AA1⊥α于A1,BB1⊥α于B1,AB∩α=C,则A1B1为AB在平面α上的射影,∠BCB1或∠ACA1为AB与平面α所成的角.∵△BCB1∽△ACA1,∴BB1AA1=B1CCA1=2,∴B1C=2CA1,而B1C+CA1=3,∴B1C=233.∴tan∠BCB1=BB1B1C=2233=3,∴∠BCB1=60°.综合(1)、(2)可知:AB与平面α所成的角为30°或60°.2.3.2平面与平面垂直的判定一、基础过关1.过两点与一个已知平面垂直的平面() A.有且只有一个B.有无数个C.一个或无数个D.可能不存在2.不能肯定两个平面一定垂直的情况是() A.两个平面相交,所成二面角是直二面角B.一个平面经过另一个平面的一条垂线C.一个平面垂直于另一个平面内的一条直线D.平面α内的直线a与平面β内的直线b是垂直的3.设有直线m、n和平面α、β,则下列结论中正确的是()①若m∥n,n⊥β,m⊂α,则α⊥β;②若m⊥n,α∩β=m,n⊂α,则α⊥β;③若m⊥α,n⊥β,m⊥n,则α⊥β.A.①②B.①③C.②③D.①②③4.设l是直线,α,β是两个不同的平面,下列结论中正确的是() A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β5.过正方形ABCD的顶点A作线段AP⊥平面ABCD,且AP=AB,则平面ABP与平面CDP 所成的二面角的度数是________.6.如图所示,已知P A⊥矩形ABCD所在的平面,图中互相垂直的平面有________对.7.在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.求证:平面EFG⊥平面PDC.8. 如图所示,四棱锥P—ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,P A⊥底面ABCD,P A= 3.(1)证明:平面PBE⊥平面P AB;(2)求二面角A—BE—P的大小.二、能力提升9.在边长为1的菱形ABCD 中,∠ABC =60°,把菱形沿对角线AC 折起,使折起后BD =32,则二面角B -AC -D 的余弦值为( )A.13B.12C.223D.32 10.在正四面体P -ABC 中,D 、E 、F 分别是AB 、BC 、CA 的中点,下面四个结论中不成立的是( )A .BC ∥面PDFB .DF ⊥面P AEC .面PDF ⊥面ABCD .面P AE ⊥面ABC11.如图,在直三棱柱ABC —A 1B 1C 1中,E 、F 分别是A 1B 、A 1C 的中点,点D 在B 1C 1上,A 1D ⊥B 1C . 求证:(1)EF ∥平面ABC ; (2)平面A 1FD ⊥平面BB 1C 1C .12.如图,在三棱锥P —ABC 中,P A ⊥底面ABC ,P A =AB ,∠ABC =60°,∠BCA =90°,点D 、E 分别在棱PB 、PC 上,且DE ∥BC .(1)求证:BC ⊥平面P AC .(2)是否存在点E 使得二面角A —DE —P 为直二面角?并说明理由. 三、探究与拓展13.如图所示,三棱锥P —ABC 中,D 是AC 的中点,P A =PB =PC =5,AC =22,AB =2,BC = 6.(1)求证:PD ⊥平面ABC ; (2)求二面角P —AB —C 的正切值.答案1.C 2.D 3.B 4.B5.45°6.57.证明因为MA⊥平面ABCD,PD∥MA,所以PD⊥平面ABCD.又BC⊂平面ABCD,所以PD⊥BC.因为四边形ABCD为正方形,所以BC⊥DC.又PD∩DC=D,所以BC⊥平面PDC.在△PBC中,因为G、F分别为PB、PC的中点,所以GF∥BC,所以GF⊥平面PDC.又GF⊂平面EFG,所以平面EFG⊥平面PDC.8.(1)证明如图所示,连接BD,由ABCD是菱形且∠BCD=60°知,△BCD是等边三角形.因为E是CD的中点,所以BE⊥CD.又AB∥CD,所以BE⊥AB.又因为P A⊥平面ABCD,BE⊂平面ABCD,所以P A⊥BE.而P A∩AB=A,因此BE⊥平面P AB.又BE⊂平面PBE,所以平面PBE⊥平面P AB.(2)解由(1)知,BE⊥平面P AB,PB⊂平面P AB,所以PB⊥BE.又AB⊥BE,所以∠PBA是二面角A—BE—P的平面角.=3,则∠PBA=60°.在Rt△P AB中,tan∠PBA=P AAB故二面角A—BE—P的大小是60°.9.B 10.C11.证明(1)由E、F分别是A1B、A1C的中点知EF∥BC.因为EF⊄平面ABC,BC⊂平面ABC.所以EF∥平面ABC.(2)由三棱柱ABC—A1B1C1为直三棱柱知CC1⊥平面A1B1C1.又A1D⊂平面A1B1C1,故CC1⊥A1D.又因为A1D⊥B1C,CC1∩B1C=C,故A1D⊥平面BB1C1C,又A1D⊂平面A1FD,所以平面A1FD⊥平面BB1C1C.12.(1)证明∵P A⊥底面ABC,∴P A⊥BC.又∠BCA=90°,∴AC⊥BC.又∵AC∩P A=A,∴BC⊥平面P AC.(2)解∵DE∥BC,又由(1)知,BC⊥平面P AC,∴DE⊥平面P AC.又∵AE⊂平面P AC,PE⊂平面P AC,∴DE⊥AE,DE⊥PE.∴∠AEP 为二面角A —DE —P 的平面角. ∵P A ⊥底面ABC ,∴P A ⊥AC , ∴∠P AC =90°.∴在棱PC 上存在一点E , 使得AE ⊥PC .这时∠AEP =90°,故存在点E ,使得二面角A —DE —P 为直二面角. 13.(1)证明 连接BD ,∵D 是AC 的中点,P A =PC =5, ∴PD ⊥AC .∵AC =22,AB =2,BC =6, ∴AB 2+BC 2=AC 2.∴∠ABC =90°,即AB ⊥BC .∴BD =12AC =2=AD .∵PD 2=P A 2-AD 2=3,PB =5, ∴PD 2+BD 2=PB 2.∴PD ⊥BD . ∵AC ∩BD =D ,∴PD ⊥平面ABC .(2)解 取AB 的中点E ,连接DE 、PE ,由E 为AB 的中点知DE ∥BC , ∵AB ⊥BC ,∴AB ⊥DE . ∵PD ⊥平面ABC ,∴PD ⊥AB .又AB ⊥DE ,DE ∩PD =D ,∴AB ⊥平面PDE ,∴PE ⊥AB . ∴∠PED 是二面角P —AB —C 的平面角.在△PED 中,DE =12BC =62,PD =3,∠PDE =90°,∴tan ∠PED =PDDE = 2.∴二面角P —AB —C 的正切值为 2.2.3.3 直线与平面垂直的性质 2.3.4 平面与平面垂直的性质一、基础过关1.已知两个平面互相垂直,那么下列说法中正确的个数是( )①一个平面内的直线必垂直于另一个平面内的无数条直线;②一个平面内垂直于这两个平面交线的直线必垂直于另一个平面内的任意一条直线; ③过一个平面内一点垂直于另一个平面的直线,垂足必落在交线上; ④过一个平面内的任意一点作交线的垂线,则此直线必垂直于另一个平面. A .4B .3C .2D .1 2.在圆柱的一个底面上任取一点(该点不在底面圆周上),过该点作另一底面的垂线,则这条垂线与圆柱的母线所在直线的位置关系是( ) A .相交B .平行C .异面D .相交或平行3.若m 、n 表示直线,α表示平面,则下列命题中,正确命题的个数为( )①⎭⎪⎬⎪⎫m ∥n m ⊥α⇒n ⊥α; ② ⎭⎪⎬⎪⎫m ⊥αn ⊥α⇒m ∥n ; ③⎭⎪⎬⎪⎫m ⊥αn ∥α⇒m ⊥n; ④⎭⎪⎬⎪⎫m ∥αm ⊥n ⇒n ⊥α. A .1 B .2C .3D .4 4.在△ABC 所在的平面α外有一点P ,且P A =PB =PC ,则P 在α内的射影是△ABC 的( )A .垂心B .内心C .外心D .重心5. 如图所示,AF ⊥平面ABCD ,DE ⊥平面ABCD ,且AF =DE ,AD =6,则EF =________.6.若α⊥β,α∩β=AB ,a ∥α,a ⊥AB ,则a 与β的关系为________. 7. 如图,在三棱锥P -ABC 中,P A ⊥平面ABC ,平面P AB ⊥平面PBC .求证:BC ⊥AB .8. 如图所示,在正方体ABCD —A 1B 1C 1D 1中,M 是AB 上一点,N 是A 1C 的中点,MN ⊥平面A 1DC . 求证:(1)MN ∥AD 1; (2)M 是AB 的中点.二、能力提升9. 如图所示,平面α⊥平面β,A ∈α,B ∈β,AB 与两平面α、β所成的角分别为π4和π6.过A 、B 分别作两平面交线的垂线,垂足分别为A ′、B ′,则AB ∶A ′B ′等于( )A .2∶1B .3∶1C .3∶2D .4∶310.设α-l -β是直二面角,直线a ⊂α,直线b ⊂β,a ,b 与l 都不垂直,那么( )A .a 与b 可能垂直,但不可能平行B .a 与b 可能垂直,也可能平行C .a 与b 不可能垂直,但可能平行D .a 与b 不可能垂直,也不可能平行11.直线a 和b 在正方体ABCD -A 1B 1C 1D 1的两个不同平面内,使a ∥b 成立的条件是________.(只填序号)①a 和b 垂直于正方体的同一个面; ②a 和b 在正方体两个相对的面内,且共面; ③a 和b 平行于同一条棱;④a 和b 在正方体的两个面内,且与正方体的同一条棱垂直. 12.如图所示,在多面体P —ABCD 中,平面P AD ⊥平面ABCD ,AB ∥DC ,△P AD 是等边三角形,已知BD =2AD =8,AB =2DC =4 5. (1)设M 是PC 上的一点, 求证:平面MBD ⊥平面P AD ; (2)求四棱锥P —ABCD 的体积. 三、探究与拓展13.如图,直三棱柱ABC -A 1B 1C 1中,AC =BC =12AA 1,D 是棱AA 1的中点,DC 1⊥BD . (1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.答案1.B 2.B 3.C 4.C 5.6 6.a ⊥β7.证明 在平面P AB 内,作AD ⊥PB 于D . ∵平面P AB ⊥平面PBC , 且平面P AB ∩平面PBC =PB . ∴AD ⊥平面PBC . 又BC ⊂平面PBC , ∴AD ⊥BC .又∵P A ⊥平面ABC , BC ⊂平面ABC ,∴P A ⊥BC ,∴BC ⊥平面P AB . 又AB ⊂平面P AB , ∴BC ⊥AB .8.证明 (1)∵ADD 1A 1为正方形, ∴AD 1⊥A 1D .又∵CD ⊥平面ADD 1A 1, ∴CD ⊥AD 1. ∵A 1D ∩CD =D , ∴AD 1⊥平面A 1DC . 又∵MN ⊥平面A 1DC , ∴MN ∥AD 1.(2)连接ON ,在△A 1DC 中, A 1O =OD ,A 1N =NC .∴ON 綊12CD 綊12AB ,∴ON ∥AM . 又∵MN ∥OA ,∴四边形AMNO 为平行四边形, ∴ON =AM . ∵ON =12AB ,∴AM =12AB ,∴M 是AB 的中点. 9.A 10.C 11.①②③12.(1)证明 在△ABD 中,∵AD =4,BD =8,AB =45, ∴AD 2+BD 2=AB 2.∴AD ⊥BD .又∵面P AD ⊥面ABCD ,面P AD ∩面ABCD =AD ,BD ⊂面ABCD ,∴BD ⊥面P AD ,又BD ⊂面BDM , ∴面MBD ⊥面P AD . (2)解 过P 作PO ⊥AD , ∵面P AD ⊥面ABCD , ∴PO ⊥面ABCD ,即PO 为四棱锥P —ABCD 的高. 又△P AD 是边长为4的等边三角形, ∴PO =2 3.在底面四边形ABCD 中,AB ∥DC ,AB =2DC ,∴四边形ABCD 为梯形.在Rt △ADB 中,斜边AB 边上的高为4×845=855,此即为梯形的高. ∴S 四边形ABCD =25+452×855=24. ∴V P —ABCD =13×24×23=16 3.13.(1)证明 由题设知,三棱柱的侧面为矩形.由于D 为AA 1的中点,故DC =DC 1.又AC =12AA 1,可得DC 21+DC 2=CC 21,所以DC 1⊥DC .而DC 1⊥BD ,CD ∩BD =D ,所以DC 1⊥平面BCD .因为BC ⊂平面BCD ,所以DC 1⊥BC .(2)解 DC 1⊥BC ,CC 1⊥BC ⇒BC ⊥平面ACC 1A 1⇒BC ⊥AC ,取A 1B 1的中点O ,过点O 作OH ⊥BD 于点H ,连接C 1O ,C 1H ,A 1C 1=B 1C 1⇒C 1O ⊥A 1B 1,面A 1B 1C 1⊥面A 1BD ⇒C 1O ⊥面A 1BD ,又∵DB ⊂面A 1DB ,∴C 1O ⊥BD ,又∵OH ⊥BD ,∴BD ⊥面C 1OH ,C 1H ⊂面C 1OH ,∴BD ⊥C 1H ,得点H 与点D 重合,且∠C 1DO 是二面角A 1-BD -C 的平面角,设AC =a ,则C 1O =22a ,C 1D =2a =2C 1O ⇒∠C 1DO =30°,故二面角A 1-BD -C 1的大小为30°.章末检测一、选择题1.下列推理错误的是() A.A∈l,A∈α,B∈l,B∈α⇒l⊂αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉αD.A∈l,l⊂α⇒A∈α2.长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于() A.30°B.45°C.60°D.90°3.下列命题正确的是() A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行4.在空间四边形ABCD的边AB,BC,CD,DA上分别取E、F、G、H四点,如果EF,GH交于一点P,则() A.P一定在直线BD上B.P一定在直线AC上C.P一定在直线AC或BD上D.P既不在直线AC上,也不在直线BD上5.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是() A.①和②B.②和③C.③和④D.②和④6.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是() A.AB∥m B.AC⊥m C.AB∥βD.AC⊥β7.如图(1)所示,在正方形SG1G2G3中,E,F分别是G1G2及G2G3的中点,D是EF的中点,现在沿SE,SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后的点记为G,如图(2)所示,那么,在四面体S-EFG中必有()。
高中数学必修2高中数学必修二2.3.1《直线与平面垂直的判定》导学导练【知识要点】1、直线与平面垂直的定义如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α互相垂直,记作:l ⊥α.用符号语言表示为: 2、直线与平面垂直的判定1)线面垂直的判定定理此平面垂直。
用符号语言表示为:2)定理的证明 3)定理的作用4)定理的推论 53、直线与平面所成的角【范例析考点】考点一.直线与平面垂直的理解例1A.6 B.5 C.4 D.3 【针对练习】1、判断正误(对的打“√”,错的打“×”)①如果一条直线垂直于一个平面内的无数条直线,那么这条直线就与这个平面垂直( ) ②若a ⊥α,b ⊂α,则a ⊥b ( )2、一条直线与一个平面垂直的条件是 ( A. 垂直于平面内的一条直线 B. C. 垂直于平面内的无数条直线 D. 垂直于平面内的两条相交直线3、如果平面α外的一条直线a 与αA. a ⊥α B. a ∥α C. a 与α斜交 D.4、下列命题中,正确的命题是( )A.若a 是平面α的斜线,直线b 垂直于a 在α内的射影,则a ⊥bB.若a 是平面α的斜线,平面β内的直线b 垂直于a 在α内的射影,则a ⊥bC.若a 是平面α的斜线,b 是平面α内的一条直线,且b 垂直于a 在这个平面内的射影,则a ⊥bD.若a 是平面α的斜线,直线b 平行于平面α,且b 垂直于α在另一平面β内的射影,则a ⊥b5、如果直线l 是平面α的斜线,那么在平面α( ) A.不存在与l 平行的直线 B.不存在与l 垂直的直线 C.与l 垂直的直线只有一条 D.与l 平行的直线有无穷多条6、下列条件中,能使直线m ⊥平面α平面的是( )A.αα⊥⊥⊥⊥c ,b ,c m ,b mB.α//b ,b m ⊥C.α⊥=⋂b ,A b mD.α⊥b ,b //m7、如果直线l 和平面α内无数条直线垂直,则l 与平面α的位置关系是┄( ) A.α⊥l B.α//l C.α⊂lD.以上都不正确8、M 是△ABC 所在平面外一点,MA ,MB ,MC 两两垂直,D 是BC的中点,AB=AC ,MB=MC 。
直线、平面垂直的判定和性质(选择题:较难32,困难36)1、正方形ABCD与等边三角形BCE有公共边BC,若∠ABE=120°,则BE与平面ABCD所成角的大小为A. B. C. D.2、如图,三棱柱中,侧棱底面,,,,外接球的球心为,点是侧棱上的一个动点.有下列判断:①直线与直线是异面直线;②一定不垂直于;③三棱锥的体积为定值;④的最小值为.其中正确的个数是()A.1 B.2 C.3 D.43、如图,已知平面平面,,、是直线上的两点,、是平面内的两点,且,,,,,是平面上的一动点,且有,则四棱锥体积的最大值是()A. B. C. D.4、平面过正方体的面对角线,且平面平面,平面平面,则的正切值为()A. B. C. D.5、在底面是平行四边形的四棱锥中,底面,点为棱的中点,点在棱上,平面与交于点,且,,,则异面直线与所成角的正切值为()A. B. C. D.6、如图所示,已知二面角的平面角为,为垂足,且,,设到棱的距离分别为,当变化时,点的轨迹是下列图形中的()A. B. C. D.7、如图,在四棱锥中,平面,为线段的中点,底面为菱形,若,,则异面直线与所成角的正弦值为()A. B. C. D.8、如图,正四面体中,、、在棱、、上,且,,分别记二面角,,的平面角为、、,在()A. B. C. D.9、直角梯形,满足,现将其沿折叠成三棱锥,当三棱锥体积取最大值时其表面积为A. B. C. D.10、直角梯形,满足,现将其沿折叠成三棱锥,当三棱锥体积取最大值时其表面积为A. B.C. D.11、已知直角三角形的两条直角边,,为斜边上一点,沿将三角形折成直二面角,此时二面角的正切值为,则翻折后的长为()A.2 B. C. D.12、在四棱锥中,平面,底面为矩形,.若边上有且只有一个点,使得,求此时二面角的余弦值()A. B. C. D.13、如图,在正四棱锥中,分别是的中点,动点在线段上运动时,下列四个结论:①;②;③面;④面.其中恒成立的为()A.①③ B.③④ C.①② D.②③④14、如图,在正四棱锥中,分别是的中点,动点在线段上运动时,下列四个结论:①;②;③面;④面.其中恒成立的为()A.①③ B.③④ C.①② D.②③④15、如图,正四面体的顶点、、分别在两两垂直的三条射线,,上,则在下列命题中,错误的是( )A.是正三棱锥B.直线与平面相交C.直线与平面所成的角的正弦值为D.异面直线和所成角是16、在棱长为1的正方体中,是的中点,是三角形内的动点,,则的轨迹长为( )A. B. C. D.17、正方体ABCD-A1B1C1D1的棱长为6,点O在BC上,且BO=OC,过点O的直线l与直线AA1,C1D1分别交于M,N两点,则MN与面ADD1A1所成角的正弦值为( )A. B. C. D.18、如图,把画有函数部分图象的纸片沿轴折成直二面角,若、两点之间的空间距离为,则()A.-2 B. C.-1 D.19、长方体中,,,,点是平面上的点,且满足,当长方体的体积最大时,线段的最小值是( )A. B. C.8 D.20、把平面图形上的所有点在一个平面上的射影构成的图形叫做图形在这个平面上的射影,如图,在三棱锥中,,,,,,将围成三棱锥的四个三角形的面积从小到大依次记为,设面积为的三角形所在的平面为,则面积为的三角形在平面上的射影的面积是()A. B. C.10 D.3021、正方体ABCD-A1B1C1D1中,BB1与平面ACD1所成的角的余弦值为()A. B. C. D.22、已知为异面直线,平面a,平面b.直线满足,则()A.a∥b,且l∥aB.,且C.与相交,且交线垂直于D.a与b相交,且交线平行于23、如图,已知六棱锥P﹣ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB则下列结论正确的是()A.PB⊥ADB.平面PAB⊥平面PBCC.直线BC∥平面PAED.直线PD与平面ABC所成的角为45°24、如图所示,在直三棱柱ABC-A1B1C1中, BC="AC" ,AC1⊥A1B,M,N分别是A1B1,AB的中点,给出下列结论:①C1M⊥平面A1ABB1,②A1B⊥NB1 ,③平面AMC1⊥平面CBA1 ,其中正确结论的个数为()A.0 B.1 C.2 D.325、已知两条直线,两个平面,下面四个命题中不正确的是A.B.C.D.26、如图所示,在直三棱柱ABC-A1B1C1中,BC=AC,AC1⊥A1B,M,N分别是A1B1,AB的中点,给出下列结论:①C1M⊥平面A1ABB1,②A1B⊥NB1,③平面AMC1//平面CNB1,其中正确结论的个数为()A.0 B.1 C.2 D.327、在四棱柱中,平面,底面是边长为的正方形,侧棱的长为,为侧棱上的动点(包括端点),则()A.对任意的,,存在点,使得B.当且仅当时,存在点,使得C.当且仅当时,存在点,使得D.当且仅当时,存在点,使得28、下列命题中,错误的是()A.一条直线与两个平行平面中的一个相交,则必与另一个平面相交B.平行于同一平面的两条直线不一定平行C.如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面D.若直线不平行于平面,则在平面内不存在与平行的直线29、如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的个数是( )(1) AC⊥BE.(2) 若P为AA1上的一点,则P到平面BEF的距离为.(3) 三棱锥A-B EF的体积为定值.(4) 在空间与DD1,AC,B1C1都相交的直线有无数条.(5) 过CC1的中点与直线AC1所成角为40并且与平面BEF所成角为50的直线有2条.A.0 B.1 C.2 D.330、下面四个命题:①“直线a∥直线b”的充要条件是“a平行于b所在的平面”;②“直线⊥平面内所有直线”的充要条件是“⊥平面”;③“直线a、b为异面直线”的充分不必要条件是“直线a、b不相交”;④“平面∥平面”的必要不充分条件是“内存在不共线三点到的距离相等”;其中正确命题的序号是A.①② B.②③ C.③④ D.②④31、已知是直线,是平面,、,则“平面”是“且”的…………………………………………………………………………()A.充要条件. B.充分非必要条件. C.必要非充分条件. D.非充分非必要条件32、圆锥的轴截面SAB是边长为2的等边三角形,O为底面中心,M为SO的中点,动点P在圆锥底面内(包括圆周)。
《2.3直线与平面垂直的判定》教学设计一、教学内容和内容解析《直线与平面垂直的判定》是高中新教材人教A版必修2第2章2.3.1的内容,本节课主要学习线面垂直的定义、判定定理及定理的初步运用。
其中,线面垂直的定义是线面垂直最基本的判定方法和性质,它是探究线面垂直判定定理的基础;线面垂直的判定定理充分体现了线线垂直与线面垂直之间的转化,它既是后面学习面面垂直的基础,又是连接线线垂直和面面垂直的纽带!学好这部分内容,对于学生建立空间观念,实现从认识平面图形到认识立体图形的飞跃,是非常重要的。
直线与平面垂直的判定定理本节是通过折纸试验来感悟的,它把原来定义中要求与任意一条(无限)垂直转化为只要与两条(有限)相交直线垂直就行了,概言之,线不在多,相交就行。
直线与平面垂直的判定方法除了定义法、判定定理外,还有如果两条平行直线中的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面,这是直线与平面垂直判定的一种间接方法,也是十分重要的。
二、教学重点、难点,以及期望目标和目标解析根据《课程标准》,线面垂直判定定理的严格证明在本节课中不做要求,这样降低了难度。
教学重点:操作确认并概括出直线与平面垂直的定义和判定定理。
教学难点:操作确认并概括出直线与平面垂直的判定定理及初步运用。
期望目标:理解直线与平面垂直的定义,掌握直线与平面垂直的判定定理.目标解析: 1.利用已有知识与生活经验,抽象概括出直线与平面垂直的定义;2.通过概括、辨析与应用,正确理解直线与平面垂直的定义;3.通过直观感知、操作确认,归纳出直线与平面垂直的判定定理;4.运用直线与平面垂直的判定定理,证明和直线与平面垂直有关的简单命题.5.在探索直线与平面垂直判定定理的过程中发展合情推理能力,同时感悟和体验“空间问题转化为平面问题”、“线面垂直转化为线线垂直”、“无限转化为有限”等数学思想.三、教学问题诊断分析学生已有的认知基础是熟悉的日常生活中的具体直线与平面垂直的直观形象(学生的客观现实)和直线与直线垂直的定义、直线与平面平行的判定定理等数学知识结构(学生的数学现实),这为学生学习直线与平面垂直定义和判定定理等新知识奠定基础。
学生学习的困难在于如何从直线与平面垂直的直观形象中提炼出直线与平面垂直的定义,感悟直线与平面垂直的意义;以及如何从折纸试验中探究出直线与平面垂直的判定定理。
四、学习行为分析本节课安排在立体几何的初始阶段,是学生空间观念形成的关键时期,课堂上学生通过感知、观察、提炼直线与平面垂直的定义,进而通过辨析讨论,深化对定义的理解。
进一步,在一个具体的数学问题情境中猜想直线与平面垂直的定义及判定定理,并在教师的指导下,通过动手操作、观察分析、自主探索等活动,切身感受直线与平面垂直及定义判定定理的形成过程,体会蕴涵在其中的思想方法。
继而,通过课本例1的学习概括直线与平面垂直的几种常用判定方法。
再通过练习与课后小结,使学生进一步加深对直线与平面垂直的判定定理的理解。
五、教学支持条件分析为了有效实现教学目标,教师准备:多媒体课件(以PowerPoint为平台)、三角板、大三角形纸片等教具;学生自备:三角形纸片(任意形状)、笔(表直线)、课本(表平面)等学具。
六、教学过程设计(一)直观感知直线与平面垂直的位置关系复习:直线和平面的位置关系是什么?(在直线与平面的位置关系中,直线在平面内、直线与平面平行我们已经系统研究过了,接下来要研究直线与平面相交的情形.)问题 1. 日常生活中有哪些现象给人以直线与平面相交的感觉?你认为哪种直线与平面相交的位置关系比较特殊?问题2. 在已学过的空间几何体中,说一说你心目中哪些是直线与平面垂直的?问题3. 你觉得画怎样的直观图最能反映直线与平面垂直的情形?【意图】基于学生的客观现实,通过对生活事例的观察以及以前学过的知识内容为基础,让学生直观感知直线与平面相交中的特例——直线与平面垂直的位置关系,由此引出课题.问题4. 究竟直线与平面垂直的意义是什么?(二)抽象概括直线与平面垂直的定义探究一:直线与平面垂直的含义?情景创设1:一个人走在灯火通明的大街上,会在地面上形成影子,随着人不停的走动,这个影子忽前忽后、忽左忽右,但是无论怎样,人始终与影子相交于一点,并始终保持垂直.情景创设2:立竿见影:太和殿丹陛上日晷【意图】旨在让学生发现AB所在直线始终与地面上任意一条过点B的直线垂直,与地面上任意一条不过点B的直线也垂直。
注意强调:两条直线垂直有相交垂直和异面垂直两种,从中概括出:一条直线与一个平面垂直,那么该直线与此平面内的任意一条直线都垂直.从而由感性认识上升到理性认识的过程。
定义:如果直线l与平面α内的任意一条直线都垂直,我们⊥. 直线l叫做平面α的垂线,平面α叫就说直线l与平面α互相垂直,记作:lα做直线l的垂面.直线与平面垂直时,它们唯一的公共点P叫做垂足.(如图1)辨析1:命题“如果一条直线垂直于一个平面内的无数条直线,那么这条直线与这个平面垂直”是否正确?为什么?【意图】使学生明确平面中直线的“任意性”.通过辨析讨论,深化直线与平面垂直的概念。
探究二:除定义外,如何判定一条直线与平面垂直?(教师可提问:定义作为线面垂直判定的方法有何不足?)图2B思考1.能不能像判定直线与平面平行那样,利用直线与平面内的一条直线垂直来判定直线与平面垂直呢?思考2:一条直线不行,那么又能不能像判断平面与平面平行那样,利用直线与平面内两条直线都垂直来判定直线与平面垂直呢?【意图】通过利用类比思想,寻找线面垂直的判定方法。
也进一步让学生体会由无限转有限、平面化、降维等思想。
(三)动手操作,探究直线与平面垂直的判定定理实验:请你拿出准备好的三角形的纸片,我们一起来做一个试验:如图2,过△ABC 的顶点A 翻折纸片,得到折痕AD ,将翻折后的纸片竖起放置在桌面上,(BD 、DC 与桌面接触)(1)折痕AD 与桌面垂直吗?(2)如何翻折才能使AD 与桌面所在平面α垂直?【意图】通过折纸活动让学生发现,当且仅当折痕AD 是BC 边上的高时,AD 所在直线与桌面所在的平面α垂直问题5:在你翻折纸片的过程中,纸片的形状发生了变化,这是变的一面,那么不变的一面是什么呢?(可从线与线的关系考虑)如果我们把折痕抽象为直线l ,把BD 、CD 抽象为直线m n ,,把桌面抽象为平面(如图3),那么你认为保证直线与平面垂直的条件是什么? 如果将图3中的两条相交直线、的位置改变一下,仍保证, (如图4)你认为直线还垂直于平面吗? 根据上面的试验,结合两条相交直线确定一个平面的事实,你能给出直线与平面垂直的判定方法吗?定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.(如图5)用符号语言表示为: (可让学生叙写判定定理,给出文字、图形、符号这三种语言的相互转化,教师注意引导。
)(四)初步应用,深化确认线面垂直的判定定理(1)长方体1111ABCD A B C D -,棱1BB 与底面ABCD垂直.你认为保证1BB ABCD ⊥的条件是什么?(2)准的跨栏架,其支架必须垂直于地面,如何检验?(3)该如何检验旗杆与地面是否垂直?(五)理论应用(典型例题)(练习)判断下列命题是否正确?(1)若一条直线与一个三角形的两条边垂直,则这条直线垂直于三角形所在的平面.( )(2)若一条直线与一个平行四边形的两条边垂直,则这条直线垂直于平行四边形所在的平面.( )(3)若一条直线与一个梯形的两腰垂直,则这条直线垂直于梯形所在的平面.( )例1:如图6,已知a ∥b ,a ⊥α,求证:b ⊥α.(分别用直线与平面垂直的判定定理、直线与平面垂直的定义证明;并让学生用语言叙述:如果两条平行直线中的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面)【意图】能分别用判定定理与定义解决问题,会用证明问题的一般思维策略:由已知想可知(性质),由未知想需知(判定),合理选择辅助线. 这个例题给出了判断直线和平面垂直的一个常用的命题,这个命题体现了平行关系与垂直关系之间的联系。
图5图6【意图】进一步领会问题解决的一般思维策略,合理选择辅助平面,体会转化思想在解决问题中的作用.例2:如图,在三棱锥V-ABC中,VA=VC,AB=BC,K是AC的中点。
求证:AC⊥平面VKB思考:(1)在三棱锥V-ABC中,VA=VC,AB=BC,求证:VB⊥AC;(2)在⑴中,若E、F分别是AB、BC 的中点,试判断EF与平面VKB的位置关系;(3)在⑵的条件下,有人说“VB⊥AC, VB⊥EF,∴VB⊥平面ABC”,对吗?【意图】例2重在对直线与平面垂直判定定理的应用.变式(1)在例2的基础上,应用了直线与平面垂直的意义;变式(2)是对例1判定方法的应用;变式(3)的判断在于进一步巩固直线与平面垂直的判定定理。
3个小题环环相扣,汇集了本节课的学习内容,突出了知识间内在联系和融会贯通。
(六)总结反思(1)通过本节课的学习,你学会了哪些判断直线与平面垂直的方法?(2)上述判断直线与平面垂直的方法体现了什么数学思想?(3)你还有什么收获与感想?【意图】培养学生反思的习惯,鼓励学生对研究的问题进行质疑和概括. (七)目标检测设计例1:如图6,点P 是平行四边形ABCD 所在平面外一点,O 是对角线AC 与BD的交点,且PA =PC PB =PD .求证:PO⊥平面ABCD2.课本 P66 探究:如图,直四棱柱A1B1C1D1-ABCD(侧棱与底面垂直的棱柱称为直棱柱)中,底面四边形ABCD满足什么条件时,A1C⊥B1D1.B 1图63.如图,PA⊥平面ABC,BC⊥AC,写出图中所有的直角三角形。
4.课本P67 练习2【意图】第1题是基础题,巩固复习线面垂直的判定定理;第2题本节教材中的一道探究题,主要运用直线与平面垂直的意义与判定定理;第3题也是活用直线与平面垂直的意义与判定定理,前两题重在检测本节课的知识与技能目标,检测运用知识解决问题的能力;第3题通过学生探索,培养学生观察——分析——归纳和综合运用知识的能力。