三菱变频器常见故障分析与处理办法简介
- 格式:docx
- 大小:27.43 KB
- 文档页数:23
三菱变频器错误代码及处理方式三菱变频器错误代码及处理方式操作面板显示E.OC1加速时过电流名称加速时过电流切断内容加速运行中,当变频器输出电流超过额定电流的约230%以上时,保护电路动作,停止变频器输出。
检查要点1.是否为急加速运行。
2.用于升降的下降加速时间是否过长。
3.是否存在输出短路、接地现象。
4.是否尽管电机的额定频率为50Hz,但Pr.3基准频率的设定值仍为60Hz。
5.失速防止动作是否合适。
6.再生频度是否过高。
(再生时输出电压是否比V/F标准值大,是否因电机电流增加而产生过电流。
)处理1.延长加速时间。
(缩短用于升降的下降加速时间。
)2.启动时“E.OC1”总是点亮的情况下,请尝试脱开电机启动。
如果“E.OC1”仍点亮,请与经销商联系。
3.确认接线是否正常,确保无输出短路及接地发生。
4.请将Pr.3基准频率设定为50Hz。
(参照第84页)5.将失速防止动作设定为适当的值。
(参照第78页)6.请在Pr.19 基准频率电压中设定基准电压(电机的额定电压等)。
参考资料:三菱变频器说明书显示E.OC1名称:加速中过电流断路内容:加速运行中,当变频器输出电流达到或超过大约额定电流的200%时,保护回路动作,停止变频器输出。
检查:是否急加速运转。
输出是否短路,接地。
处理:延长加速时间显示E.OC2名称:定速中过电流断路内容:定速运行中,当变频器输出电流达到或超过大约额定电流的200%时,保护回路动作,停止变频器输出。
检查:负荷是否有急速变化。
输出是否短路,接地。
处理:取消负荷的急速变化。
显示E.OC3名称:减速中过电流断路内容:减速运行中(加速、低速运行之外),当变频器输出电流达到或超过大约额定电流的200%时,保护回路动作,停止变频器输出。
检查:是否急减速运转。
输出是否短路,接地。
电机的机械制动是否过早。
处理:延长减速时间。
检查制动动作。
显示E.OV1名称:加速中再生过电压断路内容:因再生能量,使变频器内部的主回路直流电压超过规定值,保护回路动作,停止变频器输出。
操作面板锁定设定了操作锁定模式,除了之外STOP/REST的操作无效MODE按键2秒钟后操作锁定将解除失速防止(过电流)加速时电机的电流超过变频器额定输出电流的120(%)(·)以上时,停止频率的上升,直到过负载电流减少为止,以防止变频器出现过电流当电流降到120(%)(·)以下后,再增加频率恒速运行时电机的电流超过变频器额定输出电流的120(%)(·)以上时,降低频率直到过负载电流减少为止,以防止变频器出现过电流,当电流降到120(%)(·)以下后,再回到设定频率减速时电机的电流超过变频器额定输出电流的120(%)(·)以上时,停止频率的降低,直到过负载电流减少为止,以防止变频器出现过电流当电流降到120(%)(·)以下后,再降低频率。
1.每次将Pr.0转矩提升值减1(%),然后确认电机的状态(参照第48页)2.Pr.7加速时间与Pr.8减速时间设置得长一些(参照第66页)3.减轻负载4.试试简易磁通矢量控制(Pr.80) 5.试试Pr.80 6.可以用Pr.22失速防止动作水平设定失速防止动作电流(出厂值为120(%))有加减速时间变化的可能性请用Pr.22失速防止动作水平提高失速防止动作水平,或者用Pr.156失速防止动作选择使失速防止不动作(并且,也可以用Pr.156设定OL动作时的继续运行)失速防止(过电压)减速运行时·电机的再生能量过大超过制动能力时停止频率的下降以防止变频器出现过电压跳闸直到再生能量减少·选择避免再生功能的情况下(Pr.882=1),电机的再生能量过大时,防止频率上升和过电压引起的电源切断可以改变减速时间用Pr.8的“减速时间”延长减速时间艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。
变频器常见的故障现象和故障分析1过流(OC)过流是变频器报警最为频繁的现象。
1.1现象(1) 重新启动时,一升速就跳闸。
这是过电流十分严重的现象。
主要原因有:负载短路,机械部位有卡住;逆变模块损坏;电动机的转矩过小等现象引起。
(2) 上电就跳,这种现象一般不能复位,主要原因有:模块坏、驱动电路坏、电流检测电路坏。
(3) 重新启动时并不立即跳闸而是在加速时,主要原因有:加速时间设置太短、电流上限设置太小、转矩补偿(V/F)设定较高。
1.2 实例(1) 一台LG-IS3-4 3.7kW变频器一启动就跳“OC”分析与维修:打开机盖没有发现任何烧坏的迹象,在线测量IGBT(7MBR25NF-120)基本判断没有问题,为进一步判断问题,把IGBT拆下后测量7个单元的大功率晶体管开通与关闭都很好。
在测量上半桥的驱动电路时发现有一路与其他两路有明显区别,经仔细检查发现一只光耦A3120输出脚与电源负极短路,更换后三路基本一样。
模块装上上电运行一切良好。
(2) 一台BELTRO-VERT 2.2kW变频通电就跳“OC”且不能复位。
分析与维修:首先检查逆变模块没有发现问题。
其次检查驱动电路也没有异常现象,估计问题不在这一块,可能出在过流信号处理这一部位,将其电路传感器拆掉后上电,显示一切正常,故认为传感器已坏,找一新品换上后带负载实验一切正常。
二、过压(OU)过电压报警一般是出现在停机的时候,其主要原因是减速时间太短或制动电阻及制动单元有问题。
(1) 实例一台台安N2系列3.7kW变频器在停机时跳“OU”。
分析与维修:在修这台机器之前,首先要搞清楚“OU”报警的原因何在,这是因为变频器在减速时,电动机转子绕组切割旋转磁场的速度加快,转子的电动势和电流增大,使电机处于发电状态,回馈的能量通过逆变环节中与大功率开关管并联的二极管流向直流环节,使直流母线电压升高所致,所以我们应该着重检查制动回路,测量放电电阻没有问题,在测量制动管(ET191)时发现已击穿,更换后上电运行,且快速停车都没有问题。
通过三菱变频器的显示来判断故障点的所在。
1.OC.过电流,这可能是变频器里面最常见的故障了。
我们首先要排除由于参数问题而导致的故障。
例如:电流限制,加速时间过短都有可能导致过电流的产生。
然后我们就必须判断是否电流检测电路出问题了。
以FR-A740-15K-CHT为例:我们有时会看到FR-A740-15K-CHT在不接电机运行的时候面板也会有电流显示。
电流来自于哪里呢?这时就要测试一下它的三个霍尔传感器,为确定那一相传感器损坏我们可以每拆一相传感器的时候开一次机看是否会有电流显示,经过这样试验后基本能排除OC故障。
2.OV.过电压,我们首先要排除由于参数问题而导致的故障。
例如减速时间过短,以及由于再生负载而导致的过压等,然后我们可以看一下输入侧电压是否有问题,最后我们可以看一下电压检测电路是否出现了故障,一般的电压检测电路的电压采样点,都是中间直流回路的电压。
我们以FR-A740-15K-CHT为例,它由直流回路取样后(530V左右的直流)通过阻值较大电阻降压后再由光耦进行隔离,当电压超过一定值时,显示“5”过压(此机器为数码管显示)我们可以看一下电阻是否氧化变值,光耦是否有短路现象等。
3.UV.欠电压。
我们首先可以看一下输入侧电压是否有问题,然后看一下电压检测电路,故障判断和过压相同。
4.FU.快速熔断器故障。
在现行推出的变频器大多推出了快熔故障检测功能。
(特别是大功率变频器)以FR-A740-45K-CHT变频器为例。
它主要是对快熔前面后面的电压进行采样检测,当快熔损坏以后必然会出现快熔一端电压没有,此时隔离光耦动作,出现FU报警。
更换快熔就因该能解决问题。
特别应该注意的是在更换快熔前必须判断主回路是否有问题。
5.OH.过热,主要引起原因变频器内部散热不好。
我们可以检查散热风扇及通风通道。
6.SC.短路故障。
我们可以检测一下变频器内部是否有短路现象。
我们以三菱FR-F740-15K-CHT为例,我们检测一下内部线路,可能不一定有短路现象,此时我们可以检测一下功率模块有可能出现了故障,在驱动电路正常的情况下,更换功率模块,应该能修复机器。
三菱变频器故障代码表
1. 引言
三菱变频器是一种广泛应用于工业控制领域的设备,用于调节电机的转速。
在使用过程中,有时会出现故障,为了迅速诊断问题并解决故障,掌握变频器故障代码表是非常重要的。
本文档将介绍三菱变频器常见的故障代码及其解决方法,帮助用户在发生故障时能够迅速进行故障排除。
2. 故障代码表
下表列出了三菱变频器常见的故障代码及其解决方法:
3. 注意事项
在使用过程中遇到故障时,用户应注意以下事项:
- 首先,安全第一。
在排除故障前,务必断开变频器的电源,
避免电击和其他潜在的危险。
- 其次,仔细阅读变频器的使用手册,按照指示进行故障排除。
不要随意更改参数和操作变频器,以免引发更严重的问题。
- 此外,定期检查变频器设备和配件的状态,确保其正常运行。
如果发现异常,及时采取措施修复或更换设备。
4. 结论
掌握三菱变频器故障代码表是迅速诊断和排除故障的关键。
通
过对常见故障代码及其解决方法的了解,用户可以减少生产停机时间,并确保设备的正常运行。
在使用变频器时,用户应根据实际情
况进行故障排除,并且要时刻关注安全问题。
希望本文档对三菱变频器用户在故障排除方面提供了帮助,如有其他疑问,请参考三菱变频器的详细使用手册或咨询专业人士。
三菱变频器的常见故障三菱变频器是一种常用的电力控制设备,主要用于控制电机的运转速度。
然而,由于长时间使用和其他因素的影响,三菱变频器也会出现一些常见的故障。
本文将介绍三菱变频器的常见故障及其解决方法,希望能为用户提供一些参考和帮助。
故障1:变频器无法启动在使用三菱变频器时,有时会遇到无法启动的情况。
这可能是由于以下几个原因导致的:原因1:电源故障当变频器无法启动时,首先需要确认电源是否正常。
可以检查电源开关、插座、电源线路等,确保电源供电正常。
原因2:控制信号故障如果电源供电正常,但变频器仍无法启动,可能是由于控制信号故障导致的。
可以检查控制信号线路及开关、编码器、接口卡等设备,确定故障原因。
原因3:变频器内部故障如果以上两种情况都没有问题,那么可能是由于变频器本身内部故障导致的。
这时需要专业人员进行检修或更换设备。
故障2:变频器输出异常当变频器输出异常时,电机的运转可能会受到影响,从而影响生产效率。
下面是一些常见的变频器输出异常情况及其解决方法:异常1:输出电压异常输出电压异常可能是由于控制信号出现问题、变频器内部损坏、输出电容故障等原因导致的。
解决方法包括检查控制信号线路、更换变频器内部损坏部件、更换电容等。
异常2:输出频率异常输出频率异常可能是由于编码器损坏、控制信号异常、电源电压异常等原因导致的。
解决方法包括更换编码器、修复控制信号线路、确保电源电压正常等。
异常3:输出电流异常输出电流异常可能是由于电动机故障、控制信号异常、过负荷等原因导致的。
解决方法包括检查电动机状态、修复控制信号异常、检查是否过载等。
故障3:电机无法控制电机无法控制也是常见的三菱变频器故障之一。
这可能是由于以下原因导致的:原因1:控制信号故障控制信号故障可能会导致电机无法控制。
可以检查与控制信号相关的设备和线路,修复异常问题。
原因2:编码器故障编码器问题也可能导致电机无法控制。
可以检查编码器状态,修复故障或更换设备。
以下为三菱变频器常见的故障代码以及故障说明1.H0LD 操作面板锁定使操作面板的M旋钮、键盘操作无效(长按[MODE] (2秒))•可以使操作面板的M旋钮、键盘操作无效以防止参数变更或防止意外启动或频率变更。
•将Pr.161设定为''10或者11",按MODE键2秒后,M旋钮、键盘操作将无效。
•M旋钮、键盘操作无效后,操作面板上显示HOLDo在M旋钮、键盘操作无效的状态下, 旋转M旋钮或者进行键盘操作将显示HOLDo (2秒时间未旋转M旋钮或者不操作键盘,将进入监视显示。
)∙为再次使M旋钮、键盘操作有效,请按住MPDE键2秒钟。
即使M旋钮,键盘操作无效,但监视显示,按STOP键有效。
•若不解除操作锁定,就不能通过键盘操作解除PU停止。
Erl~4参数写入错误在Pr.77参数写入选择中设定为禁止写入参数的状态下,试图设定参数。
•频率跳线的设定范围重复了。
•V/F5点可调整的设定值重复了。
•参数单元和变频器无法正常通讯。
∙Pr.72 PWM频率选择="25〃时,试图进行参数初始设定仅在停止中写入参数(Pr,77=''0〃初始值)rEl~4拷贝操作错误Err .错误RES信号处于ON。
•操作面板和变频器无法正常通讯。
(连接器接触不良)•变频器输入端的电压下降时,可能会发生该错误。
•控制回路电源(Rl/Lll、S1/L21)采用与主回路电源(R/Ll、S/L2、T/L3)不同的电源时,一打开主回路,就会显示。
并非异常。
•请将RES信号置为0汗。
•请确认操作面板与变频器的连接。
•请确认变频器输入端电源的电压。
0L 失速防止(过电流)变频器输出电流变大,失速防止(过电流)功能动作。
•失速防止(过电流)功能如下所示。
加速时变频器的输出电流(实时无传感器矢量控制、矢量控制时为输出转矩)超过了(Pr・22失速防止动作水平(转矩限制水平)等)时,在过负载电流减小之前,将停止频率的上升,以避免变频器发生过电流切断。
三菱变频器目前在市场上用量最多的就是A500系列,以及E500系列了,A500系列为通用型变频器,适合高启动转矩和高动态响应场合的使用。
而E500系列则适合功能要求简单,对动态性能要求较低的场合使用,且价格较有优势。
就三菱变频器在市场上使用最广的两款型号的一些新的故障及相应处理办法做一些简单介绍。
OC1、OC3故障。
三菱变频器出现OC(过电流故障)很多时候会是以下几方面原因造成的(现以A500系列变频器为例)。
(1)参数设置问题不当引起的,如时间设置过短;(2)外部因素引起的,如电机绕组短路,包括(相间短路,对地短路等);(3)变频器硬件故障,如霍尔传感器损坏,IGBT模块损坏等。
在现在的维修中,我们有时排除以上这些原因可能还是解决不了问题,OC故障仍然存在,当然更换控制板也不是解决问题的办法,这时可以考虑一下驱动电路是否存在问题。
三菱A500变频器的检测电路做的相当强大,以上这些检测点只要有任何一处有问题都可能会报警,无法正常运行。
除了一般性驱动电路所包括的驱动电源,驱动光耦隔离,驱动信号放大电路,还包括输出信号回馈电路等。
在以前我们介绍的检测手段无法解决问题的情况下,要特别注意驱动电路是否正常,检测方向主要包括刚才介绍的三菱驱动电路的几个组成部分。
UVT故障。
UVT为欠压故障,相信很多客户在使用中还是会碰到这样的问题,我们常见的欠压检测点都是直流母线侧的电压,经大阻值电阻分压后采样一个低电压值,与标准电压值比较后输出电压正常信号,过压信号或是欠压信号。
对于三菱A500系列变频器电压信号的采样值则是从开关电源侧取得的,并经过光电耦合器隔离,在我们的维修过程中,发现光耦的损坏在造成欠压故障的原因中占有了很大的比重,这种现象在以前的变频器维修中还是不多见的。
E6,E7故障。
E6,E7故障对于广大用户来说一定不陌生,这是一个比较常见的三菱变频器典型故障,当然损坏原因也是多方面的。
(1)集成电路1302H02损坏。
这是一块集成了驱动波形转换,以及多路检测信号于一体的IC集成电路,并有多路信号和CPU板关联,在很多情况下,此集成电路的任何一路信号出现问题都有可能引起E6,E7报警;(2)信号隔离光耦损坏。
在IC集成电路1302H02与CPU板之间有多路强弱信号需要隔离,隔离光耦的损坏在元器件的损坏比例中还是相对较高的,所以在出现E6,E7报警时,也要考虑到是否是此类因素造成的;(3)接插件损坏或接插件接触不良。
由于CPU板和电源板之间的连接电缆经过几次弯曲后容易出现折断,虚焊等现象,在插头侧如果使用不当也易出现插脚弯曲折断等现象。
以上一些原因也都可能造成E6,E7故障的出现。
开关电源损坏。
开关电源损坏也是A500系列变频器的常见故障,排除掉以前我们经常提到的脉冲变压器损坏,开关场效应管损坏,启振电阻损坏,整流两极管损坏等一些因素外,常见的损坏器件就是一块M51996波形发生器芯片了,这是一块带有导通关断时间调整,输出电压调节,电压反馈调节等多种保护于一体的控制芯片。
较容易出现问题的地方主要有芯片14脚的电源,调整电压基准值的7脚,反馈检测的5脚,以及波形输出的2脚等。
功率模块损坏。
功率模块的损坏,主要出现在E500系列变频器。
对于小功率的变频器,由于是集成了功率器件,检测电路于一体的智能模块,当模块损坏时只能更换,但维修成本较高,已无维修价值。
而对于5.5KW,7.5KW的E500系列变频器,选用了7MBR系列的PIM功率模块,更换的成本相对较低,对此类变频器的损坏可以做一些维修。
在近85年的历史中,三菱电机始终致力于尖端技术及专门知识的研究开发活动,并且在此基础上从事高性能产品及设备系统的开发和制造。
变频器故障综合分析与处理方法2009-11-12 来源:工控商务网浏览:145一、概述随着科学技术水平的不断提高,新型大功率电力电子元器件的诞生,集成电路和微机技术的应用,交流变频调速技术已日趋完善和成熟。
交流变频器调速系统以调速范围宽、动态响应快、调速精度高、保护功能完善和操作简单等优点,已在冶金、石化、电力、机械、民用电器等行业得到广泛应用。
变频器在正常使用6-10年后,就进入故障的高发期,经常会出现元器件烧坏、失效、保护功能频繁动作等故障现象,严重影响其正常运行。
在长期从事设备维修工作中,本人遇到过许多不同的变频器故障,在对其处理过程中,发现其故障类别有一定的共性和规律。
在实际维修中,只要抓住其特征,掌握故障处理的规律,就能做好变频器的维修工作,使变频器在实际中出现的各种故障得到及时处理和解决,并延长其使用寿命。
首先,要根据变频器的使用技术规范要求,制定完善的日常维护措施和检修周期,使故障隐患在初期得到解决,尤其是在恶劣环境条件下使用的变频器,这项措施更为重要。
其次,专业维修人员必须全面了解其原理、结构和控制方式等常识。
此外,还要有丰富的实践维修经验和扎实的电气理论知识。
二、变频器应用现状在实际设备维修中,遇到最多的是进口变频器。
如富士、三垦、ABB、AB、西门子等厂家。
特别是在大、中型企业旧设备技术改造中,应用最为广泛。
其原因是由于十多年前国内生产变频器的厂家很少,其产品功能简单、性能低、质量不高。
而进口变频器机型多、技术成熟、功能齐全、性能优越、质量高、耐用的特点,并且适合不同设备拖动需求,故占据着国内变频器市场的主要部分。
在多年的实际使用中,发现进口变频器也存在着一个很大的问题,就是国内多数代理商和经销商在推销进口变频器时,一般是以国外已开始淘汰的机型为主,由于这类产品的价格不高,国内企业普遍能够接受。
另外,国企在设备技术改造中,因改造资金不足、对方案设计不重视、审批专业性不强等其它原因,会自然选择这种机型。
故设备技术改造完成2-3年后,就出现变频器维修配件或整机购买不到现象。
代理商以这种产品淘汰,又推销另外一种机型,结果出现了同一个设备改造项目,却采用多种机型控制的情况。
如我厂炭素一、二期焙烧4台多功能天车变频器改造,分别采用AB公司AC800-01、AC800-02两种变频器(2台是2002年实施的改造;另2台是2003年完成的)。
又如我厂炭素净化系统4台200KW的排烟机2001年选用ABB公司ASC600(250KW)机型实施变频器改造后,运行3年多,就有2台变频器因无备件停用(因这种机型淘汰,已不生产,无备件供应)。
随着经济和技术的迅速发展和进步,近几年国内众多厂家在变频器研制和开发方面,已开始了大规模资金和人力的投入。
目前国产变频在控制技术和功能上,已取得了显著的进步和成就。
但由于过去的遗留的旧观念和态度,人们在实际应用中,仍然对国产变频的性能和质量有较深的怀疑和偏见,故目前制约着国产变频器推广和应用。
但国产变频器以其低价格,维修方便、配件供应及时等优点,正在逐渐被国内企业技术人员认可和接纳。
三、变频器的常见故障及维修对策目前,大多数国内企业中,由于维修人员素质、能力、实践经验及设备管理不到位等原因,在设备维修工作上,主要采取设备元部件整机更换的维修工作方式。
对于设备中变频器维修,也普遍采取整机报废、更换(或更新)维修方式。
故企业内废旧整机变频器数量很多,每年要花费大量资金购置新的变频器,以维持实际设备运行需要。
另外,由于变频器在使用中故障频繁,从维修人员到管理层普遍认为只有进口机型,才有高质量、低故障的保障。
对变频器使用环境、维护不重视,将各类异常故障归结于质量问题,故出现了设备完成变频器技术改造的几年后,又提出了新的设备变频器技改项目(这种技改其实是变频器更新工作),使一台设备多次实施技改,浪费了大量资金,影响着企业生产成本降低和效益的提高。
1变频器故障分类根据变频器发生故障或损坏的特征,一般可分为两类;一种是在运行中频繁出现的自动停机现象,并伴随着一定的故障显示代码,其处理措施可根据随机说明书上提供的知道方法,进行处理和解决。
这类故障一般是由于变频器运行参数设定不合适,或外部工况、条件不满足变频器使用要求所产生的一种保护动作现象;另一类是由于使用环境恶劣,高温、导电粉尘引起的短路、潮湿引起的绝缘降低或击穿等突发故障(严重时,会出现打火、爆炸等异常现象)。
这类故障发生后,一般会变频器无任何显示,其处理方法是先对变频器解体检查,重点查找损坏件,根据故障发生区,进行清理、测量、更换,然后全面测试,再恢复系统,空载运行,观察触发回路输出侧的波形,当6组波形大小、相位差相等后,再加载运行,达到解决故障的目的。
本文主要阐述第二类故障的分析和处理方法。
2主电路故障根据对变频器实际故障发生次数和停机时间统计,主电路的故障率占60%以上;运行参数设定不当,导致的故障占20%左右;控制电路板出现的故障占15%;操作失误和外部异常引起的故障占5%。
从故障程度和处理困难性统计,此类故障发生必然造成元器件的损坏和报废。
是变频器维修费用的主要消耗部分。
(1)整流块的损坏变频器整流桥的损坏也是变频器的常见故障之一,早期生产的变频器整流块均以二极管整流为主,目前部分整流块采用晶闸管的整流方式(调压调频型变频器)。
中、大功率普遍变频器整流模块一般为三相全波整流,承接着变频器所有输出电能的整流,易过热,也易击穿,其损坏后一般会出现变频器不能送电、保险熔断等现象,三相输入或输出呈低阻值(正常时其阻值达到兆欧以上)或短路。
在更换整流块时,要求其在与散热片接触面上均匀地涂上一层传热性能良好的硅导热膏,再紧固螺丝。
如果没有同型号整流块时,可用同容量的其它类型的整流块替代,其固定螺丝孔,必须重新钻孔、攻丝,再安装、接线。
例如,一台80年代中期西门子生产的变频器(7.5kVA)整流模块(椭圆形)击穿后,因无同类整流块配件,采用三垦生产的同容量整流块(矩形)替代后,已运行多年,目前仍然能正常使用。
(2)充电电阻易损坏导致变频器充电电阻损坏原因一般是:如主电路接触器吸合不好时,造成通流时间过长而烧坏;或充电电流太大而烧坏电阻;或由于重载启动时,主电路通电和RUN信号同时接通,使充电电阻既要通过充电电流,同时又要通过负载逆变电流,故易被烧坏。
其损坏的特征,一般表现为烧毁、外壳变黑、炸裂等损坏痕迹。
也可根据万用表测量其电阻(不同容量的机器,其阻值不同,可参考同一种机型的阻值大小确定)判断。
(3)逆变器模块烧坏中、小型变频器一般用三组IGTR(大功率晶体管模块);大容量的机种采用多组IGTR并联,故测量检查时应分别逐一进行检测。
IGTR的损坏也可引起变频器OC(+pA或+pd或+pn)保护功能动作。
逆变器模块的损坏原因很多:如输出负载发生短路;负载过大,大电流持续运行;负载波动很大,导致浪涌电流过大;冷却风扇效果差;致使模块温度过高,导致模块损坏、性能变差、参数变化等问题,引起逆变器输出异常。