名词解释根系活力的测定
- 格式:docx
- 大小:37.50 KB
- 文档页数:2
实验四根系活力的测定一、意义根系是植物对水分和矿质营养的主要吸收器官,同时又是植物体中重要物质如氨基酸、激素等物质合成、同化、转化的器官,因此根的生长情况和活动能力直接影响植物个体的生长情况、营养水平和产量水平等具有重要的实际意义。
在科学研究中常把根系的呼吸强度、阳离子代还量(CEC)、对有色物质的吸附量和ATP酶的活性等作为作物根系活力的指标。
二、测定原理TTC(2,3,5-氯化三苯基四氮唑)的氧化态是无色的,可被氢还原成不溶性的红色三苯基甲月朁(TTF)。
具有活力的组织和细胞在呼吸作用中,脱氢酶催化底物氧化脱氢产生NADH、NADPH 等还原性物质,当TTC渗入组织或细胞时呼吸过程产生的还原物质可将其还原成TTF(红色),组织或细胞被染成红色。
死细胞无呼吸,不发生这样的氧化还原反应。
应用这一原理,可根据组织或细胞染色情况来检测种子、花粉、根系等的活力。
植物根引起的TTC还原,可因加入琥珀酸、延胡索酸、苹果酸得到加强;而被丙二酸、碘乙酸所严重抑制。
还原强度(即根系活力强弱)可用TTF的生成量来表示。
TTF在485 nm 处有吸收峰,用乙酸乙酯提取后测定OD485,通过标准曲线计算TTF的生成量,用单位时间内单位根重产生的TTF表示根系的活力。
三、仪器设备1.分光光度计;2.分析天平(感量0.1mg);3.托盘天平(感量0.1 g);4.温箱;5.研钵:1套;6.4 cm漏斗:2 个;7.量筒10 mL:1 个;8.刻度移液管:0.5 mL、2 mL、5 mL;9.10 mL容量瓶(或10 mL具塞刻度试管):8个;10.试管架:1 个;11.石英砂适量;12.高型称量瓶(30×60 mm):2 个。
四、试剂1.乙酸乙酯(分析纯);2.连二亚硫酸钠(Na2S2O4),分析纯,粉末;3.1 %TTC溶液:准确称取TTC 1.0000 g,溶于少量水中,定容到100 mL,用时稀释至需要浓度;4.0.1 mol ·L -1 pH 7.5磷酸缓冲液;5.1 mol ·L -1 硫酸:用量筒取比重1.84的浓硫酸55 mL,边搅拌边加入盛有500 mL蒸馏水的烧杯中,冷却后稀释至1000 mL;6.0.4 mol ·L -1琥珀酸:称取琥珀酸4.72 g,溶于水中,定容至100 mL。
测定植物根系活力的方法植物根系活力是指植物根系吸收、传导和利用水分、营养物质以及对土壤环境进行适应的能力。
根系活力的测定可以帮助我们了解植物生长发育和适应能力的情况,同时指导我们合理地进行植被管理和栽培。
以下是测定植物根系活力的几种方法:1. 简易Auslander土柱法。
如其名,Auslander土柱法是一种方法简单、不需高级设备的测定植物根系活力的方法。
该方法主要是通过植物根系对土壤环境的响应,来判断根系活力的强弱。
具体操作方法为:将要测定的植株的根系在浇透水的土壤内生长2-4天,之后将其整株拔起,然后根据根系的发育程度、数量、长度等来评估根系活力的强弱。
该方法简单易行,操作简便,但其缺点在可能存在误判的可能性。
2.根系形态分析法。
根系形态分析法是通过对植物根系形态结构的观察,来判断其根系活力的强弱。
该方法适合于观测植物在不同环境下的根系结构变化,比如不同土壤类型、水分营养等而导致的根系形态上的适应性变化。
具体测定内容为:利用根系分叉角度、根毛数量、根长、分散程度等指标来评估根系活力的强弱。
该方法操作简便,可以直观地观察植物根系的形态变化。
3. 马琦森氏(Markson)芽生长理论测定法。
马琦森氏芽生长理论测定法是一种直接测定植物根系活力的方法,与前面两种方法略有不同。
该方法的基本理论是当植物叶和根的生长速度趋于相等时,表明根系的活力非常强。
为测量生长速度,该方法首先需要在芽顶茎部投射一个小光斑,之后再测量芽生长长度的变化。
与前面两种方法相比,马琦森氏芽生长理论测定法操作难度较大,但它可以直接反映出植物根系的生长速度。
4.直接收获法。
直接收获法可以理解为野外调查法。
该方法不针对单一植物进行定量测定,而是利用长期收获和观察的数据分析出根系生长的数量、长度和生长速度。
根第一原则:土壤性质的差异和分布引起根的差异在根领域尤为明显。
如草地表土CO_2分压的变化,山间度坡对气温、风速、光照和土壤水分的影响均可引起根的各种变化。
实验植物根系活力的测定植物根系是活跃的吸收器官和合成器官,根的生长情况和活力水平直接影响地上部的生长和营养状况及产量水平。
本实验学习测定根系吸收面积和活力的方法。
一、根系总吸收面积和活跃吸收面积的测定【原理】根据植物矿质吸收的理论,植物对溶质的最初吸收具有吸附的特性,并假定这时在根系表面均匀地覆盖了一层被吸附物质的单分子层,因此可以根据根系对某种物质的吸附量来测定根的吸收面积。
常用甲烯蓝作为被吸附物质,它的被吸附量可以根据供试液浓度的变化用比色法准确地测出。
已知1mg甲烯蓝成单分子层时所占面积为1.1m2,据此即可求出根系的总吸收面积。
当根系在甲烯蓝溶液中已达到吸附饱和而仍留在溶液中时,根系的活跃部分能把原来吸附的物质吸收到细胞中去,因而继续吸附甲烯蓝。
从后一吸附量求出活跃吸收面积,可作为根系活力指标。
【仪器与用具】分光光度计1台;100ml烧杯3只;50或100ml量筒1个(依根系大小而定);吸量管1ml 1支,10ml 1支;试管(15×150mm)10支;容量瓶1000ml 1个,100ml 1个;吸水纸适量;试管架1个。
【试剂】0.0002mol/L甲烯蓝溶液:精确称取74.8mg甲烯蓝(C16H18N3SCl·3H2O),加水溶解,定容至1000ml。
此溶液每ml含甲烯蓝0.0748mg。
0.010mg/ml的甲烯蓝溶液:用刻度吸管吸取0.0002mol/L甲烯蓝13.37ml定容至100ml,摇匀即成。
【方法】1.植物材料的准备本实验最好采用水培或砂培植物,以获得完整而无损伤的根系。
玉米根系发达,是较好的材料。
如无水培、砂培试材,也可用盆栽植物,用水将盆土仔细冲净后使用。
田间栽培的材料因不可能无损地挖出全部根系,最好避免在正式试验中使用。
2.甲烯蓝溶液标准曲线的制作取试管7支编号,按表14-1次序加入各溶液,即成甲烯蓝系列标准液。
表14-1 各试剂加入顺序试管号 1 2 3 4 5 6 70.01mg/ml甲烯蓝溶液(ml)蒸馏水(ml)甲烯蓝浓度mg/ml 010190.001280.002460.004640.006820.008100.01以第1管(水)为参比在分光光度计下比色,取波长660nm,读出光密度,以甲烯蓝浓度为横坐标,光密度为纵坐标绘成标准曲线。
实验概要植物根系是活跃的吸收器官和合成器官,根的生长情况和活力水平直接影响地上部的生长和营养状况及产量水平。
本实验练习测定根系活力的方法,为植物营养研究提供依据。
实验原理氯化三苯基四氮唑(TTC)是标准氧化电位为80mV的氧化还原色素,溶于水中成为无色溶液,但还原后即生成红色而不溶于水的三苯甲瓒,生成的三苯甲瓒比较稳定,不会被空气中的氧自动氧化,所以TTC被广泛地用作酶试验的氢受体,植物根系中脱氢酶所引起的TTC还原,可因加入琥珀酸,延胡索酸,苹果酸得到增强,而被丙二酸、碘乙酸所抑制。
所以TTC还原量能表示脱氢酶活性并作为根系活力的指标。
主要试剂1.乙酸乙酯(分析纯)。
2. 次硫酸钠(Na2S2O4),分析纯,粉末。
3. 1%TTC溶液准确称取TTC1.0g,溶于少量水中,定容到100ml。
用时稀释至各需要的浓度。
4. 磷酸缓冲液(1/15mol/L,pH7)。
5. 1mol/L硫酸用量筒取比重1.84的浓硫酸55ml,边搅拌边加入盛有500ml蒸馏水的烧杯中,冷却后稀释至1000ml。
6. 0.4mol/L琥珀酸称取琥珀酸4.72g,溶于水中,定容至100ml即成。
主要设备1. 分光光度计;2. 分析天平(感量0.1mg);3. 电子顶载天平(感量0.1g);4. 温箱;5. 研钵;6. 三角瓶50ml;7. 漏斗;8. 量筒100ml;9. 吸量管10ml;10. 刻度试管10ml;11. 试管架;12. 容量瓶10ml;13. 药勺;14. 石英砂适量;15. 烧杯10ml、1000ml。
实验材料水培小麦根系。
实验步骤1. 定性测定1)配制反应液把1%TTC 溶液、0.4 mol/L 的琥珀酸和磷酸缓冲液按1:5:4 比例混合。
2)把根仔细洗净,把地上部分从茎基部切除。
将根放入三角瓶中,倒入反应液,以浸没根为度,置37℃左右暗处放1~3h ,以观察着色情况,新根尖端几毫米以及细侧根都明显地变成红色,表明该处有脱氢酶存在。
实验-植物根系活力的测定
植物根系活力是指植物根系在土壤中生长、吸收水分和养分的能力。
测定植物根系活力的方法有很多种,其中常用的方法是测定根长、根数和根重等指标。
下面介绍一种简单的测定植物根系活力的实验方法。
实验目的:
测定不同植物对不同营养液的根系生长情况,比较不同营养液对根系生长的影响。
实验器材:
1. 玻璃培养皿
2. 密闭袋
3. 印度蓝溶液
4. 双面胶带
5. 不同营养液:蔗糖水、盐水、橙汁、矿泉水等。
实验步骤:
1. 将玻璃培养皿控制在 3~7 cm,用双面胶带将玻璃培养皿固定于橙汁、矿泉水、蔗糖水、盐水等不同营养液中。
2. 取几株同龄、同质、同株的植物。
去掉表皮组织,并将植物的根部放入玻璃培养皿里。
3. 将培养皿置于密闭袋内,保证环境温度、光线和空气湿度的一致性。
4. 每天提取一些根系,用印度蓝溶液染色。
将所有染蓝的根系取出,用银砂纸将植物根系的颜色刮干净,然后用千分尺测量根长或者称重等。
实验注意事项:
1. 保持密闭袋的气密性,注意通风、换氧。
2. 保持营养液的稳定性,避免出现水质的变化。
实验结论:
从实验结果来看,不同营养液对植物根系的生长效果不尽相同。
因此,植物的根系发育和生长需要各种不同的营养元素。
营养液中各种无机盐和有机化合物含量的不同,可能会影响植物根系的生长效果。
实验二植物根系活力的测定植物根系是活跃的吸收器官和合成器官,根的生长情况和活力水平直接影响地上部的营养状况及产量水平。
本实验学习测定根系活力的甲烯蓝法。
【原理】根据沙比宁等的理论,植物对溶质的吸收具有表面吸附的特性,并假定被吸附物质在根系表面形成一层均匀的单分子层;当根系对溶质的吸附达到饱和后,根系的活跃部分能将吸附着的物质进一步转移到细胞中去,并继续产生吸附作用。
在测定根系活力时常用甲烯蓝作为吸附物质,其被吸附量可以根据吸附前后甲烯蓝浓度的改变算出,甲烯蓝浓度可用比色法测定。
已知1mg甲烯蓝形成单分子层时覆盖的面积为1.1m2,据此可算出根系的总吸收面积。
从吸附饱和后再吸附的甲烯蓝的量,可算出根系的活跃吸收表面积,作为根系吸收活力的指标。
【材料、仪器与试剂】1.材料:植物根系。
2.仪器及用具:分光光度计;移液管;烧杯;比色管。
3.试剂:0.01 mg•mL-1甲烯蓝溶液;0.0002 mol•L-1(0.075 mg•mL-1)甲烯蓝溶液。
【方法与步骤】1. 甲烯蓝标准曲线的制作按表2-1用0.01 mg•mL-1甲烯蓝溶液配制系列标准溶液,于660 nm处测定吸光度,以甲烯蓝浓度为横坐标,吸光度为纵坐标,绘制标准曲线。
表2-1 甲烯蓝系列标准溶液的配制2. 将待测的植物根系洗净沥干,浸在装有一定量水的量筒中,用排水法测定根系的体积(或用体积计测定)。
3. 将0.0002 mol•L-1的甲烯蓝溶液(每毫升溶液中应含0.075 mg甲烯蓝,为消除溶液配制和比色误差,其含量需要重新进行比色,查标准曲线确定)分别倒入3个小烧杯中,编号,每个烧杯中溶液体积约10倍于根系的体积。
准确记下每个烧杯中的溶液量。
4. 将洗净的待测根系,用吸水纸小心吸干,然后依次浸入盛有甲烯蓝溶液的烧杯中,每杯中浸1.5 min,注意每次取出时,都要使根上的甲烯蓝溶液流回到原杯中去。
5. 从3个小烧杯中各吸取甲烯蓝溶液1 mL,用去离子水稀释10倍后,于660 nm处测定吸光度,根据标准曲线,查得各杯浸根后甲烯蓝的浓度。
名词解释根系活力的测定
标题:名词解释:根系活力的测定
导语:
根系活力是植物生长的关键指标之一,它反映了植物根部的生命力和适应环境的能力。
本文将探讨如何测定根系活力,并分析其重要性。
一、根系活力的概念与重要性
根系活力指的是植物根系的生物学活力程度,既包括根长、侧根数量等形态指标,也包括吸水、吸收养分、抗逆性等功能指标。
根系活力的测定对于解析植物的营养吸收能力、适应环境能力以及预测植物的生长状况具有重要意义。
二、根系活力的测定方法
1. 根长测定法:此方法适用于观察植物根系的生长状况。
首先,选取具有代表性的试验对象,将其根系取出并轻轻清洗。
然后,使用根尖沙盘或扫描仪等设备对根系进行测量与记录。
最后,根据测量结果计算得到根长指数等数据,以反映根系活力。
2. 根系求和测定法:此方法适用于评估植物根系的总体生物学活力。
通过取样调查,将所得的根系数量与长度之和作为根系活力的测定指标。
这种方法虽然操作简便,但在抵抗病虫害等因素时存在较大的不确定性。
3. 根系吸水性测定法:此方法重点关注植物根系的吸水能力。
通过给根系提供含有不同浓度的水溶液,测定吸收水分的速度,从而评估根系的吸水性能。
这种方法可以为灌溉和肥料施用提供依据,但过程较为复杂,需要充分的实验设计和仪器设备。
三、根系活力测定的意义和应用
1. 营养管理与调控:根系活力的测定可以帮助农民和园艺爱好者了解植物对营养元素和肥料的吸收利用情况,进而优化肥料施用方案,提高养分利用效率。
2. 抗逆性评估:根系活力测定可以反映植物对环境逆境(如缺水、高温、盐碱等)的耐受能力。
通过对不同品种或不同处理下植物根系活力的比较,可以评估植物的抗逆性,为育种和遗传改良提供重要参考。
3. 土壤改良与植被修复:根系活力的测定是评估土壤质量和植被修复效果的重要手段。
通过测定植物根系的长度、数量和吸水能力等指标,可以间接评估土壤的肥力、水分与气候适应能力,为土壤改良和植被修复提供指导。
四、根系活力测定方法的局限性和发展方向
在根系活力测定方法中存在一些局限性,如测量误差、仪器设备成本高、操作繁琐等。
因此,未来的研究可以探索开发更加高效、准确和便捷的根系活力测定方法,例如利用影像技术、基因技术等手段结合测定,以提高测量精度和效率。
结语:
根系活力的测定是植物生长与适应环境能力的重要评估指标。
通过合理选择测定方法并解析测定结果,可以为植物营养管理、抗逆性评估、土壤改良与植被修复等方面提供科学依据,进一步推动农业与环境研究的发展。