有理数测试题及答案
- 格式:doc
- 大小:178.11 KB
- 文档页数:4
有理数试题及答案一、选择题1. 下列哪个数是有理数?A. πB. √2C. 0.33333...(3无限循环)D. 0.1010010001...答案:C2. 如果a是有理数,b是有理数,那么a+b一定是:A. 有理数B. 无理数C. 整数D. 实数答案:A3. 计算下列式子的结果,哪个是有理数?A. √4B. √9C. √(-1)D. √(2)答案:B二、填空题1. 有理数可以表示为两个整数的比,即a/b的形式,其中a和b都是整数,且b不等于______。
答案:02. 有理数包括所有整数和分数,但不包括______。
答案:无理数三、解答题1. 计算下列式子,并判断结果是否为有理数:(1) 3/4 + 5/6(2) √9(3) 2 - √3答案:(1) 3/4 + 5/6 = 9/12 + 10/12 = 19/12,是有理数。
(2) √9 = 3,是有理数。
(3) 2 - √3,由于√3是无理数,所以2 - √3是无理数。
2. 判断下列数是否为有理数,并说明理由:(1) √4(2) 0.12345678901234567891...答案:(1) √4 = 2,2是有理数,因为它可以表示为整数2/1。
(2) 0.12345678901234567891...是一个无限不循环小数,因此它是无理数。
四、简答题1. 请解释什么是有理数,并给出两个例子。
答案:有理数是可以表示为两个整数的比,即a/b的形式,其中a和b都是整数,且b不等于0。
例如,3/2和-5都是有理数。
第一章《有理数》全章 练习题 (含答案)一、选择题1. 2024的倒数是( )A .2024B .2024−C .12024−D .120242. 中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,将这个数用科学记数法表示为( )A .84410⨯B .84.410⨯C .94.410⨯D .104.410⨯3.如图,数轴上点A 和点B 分别表示数a 和b ,则下列式子正确的是( )A .0a >B .0ab >C .0a b −>D .0a b +<4.下列几种说法中,不正确的有( )个.①绝对值最小的数是0;②最大的负有理数是﹣1;③数轴上离原点越远的点表示的数就越小;④平方等于本身的数只有0和1;⑤倒数是本身的数是1和﹣1.A .4B .3C .2D .15. 若|m ﹣2|+(n +3)2=0,则m ﹣n 的值为( )A .﹣5B .﹣1C .1D .56. 如图是嘉淇同学的练习题,他最后得分是( )A .20分B .15分C .10分D .5分6. 如图,数轴上,A B 两点分别对应有理数,a b ,则下列结论:①0ab <;②0a b +>;③1a b −>;④||||0a b −<,⑤220a b −<.其中正确的有( )A .1个B .2个C .3个D .4个8.如图是一个数值转换机, 若输入x 的值是1−, 则输出的结果y 为( )A .7B .8C .10D .129. 观察1211−=,2213−=,3217−=,42115−=,52131−=,⋯,归纳各计算结果中的个位数字的规律,猜测202221−的个位数字是( )A .1B .3C .7D .510. 计算 1111111111131422363524⎡⎤⎛⎫⎛⎫−+÷÷−⨯+−÷ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的值为( ) A .2514 B .2514− C .114 D .114− 二、填空题(本大题共6小题)11. -56____ -67(填>,<,=) 12. 如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分80分应记作_____13. 数轴上,点A 表示的数是-3,距点A 为4个单位长度的点所表示的数是______.14. 若a 与b 互为相反数,m 与n 互为倒数,则()()220212022b a b mn a ⎛⎫+−+= ⎪⎝⎭ . 15.已知|a |=3,|b |=5,且ab <0,则a +b 的值16. 已知m 、n 两数在数轴上位置如图所示,将m 、n 、﹣m 、﹣n 用“<”连接:____________17.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为 . 18 .若x 是不等于1的实数,我们把11x−称为x 的差倒数, 如2的差倒数是1112=−−,-1的差倒数为()11112=−−, 现已知113x =−,2x 是1x 的差倒数,3x 是2x 的差倒数,4x 是3x 的差倒数,…,依此类推,则2022x = .三、解答题19. 把下列各数填在相应的括号里:﹣8,0.275,227 ,0,﹣1.04,﹣(﹣3),﹣13,|﹣2| 正数集合{ …}负整数集合{ …}分数集合{ …}负数集合{ …}.20 画一条数轴,在数轴上表示下列有理数,并用“<”号把各数连接起来:2.5−,0,-2,-(-4),-3.5,321. (1)(-534)+(+237)+(-114)-(-47) (2)()155********⎛⎫−+−⨯− ⎪⎝⎭ (3)-14+14×[2×(-6)-(-4)2] (4)(-2)3×(-34)+30÷(-5)-│-3│22. 已知a ,b 互为相反数,c ,d 互为倒数,|m |=2,求代数式2m ﹣(a +b ﹣1)+3cd 的值. .23. 已知x 是最小正整数,y ,z 是有理数,且有| y ﹣2|+|z+3|=0,计算:(1)求x ,y ,z 的值.(2)求3x ﹢y ﹣z 的值.24. 某一出租车一天下午以鼓楼为出发点,在东西方向上营运,向东为正,向西为负, 行车依先后次序记录如下:(单位:km )+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣6,﹣4,+7(1)将最后一名乘客送到目地,出租车离鼓楼出发点多远?在鼓楼什么方向?(2)若每千米的价格为2.4元,司机一下午的营业额是多少元?25.已知数轴上三点M ,O ,N 对应的数分别为﹣1,0,3,点P 为数轴上任意点,其对应的数为x .(1)MN 的长为 ; (2)如果点P 到点M 、点N 的距离相等,那么x 的值是: ; (3)如果点P 以每分钟2个单位长度的速度从点O 向左运动,同时点M 和点N 分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动. 设t 分钟时点P 到点M 、点N 的距离相等,求t 的值.参 考 解 答:一、选择题1.D . 2 .C 3.D 4.C 5.D 6.B 7.D 8.A . 9 .B . 10..C二、填空题11. > 12 .-3分 13.1或-7 14.0 15.-2或2 16 .m <﹣n <n <﹣m 17.9900 18 .4三、解答题19. 解:正数集合{ 0.275,227,()3−−,2− …};负整数集合{8−…};分数集合{ 0.275, 227, 1.04−,13− …};负数集合{8−, 1.04−,13− …}.20 解:()2.5 2.5,44,−=−−=在数轴上表示各数如下:∴ 3.5−<2−<0< 2.5−<3<()4−−21. 解:(1)(-534)+(+237)+(-114)-(-47)3134=5124477⎡⎤⎛⎫⎛⎫⎛⎫−+−++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ 734=−+=−(2)()155********⎛⎫−+−⨯− ⎪⎝⎭ ()()()()15573636363629612=⨯−−⨯−+⨯−−⨯− 182030217=−+−+=−(3)-14+14×[2×(-6)-(-4)2] ()1112164=−+⨯−− ()178=−+−=−(4)(-2)3×(-34)+30÷(-5)-│-3│ ()38634⎛⎫=−⨯−+−− ⎪⎝⎭6633=−−=−22. 解:a ,b 互为相反数,c ,d 互为倒数,|m |=2,∴0a b +=,1cd =,2m =±,∴原式=()2201314138⨯−−+⨯=++=或 原式=()()2201314130⨯−−−+⨯=−++=.23. 解:(1)∵x 是最小正整数∴x=1∵|y ﹣2|≥0,|z+3|≥0,且|y ﹣2|+|z+3|=0∴|y ﹣2|=0,|z+3|=0∴y ﹣2=0,z+3=0∴y=2,z=-3.(2)∵x=1,y=2,z=-3∴3x ﹢y ﹣z=3×1+2-(-3)=3+2+3=8.24. 解:(1)9-3-5+4-8+6-3-6-4+7=-3(千米)答:最后出租车离鼓楼出发点3千米,在鼓楼的西方;(2)()9+-3+-5+4+-8++6+-73+6+-4+ 2.4132+−⨯=(元), 答:若每千米的价格为2.4元,司机一个下午的营业额是132元.25.解:(1)MN 的长为3﹣(﹣1)=4.(2)x =(3﹣1)÷2=1;(3)①点P 是点M 和点N 的中点.根据题意得:(3﹣2)t =3﹣1,解得:t =2.②点M 和点N 相遇.根据题意得:(3﹣2)t =3+1,解得:t =4.故t 的值为2或4.故答案为4;1.。
有理数测试题及答案一、选择题1. 下列哪个数是有理数?A. √2B. πC. 1/3D. 0.8080080008…(每两个8之间依次增加一个0)答案:C2. 有理数的英文是什么?A. Rational numberB. Irrational numberC. Real numberD. Complex number答案:A3. 若a和b是有理数,且a/b ≠ 0,那么a和b至少有一个数是?A. 正数B. 负数C. 零D. 整数答案:D4. 两个有理数相加,结果必然是?A. 有理数B. 无理数C. 整数D. 零答案:A5. 以下哪个操作不会改变一个有理数的值?A. 乘以一个非零有理数B. 加上一个无理数C. 除以一个非零有理数D. 减去一个相同的有理数答案:D二、填空题1. 请写出一个有理数的例子:__________。
答案:2/32. 有理数可以表示为两个整数的比,即 a/b,其中a和b都是__________。
答案:整数3. 若一个有理数的分母为零,则该有理数是__________。
答案:未定义4. 一个有理数可以是__________或__________。
答案:正数负数5. 请写出一个无限循环小数的有理数例子:__________。
答案:1/3 = 0.33333…三、简答题1. 请简述什么是有理数。
答案:有理数是可以表示为两个整数的比的数,其中分母不为零。
这包括有限小数、无限循环小数以及整数。
2. 有理数和无理数有什么区别?答案:有理数可以表示为两个整数的比,而无理数则不能。
有理数可以是有限小数或无限循环小数,而无理数则是无限不循环小数。
3. 如何判断一个数是否是有理数?答案:如果一个数可以表示为两个整数的比,并且分母不为零,那么这个数就是有理数。
例如,所有整数、分数和无限循环小数都是有理数。
4. 请举例说明有理数的加法和减法。
答案:例如,1/2 + 1/3 = 5/6,这是一个有理数的加法例子。
有理数单元测试及答案有理数单元检测试题一、填空题(本题共有9个小题,每小题2分,共18分)1、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么惯上将2楼记为1;地下第一层记作-1;数-2的实际意义为地下第三层,数+9的实际意义为地面上的第十层。
2、如果数轴上的点A对应有理数为-2,那么与A点相距3个单位长度的点所对应的有理数为-5.3、某数的绝对值是5,那么这个数是-5或5.(保留四个有效数字)4、(4/3)²=16/9,(-4/3)²=16/9.5、数轴上和原点的距离等于3的点表示的有理数是-3或3.6、计算:(-1)+(-1)=-2.7、如果a、b互为倒数,c、d互为相反数,且m=-1,则代数式2ab-(c+d)+m=-1.8、(+5.7)的相反数与(-7.1)的绝对值的和是12.8.9、已知每辆汽车要装4个轮胎,则51只轮胎至多能装配12辆汽车。
二、选择题(本题共有10个小题,每小题都有A、B、C、D四个选项,请你把你认为适当的选项前的代号填入题后的括号中,每题2分,共20分)10、下列说法正确的是(C)。
A。
整数就是正整数和负整数B。
负整数的相反数就是非负整数C。
有理数中不是负数就是正数D。
零是自然数,但不是正整数11、下列各对数中,数值相等的是(A)。
A。
-2与(-2)B。
-3与(-3)C。
-3×2与-3×2D。
-( -3)与-( -2)12、在-5,-9,-3.5,-0.01,-2,-212各数中,最大的数是(D)。
A。
-12B。
-9C。
-0.01D。
-213、如果一个数的平方与这个数的差等于1,那么这个数只能是(B)。
A。
-1B。
1C。
0D。
或114、绝对值大于或等于1,而小于4的所有的正整数的和是(C)。
A。
8B。
7C。
6D。
515、计算:(-2)+(-2)的是(D)。
A。
2B。
-1C。
-2D。
有理数综合测试题一、选择题(每小题3分,共30分)1、据《宁波市休闲基地和商务会议基地建设五年行动计划》,预计到2015年,宁波市接待游客容量将达到4640万人,起重4640万用科学计数法表示( ) A.0.46×109B.4.64×108C.4.64×107D.46.4×1072、 下列四种说法,正确的是( )A 、 所有的正数都是整数; B、不是正数的一定是负数C、正有理数包括整数和分数。
D、一个有理数不是正数就是负数或者是零。
3、 下列说法中,正确的是 ( )i. 正整数、负整数统称整数 B 、正分数和负分数统称分数 C 、零既可以是正整数也可以是负整数 D 、一个有理数不是正数就是负数 4、一个数的相反数小于它本身,这个数是( )A 、任意有理数B 、零C 、负有理数D 、正有理数 5、若两个有理数的差是正数,那么( ) A 、 被减数是正数,减数是负数 B 、 被减数和减数都是正数 C 、 被减数大于减数D 、 被减数和减数不能同为负数。
6、下列计算正确的是( )2243A.1134C.2510-÷⨯=-⨯= 1B.8[()]24151D.2883-⨯--=--÷=- 7、计算212)36()1(÷+-等于( )A. 4B. 5C. 3D.-168、若四个有理数之和的,则第四个数是,,,其中三个数是是9612431--( ) A -9 B 15 C -18 D 21 9、算式22+22+22+22可化为( )A 24 B 28C 82D 21610、 如果、a b 适合下列四个式中的( ),那么、a b 一定同时为0 A 、||0a b += B 、||0ab = C 、||||0a b += D 、||||0a b -=二、填空题:(每小题2分,共30分)1、-3的相反数是 ,倒数是 。
2、1||2a =,则a = 3、、光的速度约为300000000米/秒,可用科学记数法表示为 4、最大的负整数是 ,最小的正整数是 。
第一章有理数单元测试卷(一)附答案(总13页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一章有理数单元测试卷基础卷考试范围:有理数;考试时间:100分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________题号一 二 三 总分 得分评卷人得 分 一.选择题(共12小题)1.如果水库的水位高于正常水位5m 时,记作5m +,那么低于正常水位3m 时,应记作( )A .3m +B .3m -C .13m +D .5m -2.下列说法正确的有( )①正有理数是正整数和正分数的统称;②整数是正整数和负整数的统称;③有理数是正整数、负整数、正分数、负分数的统称;④0是偶数,但不是自然数;⑤偶数包括正偶数、负偶数和零.A .1个B .2个C .3个D .4个3.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a b >B .0ab >C .||||a b <D .a b ->4.下列各数中,相反数是12-的是( ) A .12- B .12 C .2- D .25.下列化简错误的是( )A .(2)2--=B .(3)3-+=-C .(4)4+-=-D .|5|5-=6.23-的倒数是( ) A .32 B .32- C .23 D .23- 7.下列四个数中,最大的数是( )A .13-B .0C .2-D .28.我国古代的“九宫格”是由33⨯的方格构成的,每个方格内均有不同的数,每一行、每一列以及每一条对角线上的三个数之和相等.如图给出了“九宫格”的一部分,请你推算x 的值是( )251 x A .3 B .4 C .6 D .89.计算(13)(8)---的结果是( )A .21B .21-C .5D .5-10.下列各式中,正确的是( )A .422--=-B .3(3)0--=C .10(8)2+-=- D .54(4)5----=- 11.有理数a 、b 在数轴上的位置如图所示,下列各式正确的是( )A .0ab >B .0a b +<C .0a b ->D .0b a ->12.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .0a b +>B .0a b ->C .0a b >D .||||a b >评卷人得 分 二.填空题(共6小题)13.如果盈利5千元记作5+千元,那么亏损2千元记作 千元.14.在113,714,1340中不能化成有限小数的是 15.点A 、B 在数轴上对应的数分别为2-和5,则线段AB 的长度为 .16.a 的相反数是710,则a 的倒数是 . 17.已知a 与b 的和为2,b 与c 互为相反数,若||1c =,则a = .18.若a 和b 互为倒数,则ab = .评卷人得 分三.解答题(共8小题)19.股民老宋上周五在股市以收盘价(股市收市时的价格)每股36元购买进某公司股票1000股,周六,周日股市不交易,在接下来的一周交易日内,老宋记下该股票每日收盘价格相比前一天的涨跌情况如表:(单位:元)(1)星期三收盘时,每股是多少元?(2)已知买入股票与卖出股票均需支付成交额的1.5%的手续费,并且卖出股票还要交成交额的1%的交易税,如果股民老宋在周五以收盘价将全部股票卖出,他的收益情况如何?20.对于任意四个有理数a 、b 、c 、d ,可以组成两个有理数对(,)a b 与(,)c d .我们规定:(a ,)(b c ,)d bc ad =-.例如:(1,2)(3,4)23142=⨯-⨯=.根据上述规定解决下列问题:(1)有理数对(3,5)(4-,2)-= ;(2)若有理数对(4-,31)(2x -,1)8x -=,求x 的值;(3)当满足等式(2-,31)(x k -,)5x k k +=+的x 是整数时,求整数k 的值.21.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A 、B 在数轴上对应的数分别为a 、b ,则A 、B 两点间的距离表示为||AB a b =-.根据以上知识解题:(1)点A 在数轴上表示3,点B 在数轴上表示2,那么AB = .(2)在数轴上表示数a 的点与2-的距离是3,那么a = .(3)如果数轴上表示数a 的点位于4-和2之间,那么|4||2|a a ++-= .(4)对于任何有理数x ,|3||6|x x -+-是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.22.已知324x +=-与3321y m -=-,且x 、y 互为相反数,求m 的值.23.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b c - 0,a b + 0,c a - 0.(2)化简:||||||b c a b c a -++--.24.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2.(1)直接写出a b +,cd ,m 的值;(2)求a b m cd m+++的值. 25.画出数轴,并在数轴上画出表示下列各数的点,再按从小到大的顺序用“<”号把这些数连接起来:1-,0,122-,3,1226.七年级二班的几位同学正在一起讨论一个关于数轴上的点表示数的题目:甲说:“这条数轴上的两个点A 、B 表示的数都是绝对值是4的数”;乙说:“点C 表示负整数,点D 表示正整数,且这两个数的差是3”;丙说:“点E 表示的数的相反数是它本身”.(1)请你根据以上三位同学的发言,画出一条数轴,并描出A 、B 、C 、D 、E 五个不同的点,(2)求这五个点表示的数的和.第一章有理数单元测试卷参考答案与试题解析一.选择题(共12小题)【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:如果水库的水位高于正常水位5m 时,记作5m +,那么低于正常水位3m 时,应记作3m -.故选:B .【点评】此题主要考查正负数的意义,关键是掌握正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.【分析】按照有理数的分类对各项进行逐一分析即可.【解答】解:①正有理数是正整数和正分数的统称是正确的;②整数是正整数、0和负整数的统称,原来的说法是错误的;③有理数是正整数、0、负整数、正分数、负分数的统称,原来的说法是错误的; ④0是偶数,也是自然数,原来的说法是错误的;⑤偶数包括正偶数、负偶数和零是正确的.故说法正确的有2个.故选:B .【点评】考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.【分析】根据各点在数轴上的位置得出a 、b 两点到原点距离的大小,进而可得出结论.【解答】解:由图可知101a b <-<<<,则0ab <,||||a b >,a b ->.故选:D .【点评】本题考查的是数轴,解答本题的关键在于结合有理数a 、b 在数轴上的对应点的位置进行判断求解.【分析】根据只有符号不同的两个数是互为相反数,求出12-的相反数,然后选择即可. 【解答】解:12的相反数是12-,∴相反数等于12-的是12.故选:B.【点评】本题考查了相反数的定义,熟记定义是解题的关键.【分析】根据相反数的含义和应用,以及绝对值的含义和应用,逐项判断即可.【解答】解:(2)2--=,∴选项A不符合题意;(3)3-+=-,∴选项B不符合题意;(4)4+-=-,∴选项C不符合题意;|5|5-=-,∴选项D符合题意.故选:D.【点评】此题主要考查了相反数的含义和应用,以及绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数a-;③当a是零时,a的绝对值是零.【分析】根据倒数的定义,可得答案.【解答】解:23-的倒数是32-,故选:B.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数.【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可.【解答】解:12023-<-<<,∴最大的数是2;故选:D.【点评】此题主要考查了实数的大小比较,关键是掌握比较大小的法则.【分析】首先根据三阶幻方的特征,可得:第三行第一列的数是:5228⨯-=;然后根据:第三行的各个数的和53=⨯,求出x 的值是多少即可.【解答】解:第三行第一列的数是:5228⨯-=,53816x =⨯--=.故选:C .【点评】此题主要考查了有理数加法的运算方法,以及幻方的特征和应用,要熟练掌握.【分析】原式利用减法法则变形,计算即可求出值.【解答】解:原式1385=-+=-,故选:D .【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.【分析】直接利用有理数的混合运算法则计算得出答案.【解答】解:A 、426--=-,故此选项不合题意;B 、3(3)6--=,故此选项不合题意;C 、10(8)2+-=,故此选项不合题意;D 、54(4)5----=-,正确,符合题意.故选:D .【点评】此题主要考查了有理数的混合运算,正确掌握相关运算法则是解题关键.【分析】根据数轴上点的位置确定出a b +,a b -以及ab 的正负即可.【解答】解:由题意:0a <,0b >,||||b a >,0ab ∴<,0a b +>,0a b -<,0b a ->,故选:D .【点评】此题考查了数轴,熟练掌握有理数的运算法则是解本题的关键.【分析】先根据数轴上两数,右边的数总是大于左边的数,即可得到:0b a <<,且||||b a >,再根据有理数的运算法则即可判断.【解答】解:根据数轴可得:0b a <<,且||||b a >.A 、0a b +<,故选项错误;B 、0a b ->,故选项正确;C 、0ab <,故选项错误;D 、||||a b <,故选项错误.【点评】本题主要考查了数轴上两数比较大小的方法以及有理数的运算法则.二.填空题(共6小题)【分析】根据正数与负数的定义即可求出答案.【解答】解:如果盈利5千元记作5+千元,那么亏损2千元记作2-千元,故答案为:2-.【点评】本题考查正数与负数,解题的关键是正确理解正负数的定义,本题属于基础题型.【分析】分别将每个分数化为小数,则有70.514=,130.32540=,141 1.333==,即可求解.【解答】解:70.514=,130.32540=,141 1.333==,113∴不能化成有限小数,故答案为113.【点评】本题考查有理数;能够将分数正确的化为小数是解题的关键.【分析】根据数轴上两点距离公式进行计算即可.【解答】解:|25|7AB=--=,故答案为:7.【点评】考查数轴表示数的意义,点A、B在数轴上表示的数为a、b,则A、B两点之间的距离为||AB a b=-.【分析】利用相反数及倒数的定义计算即可得到结果.【解答】解:a的相反数是710,710a∴=-,则a的倒数为107 -.故答案为:107 -.【点评】此题考查了相反数,以及倒数,熟练掌握各自的定义是解本题的关键.【分析】根据绝对值的定义得出c的值,根据互为相反数的两数相加为0,进而得出b的值,即可得出a的值.【解答】解:||1c=,b与c互为相反数,∴+=,b c∴=-或1,b1a与b的和为2,∴+=,2a b∴=或1.a3故答案为:3或1.【点评】此题主要考查了绝对值、相反数的定义.解题的关键是掌握绝对值、相反数的定义.【分析】根据倒数定义可得答案.【解答】解:a和b互为倒数,1∴=,ab故答案为:1.【点评】此题主要考查了倒数,关键是掌握乘积是1的两数互为倒数.三.解答题(共8小题)【分析】(1)由表格可得:3(0.5)2 4.5++-+=(元),36 4.540.5+=(元),(2)买入时的花费:361000 1.5%540⨯⨯=(元),周五卖出时股票价格:⨯⨯+=(元),总收益:+-=(元),卖出时的花费:401000(1.5%1%)100040.51 1.540-⨯--=(元).(4036)100054010002460【解答】解:(1)3(0.5)2 4.5++-+=(元),∴+=(元),36 4.540.5∴星期三收盘时,每股是元;(2)买入时的花费:361000 1.5%540⨯⨯=(元),周五卖出时股票价格:40.51 1.540+-=(元),卖出时的花费:401000(1.5%1%)1000⨯⨯+=(元),总收益:(4036)100054010002460-⨯--=(元),∴老宋总的收益2460元.【点评】本题考查正数与负数;理解正数与负数在实际问题的意义是解题的关键.【分析】(1)原式利用题中的新定义计算即可求出值;(2)原式利用题中的新定义计算即可求出x 的值;(3)原式利用题中的新定义计算,求出整数k 的值即可.【解答】解:(1)根据题意得:原式20614=-+=-;故答案为:14-;(2)根据题意得:2(31)4(1)8x x -+-=去括号得,62448x x -+-=,移项合并得:26x =,解得:3x =(3)等式(2-,31)(x k -,)5x k k +=+的x 是整数,(31)(2)()5x k x k k ∴---+=+,(32)5k x ∴+=,532x k ∴=+, k 是整数,321k ∴+=±或5±, k 为整数,1k ∴=-,1.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.【分析】(1)根据两点的距离公式计算 即可;(2)根据两点的距离公式以及绝对值的意义解答即可;(3)根据两点的距离公式以及绝对值的意义解答即可;(4)结合数轴得出:||3||6|x x -+-表示数x 到3和6两点的距离之和,||3||6|x x -+-有最小值,则x 一定在3和6之间,则最小值为3.【解答】解:(1)点A 在数轴上表示3,点B 在数轴上表示2,那么|32|1AB =-=, 故答案为:1;(2)根据题意得,|2|3a +=,解得1a =或5-.故答案为:1或5-;(3)如果数轴上表示数a 的点位于4-和2之间,那么|4||2|426a a a a ++-=-+++=. 故答案为:6;(4)|3||6|x x -+-表示数x 到3和6两点的距离之和,如果求最小值,则x 一定在3和6之间,则最小值为3.【点评】本题考查了一元一次方程的应用,数轴、绝对值、列代数式,解答本题的关键是明确题意,利用分类讨论的数学思想解答.【分析】求出第一个方程的解,根据两方程解互为相反数求出第二个方程的解,即可求出m 的值.【解答】解:方程324x +=-,解得:2x =-,因为x 、y 互为相反数,所以2y =,把2y =代入第二个方程得:6321m -=-,解得:2m =.【点评】此题考查了一元一次方程的解和解一元一次方程.解题的关键是正确理解一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.【分析】(1)根据数轴判断出a 、b 、c 的正负情况,然后分别判断即可;(2)去掉绝对值号,然后合并同类项即可.【解答】解:(1)由图可知,0a <,0b >,0c >且||||||b a c <<,所以,0b c -<,0a b +<,0c a ->;故答案为:<,<,>;(2)||||||b c a b c a -++--()()()c b a b c a =-+----c b a b c a =----+2b =-.【点评】本题考查了绝对值的性质,数轴,熟记性质并准确识图观察出a 、b 、c 的正负情况是解题的关键.【分析】(1)根据互为相反数的和为0,互为倒数的积为1,绝对值的意义,即可解答;(2)分两种情况讨论,即可解答.【解答】解:(1)a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,0a b ∴+=,1cd =,2m =±.(2)当2m =时,2103a b m cd m +++=++=; 当2m =-时,2101a b m cd m+++=-++=-. 【点评】本题考查了倒数、相反数、绝对值,解决本题的关键是熟记倒数、相反数、绝对值的意义.【分析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“<”号连接起来即可.【解答】解:,11210322-<-<<<. 【点评】此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.【分析】(1)根据要求分别表示五个不同的数;(2)相加可得结论.【解答】解:(1)点E 表示的数的相反数是它本身,E ∴表示0,A 、B 表示的数都是绝对值是4的数,A ∴表示4,B 表示4-或A 表示4-,B 表示4,点C 表示负整数,点D 表示正整数,且这两个数的差是3,∴若C 表示1-,则D 表示2;若C 表示2-,则D 表示1,如图所示:(2)440211-+++-=或440121-+++-=-,则这五个点表示的数的和1或1-.【点评】本题考查了数轴的相关概念,解答本题的关键是明确题意,利用数形结合的思想解答..。
七年级上有理数测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是有理数?A. √2B. -3/4C. πD. √-12. 两个有理数相乘,结果仍为有理数的是:A. 2/3 4/5B. 2/3 √2C. √3 √2D. -√2 √23. 下列哪个数是整数?A. 1.5B. -2/3C. 3/3D. √94. 下列哪个数是正有理数?A. -5/6B. 0C. 3/4D. -√45. 下列哪个数是负有理数?A. -√9B. 2/3C. -2/-3D. √16二、判断题(每题1分,共5分)1. 所有整数都是有理数。
()2. 所有有理数都可以表示为分数形式。
()3. 两个有理数相加,结果一定是有理数。
()4. 两个有理数相减,结果一定是有理数。
()5. 两个有理数相乘,结果可能是无理数。
()三、填空题(每题1分,共5分)1. 有理数包括整数和______。
2. 两个有理数相加,结果一定仍为______。
3. 两个有理数相乘,结果可能是______。
4. 所有有理数都可以表示为______形式。
5. 两个有理数相减,结果可能是______。
四、简答题(每题2分,共10分)1. 请简述有理数的定义。
2. 请简述整数和分数的关系。
3. 请简述有理数和无理数的区别。
4. 请简述两个有理数相乘的性质。
5. 请简述两个有理数相减的性质。
五、应用题(每题2分,共10分)1. 请计算:-3/4 + 2/32. 请计算:5/6 1/33. 请计算:2/3 3/44. 请计算:-2/5 / 4/55. 请计算:√16 + 3/4六、分析题(每题5分,共10分)1. 请分析两个有理数相加的性质。
2. 请分析两个有理数相乘的性质。
七、实践操作题(每题5分,共10分)1. 请用图形表示-3/4和2/3的和。
2. 请用图形表示5/6和1/3的差。
八、专业设计题(每题2分,共10分)1. 设计一个实验,验证两个有理数相加的结果仍为有理数。
有理数基础测试题含答案一、选择题1.数轴上的A、B、C三点所表示的数分别为a、b、1,且|a﹣1|+|b﹣1|=|a﹣b|,则下列选项中,满足A、B、C三点位置关系的数轴为()A.B.C.D.【答案】A【解析】【分析】根据绝对值的意义,在四个答案中分别去掉绝对值进行化简,等式成立的即为答案;【详解】A中a<1<b,∴|a﹣1|+|b﹣1|=1﹣a+b﹣1=b﹣a,|a﹣b|=b﹣a,∴A正确;B中a<b<1,∴|a﹣1|+|b﹣1|=1﹣a+1﹣b=2﹣b﹣a,|a﹣b|=b﹣a,∴B不正确;C中b<a<1,∴|a﹣1|+|b﹣1|=1﹣a+1﹣b=2﹣b﹣a,|a﹣b|=a﹣b,∴C不正确;D中1<a<b,∴|a﹣1|+|b﹣1|=a﹣1+b﹣1=﹣2+b+a,|a﹣b|=b﹣a,∴D不正确;故选:A.【点睛】本题考查数轴和绝对值的意义;熟练掌握绝对值的意义是解题的关键.2.数轴上表示数a和数b的两点之间的距离为6,若a的相反数为2,则b为()A.4 B.4-C.8-D.4或8-【答案】D【解析】【分析】根据相反数的性质求出a的值,再根据两点距离公式求出b的值即可.【详解】∵a的相反数为2a+=∴20a=-解得2∵数轴上表示数a 和数b 的两点之间的距离为6 ∴6a b -=解得4b =或8-故答案为:D .【点睛】本题考查了数轴上表示的数的问题,掌握相反数的性质、两点距离公式是解题的关键.3.如图是一个22⨯的方阵,其中每行,每列的两数和相等,则a 可以是( )A .tan 60︒B .()20191-C .0D .()20201-【答案】D【解析】【分析】 根据题意列出等式,直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案.【详解】解:由题意可得:03282a +-=+,则23a +=,解得:1a =, Q 3tan 60︒=,()201911-=-,()202011-= 故a 可以是2020(1)-.故选:D .【点睛】 此题考查了零指数幂、绝对值的性质、立方根的性质和实数的运算,理解题意并列出等式是解题关键.4.如果实数a ,b 在数轴上的对应点的位置如图所示,那么下列结论正确的是( )A .a b <B .a b >-C .2a >-D .b a >【答案】D【解析】【分析】根据数轴可以发现a <b ,且-3<a <-2,1<b <2,由此即可判断以上选项正确与否.【详解】∵-3<a <-2,1<b <2,∴|a|>|b|,∴答案A 错误;∵a <0<b ,且|a|>|b|,∴a+b <0,∴a <-b ,∴答案B 错误;∵-3<a <-2,∴答案C 错误;∵a <0<b ,∴b >a ,∴答案D 正确.故选:D .【点睛】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.5.下列等式一定成立的是( )A .945-=B .1331-=-C .93=±D .32166--=-【答案】B【解析】【分析】根据算术平方根、立方根、绝对值的性质逐项判断即可.【详解】A. 94321-=-=,故错误;B. 1331-=-,故正确;C. 93=, 故错误;D. ()321666--=--=,故错误;故答案为:B.【点睛】本题考查了算术平方根的概念、立方根的概念、绝对值的性质,解题的关键是熟练掌握其定义和性质.6.实数在数轴上的对应点的位置如图所示,若,则下列结论中错误的是( )A .B .C .D .【答案】A【解析】【分析】根据,确定原点的位置,根据实数与数轴即可解答. 【详解】解:,原点在a,b的中间,如图,由图可得:,,,,,故选项A错误,故选:A.【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.7.若︱2a︱=-2a,则a一定是( )A.正数B.负数C.正数或零D.负数或零【答案】D【解析】试题分析:根据绝对值的意义,一个正数的绝对值是本身,0的绝对值是0,一个负数的绝对值是其相反数,可知a一定是一个负数或0.故选D8.如图是张小亮的答卷,他的得分应是()A.40分B.60分C.80分D.100分【答案】A【解析】【分析】根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a与b互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a与b互为相反数,故选A.【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.9.若a 为有理数,且|a |=2,那么a 是( )A .2B .﹣2C .2或﹣2D .4【答案】C【解析】【分析】利用绝对值的代数意义求出a 的值即可.【详解】若a 为有理数,且|a|=2,那么a 是2或﹣2,故选C .【点睛】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.10.在-3,-1,0,3这四个数中,比-2小的数是( )A .-3B .-1C .0D .3【答案】A【解析】【分析】根据两个负数比较大小,绝对值较大的数反而小,正数比负数大,逐个判断与-2的大小关系即可.【详解】解:∵-32103<-<-<<∴比-2小的数是-3故选:A【点睛】本题考查有理数的大小比较,掌握负数比较大小的方法是关键.11.已知a 、b 、c 都是不等于0的数,求a b c abc a b c abc+++的所有可能的值有( )个.A .1B .2C .3D .4【答案】C【解析】【分析】根据a b c 、、的符号分情况讨论,再根据绝对值运算进行化简即可得.【详解】由题意,分以下四种情况:①当a b c 、、全为正数时,原式11114=+++=②当a b c 、、中两个正数、一个负数时,原式11110=+--=③当a b c 、、中一个正数、两个负数时,原式11110=--+=④当a b c 、、全为负数时,原式11114=----=-综上所述,所求式子的所有可能的值有3个故选:C .【点睛】本题考查了绝对值运算,依据题意,正确分情况讨论是解题关键.12.2019的倒数的相反数是( )A .-2019B .12019-C .12019D .2019 【答案】B【解析】【分析】先求2019的倒数,再求倒数的相反数即可.【详解】2019的倒数是12019, 12019的相反数为12019-, 所以2019的倒数的相反数是12019-, 故选B .【点睛】本题考查了倒数和相反数,熟练掌握倒数和相反数的求法是解题的关键.13.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】 此题主要考查了二次根式的性质和绝对值的性质,关键是掌握2a =|a|.14.12的相反数与﹣7的绝对值的和是( )A .5B .19C .﹣17D .﹣5 【答案】D【解析】【分析】根据绝对值和相反数的定义进行选择即可.【详解】-12+|-7|=-12+7=-5,故选D .【点睛】本题考查了绝对值和相反数的定义,掌握绝对值和相反数的求法是解题的关键.15.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .4【答案】C【解析】【分析】首先确定原点位置,进而可得C 点对应的数.【详解】∵点A 、B 表示的数互为相反数,AB=6∴原点在线段AB 的中点处,点B 对应的数为3,点A 对应的数为-3,又∵BC=2,点C 在点B 的左边,∴点C 对应的数是1,故选C .【点睛】本题主要考查了数轴,关键是正确确定原点位置.16.有理数,a b 在数轴上的位置如图所示,以下说法正确的是( )A .0a b +=B .0a b ->C .0ab >D .b a <【答案】D【解析】【分析】由图可判断a、b的正负性,a、b的绝对值的大小,即可解答.【详解】根据数轴可知:-2<a<-1,0<b<1,∴a+b<0,|a|>|b|,ab<0,a-b<0.所以只有选项D成立.故选:D.【点睛】此题考查了数轴的有关知识,利用数形结合思想,可以解决此类问题.数轴上,原点左边的点表示的数是负数,原点右边的点表示的数是正数.17.小麦做这样一道题“计算()3-+W”、其中“□”是被墨水污染看不清的一个数,他翻开后面的答案,得知该题计算结果是8,那么”□”表示的数是( )A.5 B.-5 C.11 D.-5或11【答案】D【解析】【分析】根据绝对值的性质求得结果,采用排除法判定正确选项.【详解】解:设”□”表示的数是x,则|(-3)+x|=8,∴-3+x=-8或-3+x=8,∴x=-5或11.故选:D.【点睛】本题考查了绝对值的运算,掌握:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.18.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.19.不论a取什么值,下列代数式的值总是正数的是()A .1a +B .1a +C .2aD .2(1)a +【答案】B【解析】【分析】 直接利用绝对值的性质以及偶次方的性质分别分析得出答案.【详解】A 、|a+1|≥0,故此选项错误;B 、|a|+1>0,故此选项正确;C 、a 2≥0,故此选项错误;D 、(a+1)2≥0,故此选项错误;故选B .【点睛】此题主要考查了偶次方的性质以及绝对值的性质,正确把握相关定义是解题关键.20.在有理数2,-1,0,-5中,最大的数是( )A .2B .C .0D .【答案】A【解析】【分析】正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,据此判断即可.【详解】根据有理数比较大小的方法可得:-5<-1<0<2,所以最大数是2.故选A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.。
有理数单元检测001有理数及其运算(综合)(测试5)一、境空题(每空2分,共28分) 1、31-的倒数是____;321的相反数是____. 2、比–3小9的数是____;最小的正整数是____. 3、计算:._____59____;2123=--=+-4、在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是5、两个有理数的和为5,其中一个加数是–7,那么另一个加数是____.6、某旅游景点11月5日的最低气温为 2-,最高气温为8℃,那么该景点这天的温差是____. C7、计算:.______)1()1(101100=-+-8、平方得412的数是____;立方得–64的数是____. 9、用计算器计算:._________95=10、观察下面一列数的规律并填空:0,3,8,15,24,_______. 二、选择题(每小题3分,共24分)11、–5的绝对值是………………………………………………………( ) A 、5 B 、–5 C 、51 D 、51- 12、在–2,+3.5,0,32-,–0.7,11中.负分数有……………………( ) A 、l 个 B 、2个 C 、3个 D 、4个13、下列算式中,积为负数的是………………………………………………( ) A 、)5(0-⨯ B 、)10()5.0(4-⨯⨯ C 、)2()5.1(-⨯ D 、)32()51()2(-⨯-⨯-14、下列各组数中,相等的是…………………………………………………( ) A 、–1与(–4)+(–3) B 、3-与–(–3)C 、432与169 D 、2)4(-与–1615、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二 次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是…………( ) A 、90分 B 、75分 C 、91分 D 、81分16、l 米长的小棒,第1次截止一半,第2次截去剩下的一半,如此下去,第6次后剩下的小棒长为…………………………………………………………………( ) A 、121 B 、321 C 、641 D 、128117、不超过3)23(-的最大整数是………………………………………( )A 、–4B –3C 、3D 、418、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价………………………………………( ) A 、高12.8% B 、低12.8% C 、高40% D 、高28% 三、解答题(共48分) 19、(4分)把下面的直线补充成一条数轴,然后在数轴上标出下列各数: –3,+l ,212,-l.5,6.20、(4分)七年级一班某次数学测验的平均成绩为80分,数学老师以平均成绩为基准,记作0,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简记为+10,–15,0,+20,–2.问这五位同学的实际成绩分别是多少分? 21、(8分)比较下列各对数的大小. (1)54-与43- (2)54+-与54+- (3)25与52 (4)232⨯与2)32(⨯ 22、(8分)计算.(1)15783--+- (2))6141(21-- (3))4(2)3(623-⨯+-⨯- (4)61)3161(1⨯-÷23、(12分)计算.(l )51)2(423⨯-÷- (2)75.04.34353.075.053.1⨯-⨯+⨯- (3)[]2)4(231)5.01(-+⨯÷-- (4))411()2(32)53()5(23-⨯-÷+-⨯-24、(4分)已知水结成冰的温度是0C ,酒精冻结的温度是–117℃。
七年级数学试题
一、选择题:(本大题共有8小题,每小题3分,共24分)
1、2
1
-
的相反数是 ( ) A .21
- B .2
1+ C .2 D .2-
2、在数轴上距离原点2个单位长度的点所表示的数是 ( )
A .2
B .2-
C .2或2-
D .1或1-
3、下列各式中正确的是 ( ) A .134-=-- B .0)5(5=-- C .3)7(10-=-+ D .5)4(45-=----
4、绝对值不大于3的所有整数的积等于 ( ) A .36- B .6 C .36 D .0
5、下列说法中,正确的是 ( ) A .任何有理数的绝对值都是正数 B .如果两个数不相等,那么这两个数的绝对值也不相等
C .任何一个有理数的绝对值都不是负数
D .只有负数的绝对值是它的相反数 6、如果a 与1互为相反数,则a 等于 ( )
A .2
B .2
C .1
D .-1
7、π-14.3的值为 ( )
A .0
B .3.14-π
C .π-3.14
D .0.14
8、a 、b 是有理数,它们在数轴上的对应点的位置如图所示,把a 、-a 、b 、-b 按从小到大的顺序排列为
( )
A .-b<-a<a<b
B .-a<-b<a<b
C .-b<a<-a<b
D .-b<b<-a<a
二、填空题(本大题共有10小题,每小题3分,共30分)
9、3
1
-的倒数是____________. 10、绝对值等于2的数是___________.
11、相反数等于本身的数是_____________.
12、倒数等于本身的数是___________.
13、142.3-π=______________. 14、孔子出生于公元前551年,如果用-551年表示,则李白出生于公元701年表示为________。
15、有一组按规律排列的数-1,2,-4,8,-16,…,第2011个数是__________. 16、已知12-++b a =0,则()=--+)(a b b a ____________.
17、有4张扑克牌:红桃6、草花3、草花4,黑桃10。
李老师拿出这4张牌给同学们算“24”。
竞赛规则:牌面中黑色数字为正数,红色数字为负数,每张牌只用一次。
注意点:限制在加、减、乘、除四则运算法则内。
算式是______________________________
_________________________ ___________________________。
(列出三式,有一式给一分。
)
18、一个大长方形被分成8个小长方形, 其中有5个小长方形的面积如图中的数字所 示,填上表中所缺的数,则这个大长方形的 面积为_______。
三、解答下列各题:(本大题共8题,共96分) 19、把下列各数填在相应的大括号里(8分)。
32,763
-,7.7,24-,08.0-,1415.3-,0,85,π
5
正数集合:{}⋯ ;负数集合:{}⋯ ; 整数集合: {}⋯ ;负分数集合:{}⋯ 。
20、在数轴上表示下列各数及它们的相反相数,并根据数轴上点的位置把它们按从小到大的顺
序排列。
(10分)
213-,2--,3,0,2
1
1
21、比较下列各数的大小(要写出解题过程)(6分) (1)11
3-与273.0- (2)65.2--与()6.2--
22、计算下列各题(每小题4分,共40分)
(1)()75-+ (2)()178--- (3)()()943----
(4)()7836---- (5)3
2
214161-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛---
(6)()75-⨯
(7))]4()2(4[48---⨯÷ (8))2(32)91()21(3
1
-÷⎥⎦⎤⎢⎣⎡÷-+-⨯-
a b
(9)()78174125.0⨯⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-⨯- (10)⎪⎭
⎫
⎝⎛-÷⎪⎭⎫ ⎝⎛-+-6014365154127
23、(8分)体育课上,某中学对七年级男生进行了引体向上测试,以能做7个为标准多于标准的次数记为正数,不足的次数记为负数,其中8名男生的成绩为+2,-1,+3,0,-2,-3,+1,0。
(1)这8名男生中达到标准的占百分之几? (2)他们共做了多少次引体向上?
24、(8分)某城市用水标准为:居民每户每月用水未超过7立方米时,每立方米收费1.00元,并加收每立方米0.2元的城市污水处理费;超过7立方米的部分每立方米收水费1.50元,并加收每立方米0.4元的城市污水处理费。
居住在惠源小区的小明家1月份用水10立方米,2月份用水6立方米,请你帮助小明算算,他家这两个月应缴水费多少元?
25、(8分)某出租车沿公路左右方向行驶,向左为正,向右为负,某天从A 地出发后到收工回家所走路线如下:(单位:千米)+8,-9,+4,+7,-2,-10,+18,-3,+7,+5。
(1)问收工时离出发点A 多少千米?
(2)若该出租车每千米耗油0.3升,问从A 地出发到收工共耗油多少升?
26、(8分)股民李明上星期六买进春兰公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(单位:元)(注:用正数记股价比前一日上升数,用负数记股价比前一日下降数)
(1)星期三收盘时,每股是多少元?
(2)本周内最高价是每股多少元?最低价每股多少元?
(3)已知李明买进股票时付了0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果李明在星期六收盘前将全部股票卖出,他的收益情况如何?
参考答案
1.B ;2;C ;3.D ;4.D ;5.C ;6.C ;7.C ;8.C ;9.3;10. ±2
11.0;12. ±1;13. π-3.142;14.+701;15. 2011
2-;
16.-4;
17.
()2436410=⨯+-
()2431064=÷⨯--
()()()2446310=-+-⨯-+
18.
面积比等于
9
51810= 159527=⨯
,3
10956=⨯ ∴3
2
8261062715951810=+++++++ 19.
正数集合:⎭⎬⎫⎩
⎨⎧⋯ 7.75
8
5 0.08-32 ,,,,
π
;负数集合:⎭
⎬⎫⎩
⎨⎧⋯ 3.1415-24- 7
63- ,,,; 整数集合: {}⋯ 24,0-32 ,,
;负分数集合:⎭
⎬⎫
⎩⎨⎧⋯ 3.1415- 763- ,,。
21.(1)∵11000
3003
273.0273.0=
=-,
11000
3000113=-
110003003>11000
3000
∴11
3
-
<273.0- (2)∵65.265.2-=--,()6.26.2=--
6>65.2-
∴()6.2-->65.2--
22.(1)-2;(2)9;(3)2;(4)4;(5)12
13-; (6)-35;(7)-12;(8)0; (9)
()4
48125.07
87
4
125.078174125.0-=⨯⨯-=⨯⨯⨯-=⨯⎪⎭
⎫
⎝⎛-÷⎪⎭⎫ ⎝⎛-⨯-
(10).
()24
455016356043
60656015460127604365154127
6014365154127
-=+-+-=⨯+⨯-⨯+⨯-=-⨯⎪⎭⎫ ⎝⎛-+-=⎪⎭
⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-+-
24.略 25.解:(1+0.2)×7+(1.5+0.4)×3=13.1元, (1+0.2)×6=7.2元
所以,1月份水费为13.1元,2月份水费为7.2元. 26.解:(1)8-9+4+7-2-10+18-3+7+5=25,离A 地25千米。
(2)8+9+4+7+2+10+18+3+7+5=73,
0.3×73=21.9升.
27.(1)27+4+4.5-1=34.5元;
(2)最高35.5元,最低26元;
(3)
买入价为27元,
卖出价为27+4+4.5-1-2.5-6+2=28元
买入手续费27x0.15%x1000=40.5元
卖出税费28x(0.15%+0.1%)x1000=70元差价(28-27)x1000=1000元
扣除税费40.5+70=110.5元
收益为1000-110.5=889.5元。