常微分丁同仁版第3章习题答案
- 格式:doc
- 大小:398.00 KB
- 文档页数:5
常微分方程第三版课后答案常微分方程 2.11.xy dx dy 2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得。
故它的特解为代入得把即两边同时积分得:e e xx y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==,0)1(.22=++dy x dx y 并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:。
故特解是时,代入式子得。
当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,11123yxy dx dy x y 321++=解:原式可化为:x x y x x y x yx y y x y c c c c x dx x dy y y x y dx dy 2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+•+=+)故原方程的解为(即两边积分得故分离变量得显然.0;0;ln ,ln ,ln ln 0110000)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:10ln 1ln ln 1ln 1,0ln 0)ln (ln :931:8.cos ln sin ln 07ln sgn arcsin ln sgn arcsin 1sgn 11,)1(,,,6ln )1ln(21111,11,,,0)()(:53322222222222c dx dy dx dy xycy ud uu dx x x y u dx xydy x y ydx dy y x x c dy yy yydx dy c x y tgxdx ctgydy ctgxdy tgydx cx x xycx x u dxx x du xdxdu dxdux u dx dy ux y u x y y dx dy xc x arctgu dxx du u u u dx du x u dxdu xu dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e ee x y uu xy x u u x yxyy x xx+===+=+-===-•-=--+-=-=+-===-=+•=+•=•=--=+===-+=+-=++=++-++=++===+-==-++-+--两边积分解:变量分离:。
常微分方程第三版习题答案常微分方程是数学中的一个重要分支,它研究的是描述自然界中变化规律的方程。
在学习常微分方程的过程中,习题是非常重要的一部分,通过解习题可以加深对理论知识的理解和应用能力的培养。
本文将为大家提供《常微分方程第三版》习题的部分答案,希望能对大家的学习有所帮助。
1. 习题一1.1 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = 2y + t^2$这是一个一阶线性常微分方程,我们可以使用常数变易法来求解。
令$y = u(t)e^{2t}$,则$\frac{dy}{dt} = \frac{du}{dt}e^{2t} + 2ue^{2t}$将上述结果代入原方程,得到:$\frac{du}{dt}e^{2t} + 2ue^{2t} = 2(u(t)e^{2t}) + t^2$化简得到:$\frac{du}{dt}e^{2t} = t^2$两边同时除以$e^{2t}$,得到:$\frac{du}{dt} = t^2e^{-2t}$对上式两边同时积分,得到:$u = -\frac{1}{4}t^2e^{-2t} + C$将$u$代入$y = u(t)e^{2t}$,得到最终的解:$y = (-\frac{1}{4}t^2e^{-2t} + C)e^{2t}$1.2 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = \frac{t}{y}$这是一个一阶可分离变量的常微分方程,我们可以通过分离变量来求解。
将方程变形,得到:$ydy = tdt$对上式两边同时积分,得到:$\frac{1}{2}y^2 = \frac{1}{2}t^2 + C$解得:$y^2 = t^2 + C$由于题目中给出了初始条件$y(0) = 1$,将初始条件代入上式,得到:$1 = 0 + C$解得:$C = 1$将$C$代入$y^2 = t^2 + C$,得到最终的解:$y^2 = t^2 + 1$2. 习题二2.1 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = 2ty + t^2$这是一个一阶线性常微分方程,我们可以使用常数变易法来求解。
习题2-1判断下列方程是否为恰当方程,并且对恰当方程求解:1.(3x 2 −1)dx +(2x +1)dy =0 解:P (x , y ) =3x 2 −1,Q (x , y ) =2x +1 ,则∂∂P y =0 ,∂∂Q x =2 ,所以∂∂P y ≠∂∂Q x即,原方程不是恰当方程.2.(x +2y )dx +(2x +y )dy =0 解:P (x , y ) =x +2y , Q (x , y ) =2x −y , 则∂∂P y =2, ∂∂Q x =2, 所以∂∂P y =∂∂Q x,即原方程为恰当方程则xdx +(2ydx +2xdy ) −ydy =0,2 2两边积分得:x +2xy −y =C . 2 23.(ax +by )dx +(bx +cy )dy =0 (a,b 和c 为常数).解:P (x , y ) =ax +by , Q (x , y ) =bx +cy , 则∂∂P y =b , ∂∂Q x =b , 所以∂∂P y =∂∂Q x,即原方程为恰当方程则axdx +bydx +bxdy cydy =0,()+两边积分得:ax 2 +bxy +cy 2=C . 2 24.(ax −by )dx +(bx −cy )dy =0(b ≠0) 解:P (x , y ) =ax −by , Q (x , y ) =bx −cy ,则∂∂P y=−b , ∂∂Q x =b , 因为 b ≠0, 所以∂∂P y ≠∂∂Q x ,即,原方程不为恰当方程5.(t 2 +1)cos udu +2 t sin udt =0 解:P (t ,u ) =(t 2 +1)cos u , Q (t ,u ) =2t sin u 则∂∂P t =2t cos u , ∂∂Q x =2t cos u , 所以∂∂P y =∂∂Q x,即原方程为恰当方程则(t 2 cos udu +2t sin udt ) +cos udu =0,两边积分得:(t 2 +1)sin u =C .6.( ye x +2e x +y 2)dx +(e x +2xy )dy =0 解:P (x , y =ye x +2e x +y 2, Q (x , y ) =e x +2xy ,则∂∂P y =e x +2y , ∂∂Q x =e x +2y , 所以∂∂P y =∂∂Q x,即原方程为恰当方程则2e x dx +[(ye x +y 2)dx +(e x +2xy )dy ] =0,两边积分得:(2 +y )e x +xy 2 =C .7.( y +x 2)dx +(ln x −2y )dy =0 x 解:P (x , y ) =y +x 2 Q (x , y ) =ln x −2y ,x则∂∂P y =1 x , ∂∂Q x =1 x , 所以∂∂P y =∂∂Q x,即原方程为恰当方程则( ydx +ln xdy ) +x 2 dx −2ydy =0 x 3两边积分得:x 3+y ln x −y 2 =C .8.(ax 2+by 2)dx +cxydy =0(a ,b 和c 为常数) 解:P (x , y ) =ax 2 +by 2, Q (x , y ) =cxy ,则∂∂P y =2by , ∂∂Q x =cy , 所以当∂∂P y =∂∂Q x,即2b =c 时,原方程为恰当方程则ax 2 dx +(by 2 dx +cxydy ) =0 3两边积分得:ax +bxy 2 =C .3而当2b ≠c 时原方程不是恰当方程.9.2s −1 ds +s −2 s 2 dt =0 t t解:P (t , s ) =2s −1, Q (t , s ) =s −2 s 2,t t则∂∂P t =1−t 22s , ∂∂Q s =1−t22s , 所以∂∂P y =∂∂Q x ,即原方程为恰当方程,两边积分得:s −s 2=C .t10.xf (x 2 +y 2)dx +yf (x 2 +y 2)dy =0, 其中f (⋅)是连续的可微函数.解:P (x , y ) =xf (x 2 +y 2 ), Q (x , y ) =yf (x 2 +y 2 ), 则∂∂P y =2xyf ′, ∂∂Q x =2xyf ′, 所以∂∂P y =∂∂Q x,即原方程为恰当方程,两边积分得:∫f (x 2 +y 2)dx =C ,即原方程的解为F (x 2 +y 2) =C (其中F 为f 的原积分).习题2-2 1. 求解下列微分方程,并指出这些方程在平面上的有意义的区域::dy x 2(1) dx =y解:原方程即为:ydy =x 2 dx 两边积分得:3y 2 −2x 3 =C , y ≠0 .dy x 2(2) dx =y (1+x )3 2解:原方程即为:ydy =1+x x 3dx 两边积分得:3y 2 −2ln1+x 3=C , y ≠0,x ≠−1 .(3) dy +y 2 sin x =0dx解:当y ≠0时原方程为:dy +sin xdx =0y2 两边积分得:1+(c +cos x ) y =0 .又y=0也是方程的解,包含在通解中,则方程的通解为1+(c +cos x ) y =0 .dy 22(4) dx=1+x +y +xy ;解:原方程即为:1+dy y 2=)(1+x dx 2两边积分得:arctgy =x +x 2+c ,即y =tg (x +x 22+c ) .(5) dy =(cos x cos 2y )2 dx解:①当cos 2y ≠0 时原方程即为:(cos dy 2y )2 =(cos x )2 dx 两边积分得:2tg 2y −2x −2sin 2 x =c .②cos 2y =0,即y =k π+π也是方程的解.( k ∈N )2 4 (6) x dy =1−y 2 dx解:①当y ≠±1时dydx 原方程即为:1−y 2 =x两边积分得:arcsin y −ln x =c .②y =±1也是方程的解. dy x −e −x(7).dx =y +e y解.原方程即为:( y +e y )dy =(x −e −x )dx 2 2两边积分得:y +e y =x +e −x +c ,22原方程的解为:y 2 −x 2 +2(e y −e −x ) =c .2. 解下列微分方程的初值问题.(1) sin 2xdx +cos3ydy =0, y (π) =π;2 3解:两边积分得:−cos 22x +sin 33y =c ,即2sin 3y −3cos 2x =c 因为y (π2) =π3,所以 c =3.所以原方程满足初值问题的解为:2sin 3y −3cos 2x =3.x (2).xdx +ye −dy =0 ,y (0) =1;解:原方程即为:xe x dx +ydy =0 ,两边积分得:(x −1)e xdx +y 22dy =c ,因为y (0) =1,所以c =−12,所以原方程满足初值问题的解为:2(x −1)e x dx +y 2 dy +1 =0 .(3).dr =r ,r (0) =2 ;d θ解:原方程即为:dr =d θ,两边积分得:ln r −θ=c ,r因为r (0) =2 ,所以c =ln 2 ,所以原方程满足初值问题的解为:ln r −θ=ln 2 即r =2e θ.dy ln x (4).dx =1+y2, y (1) =0;解:原方程即为:(1+y 2)dy =ln x dx , 两边积分得:y 3x x ln y ++−x =c ,3因为y (1) =0 ,所以c =1, 3 所以原方程满足初值为:y x x ln y ++−x =1 3 2 dy 3(5).1+x dx=xy ,y (0) =1;dy x 解:原方程即为:y 3 =1+x 2 dx ,2两边积分得:−12y −2 =1+x +c ,因为y (0) =1,所以c =−3 ,2 所以原方程满足初值问题的解为:21+x 2 +y1 =3 .2 3. 解下列微分方程,并作出相应积分曲线的简图.(1).dy =cos x dx解:两边积分得:y =sin x +c .积分曲线的简图如下:(2).dxdy =ay ,(常数a ≠0 );解:①当y ≠0时,原方程即为:aydy =dx 积分得:a 1ln y =x c +,即y =ce ax (c >0) ②y =0也是方程的解.积分曲线的简图如下:y(3).dy =1−y 2 ;dx解:①当y ≠±1时,1+y 原方程即为:(1−dy y 2)=dx 积分得:ln =2x +c ,1−y 即y =ce 2 x −1 .ce 2 x +1②y =±1也是方程的解.积分曲线的简图如下:dy n 1(4).dx=y ,(n =3,1, 2) ;解:①当y ≠0时,1 dy ⅰ) n =3, 2 时,原方程即为yn =dx ,积分得:x +1y 1−n =c .n −1ⅱ) n =1时,原方程即为dy y=dx 积分得:ln y =x +c ,即y =ce x(c >0) .②y =0也是方程的解.积分曲线的简图如下:4. 跟踪:设某A 从xoy 平面上的原点出发,沿x 轴正方向前进;同时某B 从点开始跟踪A ,即B 与A 永远保持等距b .试求B 的光滑运动轨迹.解:设B 的运动轨迹为y =y (x ),由题意及导数的几何意义,则有dy y dx b 2 −y2 ,所以求B 的运动轨迹即是求此微分方程满足y (0) =b 的解.=−解之得:x =12 b ln b b +−b b 22 +−y y 22 −b 2 −y 2 .5. 设微分方程dy =f ( y ) (2.27),其中f(y) 在y =a 的某邻域(例如,区间y −a <ε)dx 内连续,而且f ( y )=0 ⇔y =a ,则在直线y =a 上的每一点,方程(2.27)的解局部唯一,±εdy 当且仅当瑕积分=∞(发散).∫a a f ( y )证明:( ⇒)首先经过域R 1:−∞<x <+∞, a −ε≤y <a 和域R 2:−∞<x <+∞,a <y ≤a +ε内任一点( x 0, y 0)恰有方程(2.13)的一条积分曲线,它由下式确定dy =x −x 0 . (*)∫y y 0 f ( y )这些积分曲线彼此不相交. 其次,域R 1( R 2)内的所有积分曲线∫f dy ( y )=x +c 都可由其中一条,比如∫f dy ( y ) =x +c 0 沿着x 轴的方向平移而得到。
常微分方程(第三版)答案常微分方程习题答案2.11.«Skip Record If...»,并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得«Skip Record If...»«Skip Record If...»并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得:«Skip Record If...»3 «Skip Record If...»解:原式可化为:«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»12.«Skip Record If...»解«Skip Record If...»«Skip Record If...»«Skip Record If...»15.«Skip Record If...»«Skip Record If...»16.«Skip Record If...»解:«Skip Record If...»«Skip Record If...»,这是齐次方程,令«Skip Record If...»17. «Skip Record If...»解:原方程化为«Skip Record If...»令«Skip Record If...»方程组«Skip Record If...»«Skip Record If...»则有«Skip Record If...»令«Skip Record If...»当«Skip Record If...»当«Skip Record If...»另外«Skip Record If...»«Skip Record If...»19. 已知f(x)«Skip Record If...».解:设f(x)=y, 则原方程化为«Skip Record If...»两边求导得«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»20.求具有性质 x(t+s)=«Skip Record If...»的函数x(t),已知x’(0)存在。
习 题 3-11. (1) 解: ,||),(αy y x f = 有α|||)0,(),(|y x f y x f =-,令 ,||)(αr r F =有⎰⎰--==1110010||11||)(r r r r r dr r F dr ααα, 当 01<-α, 即 1>α 时, ∞=--→αα10||11limr r , 所以 0)0(=y 的解唯一。
当 01=-α 时,1100|||ln )(r r r r F dr =⎰,而 ∞=→||ln lim 0r r ,所以 0)0(=y 的解唯一。
当 10<<α 时, 可解方程知其解不唯一。
所以当10<<α, 其解不唯一; 1≥α, 其解唯一。
(2). 解: 因为0|l n |l i m 0=→y y y ,所以dxdy在 ),(+∞-∞ 连续. 设 |||ln |)(r r r F =, 有∞=⎰1)(r r F dr(01>r 为常数),所以方程的解唯一.2. 解: 构造毕卡序列, 令 1),(++=y x y x f , dx x y x f x y xn n ⎰=+01))(,()(,因为 0)0(=y ,所以 x x dx x f x y x +==⎰20121)0,()(,x x x dx x x x f x y x ++=+=⎰2302261)21,()(, x x x x dx y x f x y x +++==⎰23402331!41),()(,…………………………………………… x x x n x n dx y x f x y n n xn n +++++==+-⎰!22!2)!1(1),()(211 ,22)!22!2)!1(1(lim )(lim 21--=+++++=+∞→∞→x e x x x n x n x y x n n n n n , 所以 22--=x e y x为方程的解. 3. 证明: 反证法设初始问题(E)有两个解, )(x y 和)(1x y , 且 0010)()(y x y x y ==,01x x >∃, 使 )()(111x y x y >, 令 )()(,sup{110x y x y x x x =<≤=μ根据μ 的定义与y 的连续性可知,对),(1x x μ∈∀,)()(1x y x y >, 令 )()()(1x y x y x r -=, 令 )()()(1x y x y x r -=, 有 0)(=μr , 有))(,())(,(1x y x f x y x f dxdr-=, 因为 ),(y x f 对 y 是递减的, 所以0<dxdr, 对 ),(1x x μ∈∀, 所以 0)()(=<μr x r , 对 ),(1x x μ∈∀, 又由y 的连续性, 可得 )()(111x y x y <,矛盾!习 题 3-31.证明:令)()(),(x b y x a y x f +=, 显然),(y x f+∞<<∞-∈y I x S ,:内连续, 且满足不等式|)(||||)(||),(|x b y x a y x f +≤,其中令 0|)(|)(≥=x a x A , 0|)(|)(≥=x b x B , 由已知有 )(x A ,)(x B 在I x ∈上是连续的, 则由定理5, 知 )(x y y = 的最大存在区间为I2. (1) 解:令 221),(yx y x f +=,则 ),(y x f 在区域 }0,{1≠+∞<<-∞=y x G 上连续,或 },00{2+∞<<-∞+∞<<<<-∞=y x x G 上连续。
第三章 线性微分方程组1、这里5n =,4λ=-是A 的5重特征值,直接计算可得3(4)0A E +=。
因此,由公式(5.53)可得242exp (4)(4)2!tt At eE t A E A E -⎡⎤=++++⎢⎥⎣⎦这样一来242410000010000100010000010000000exp 0010000000000002!0001000000000000000100000000001002!0100001000001001t tt At e t t t t e--⎧⎫⎡⎤⎡⎤⎡⎤⎪⎪⎢⎥⎢⎥⎢⎥⎪⎪⎢⎥⎢⎥⎢⎥⎪⎪⎢⎥⎢⎥⎢⎥=++⎨⎬⎢⎥⎢⎥⎢⎥⎪⎪⎢⎥⎢⎥⎢⎥⎪⎪⎢⎥⎢⎥⎢⎥⎪⎪⎣⎦⎣⎦⎣⎦⎩⎭⎡⎢⎢⎢=⎢⎢⎢⎢⎣⎤⎥⎥⎥⎥⎥⎥⎥⎦2、A 的特征方程为2det()(1)(2)0E A λλλ-=--=11λ=,22λ=分别为11n =,22n =重特征值,为了确定三维欧几里得空间的子空间1U 和2U ,需要考虑下面方程组:()0A E u -=和2(2)0A E u -=首先讨论211()2110111A E u u -⎡⎤⎢⎥-=-=⎢⎥⎢⎥-⎣⎦或12312312320200u u u u u u u u u -+=⎧⎪-+=⎨⎪-+=⎩ 这个方程组的解为10u αα⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦其中α为任意常数。
子空间1U 是由向量1u 所张成的。
其次讨论2000(2)1100110A E u u ⎡⎤⎢⎥-=-=⎢⎥⎢⎥-⎣⎦或12120u u u u -+=⎧⎨-+=⎩ 这个方程组的解为2u ββγ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦其中β,γ是任意常数。
子空间2U 是由向量2u 所张成的。
因为11v U ∈,22v U ∈,所以10v αα⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,2v ββγ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦其中α,β,γ是某些常数,这样一来1230ηβηαβηαγ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦因而1βη=,2αβη+=,3αγη+=,解之得到21αηη=-,1βη=,321γηηη=-+,且121310v ηηηη⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,121321v ηηηηη⎡⎤⎢⎥=⎢⎥⎢⎥-+⎣⎦满足初始条件(0)ϕη=的解为21212211313211221131321213()((2))01112211100121210t t t t t t t t e Ev e E t A E v e e E t t t t e e t t t t t e ϕηηηηηηηηηηηηηηηηηηηηη=++-⎡-⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-++-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---+⎣⎦⎣⎦⎣⎦⎣⎦+-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-+-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---+⎣⎦⎣⎦⎣⎦=-1321213211321()()t t e t ηηηηηηηηηηηη+-+⎡⎤⎡⎤⎢⎥⎢⎥++-+⎢⎥⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦为了得到exp At ,依次令η等于1000,1,0001⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦代入上式,我们得到三个线性无关的解。
习题 1.21. dy=2xy, 并满足初始条件: x=0,y=1 的特解。
dx2特解为 y= e x.22. y 2dx+(x+1)dy=0 并求满足初始条件: x=0,y=1 的特解。
2dy 1 解: y dx=-(x+1)dy 2 dy=- dx y x 11两边积分 : -=-ln|x+1|+ln|c|y特解: y=ln |c(x 1)|2 3.dy 1 y 2 3dx1 y 2dy=dy=4. (1+x)ydx+(1-y)xdy=01 y x 1 解:原方程为: dy=- dxyx两边积分: ln|xy|+x-y=c 另外 x=0,y=0 也是原方程的解。
5.( y+x ) dy+(x-y)dx=0y x解: 原方程为:dy =1 y2 dxy两边积分: x(1+x 2)(1+y 2)= 2cx解: dy =2xdxy2 两边积分有: ln|y|=x 2+cx 2cy=e +e =cex另外 y=0 也是原方程的解, c=0 时, y=0原方程的通解为 y= cex 2 ,x=0 y=1 时 c=1y=ln |c(x 1)|另外 y=0,x=-1 也是原方程的解 x=0,y=1 时 c=e3xy x y 13 dxx解:原方程为:dx x yu 1 1- 2du= dxu2 1 x22ln(u +1)x =c-2arctgu即ln(y 2+x 2)=c-2arctg y2.x2dy du=u+ xdx dx1du=sgnx dxxyarcsin =sgnx ln|x|+cx7. tgydx-ctgxdy=0两边积分:1siny=ccosx cosx所以原方程的通解为sinycosx=c.y2 3xdy e8 + =0dx y解:原方程为:dy=dx e y y3x e3x y22 e -3e=c.9.x(lnx-lny)dy-ydx=0解:原方程为:dy=y ln y令y =u 则dy=u+x dudx dx 代入有:6. x dydx-y+ x2y2=0解:原方程为:dy=y+|x|dx x x 1 ( y)x则令y=u x11 u2解: 原方程为:dy dxtgy ctgxln|siny|=-ln|cosx|-ln|c|c另外y=0 也是原方程的解,而c=0 时,y=0.dx x xduu+ x =ulnudxln(lnu-1)=-ln|cx|y1+ln =cy.x10. dy=e x y dx解:原方程为:e y=cexdu 2-1=udx12du=dx1 u2arctgu=x+c arctg(x+y)=x+c解:令x+y=u, 则dy=du-1 dx dx du 1-1=dx -1=u2u-arctgu=x+c y-arctg(x+y)=c.13.dy=2x y 1 dx x 2y 1解: 原方程为: ( x-2y+1 ) dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 22 dxy-d(y -y)-dx +x=c22xy-y +y-x -x=cdy x y 5dx x y 2解:原方程为: (x-y-2 ) dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0令y=u ,则dyx dxdu=u+ xdx12.dy=1dx =(x y) 2dy x y=e edx11 dy 2ddyx=(x+y)解:令x+y=u, 则dy du= -1dx dx14:1 2 1 2 dxy-d( y +2y)-d( x +5x)=02222y +4y+x +10x-2xy=c.15: dy=(x+1) 2+(4y+1) 2+8xy 1 dx解:dy 2原方程为:=( x+4y ) +3dx令x+4y=u 则dy= 1 du- 1dx 4 dx 4 1 du 1 2- =u +34 dx 4du 2=4 u 2+133u= 2tg(6x+c)-12tg(6x+c)= (x+4y+1).316: 证明方程x dy=f(xy), 经变换xy=u 可化为变量分离方程,并由此求下列方程:y dx221) y(1+x y )dx=xdyx dy 2 x 2y2 y dx 2-x 2 y2证明:令 xy=u, 则 x dy+y=du dx dx 则dy=1 du- u2,有:dx x dx x2 x du =f(u)+1 u dx11 du= dx u( f(u) 1) x所以原方程可化为变量分离方程。
第三章习题习题3—11. 判断下列方程在什么区域上保证初值解存在且唯一.1)y x y sin '+=; 2)31'-=xy ; 3)y y ='.解 1)因为y x y x f sin ),(+=及y y x f y cos ),('=在整个xOy 平面上连续,所以在整个xOy 平面上满足存在唯一性定理的条件,因此在整个xOy 平面上初值解存在且唯一.2)因为31),(-=xy x f 除y 轴外,在整个xOy 平面上连续,0),('=y x f y 在在整个xOy 平面上有界,所以除y 轴外,在整个xOy 平面上初值解存在且唯一.3)设y y x f =),(,则⎪⎪⎩⎪⎪⎨⎧<-->=∂∂,0,21,0,21),(y yy y y y x f 故在0≠y 的任何有界闭区域上,),(y x f 及yy x f ∂∂),(都连续,所以除x 轴外,在整个xOy 平面上初值解存在且唯一. 2. 求初值问题⎪⎩⎪⎨⎧=--=,0)1(,22y y x dxdy R :1,11≤≤+y x . 的解的存在区间.并求第二次近似解,给出在解的存在区间的误差估计.解 设22),(y x y x f -=,则(,)max (,)4x y RM f x y ∈==,1,1==b a ,所以41)41,1min(),min(===M b a h . 显然,方程在R 上满足解的存在唯一性定理,故过点)0,1(-的解的存在区间为:411≤+x . 设)(x ϕ是方程的解,)(2x ϕ是第二次近似解,则0)1()(0=-=y x ϕ,3131)0(0)(3121-=-+=⎰-x dx x x xϕ,4211931863])3131([0)(34712322+-+--=--+=⎰-x x x x dx x x x xϕ.在区间411≤+x 上,)(2x ϕ与)(x ϕ的误差为 322)!12()()(h ML x x +≤-ϕϕ.取22),(max max),(),(=-=∂∂=∈∈y y y x f L Ry x Ry x ,故241)41()!12(24)()(322=+⨯≤-x x ϕϕ.3. 讨论方程3123y dx dy =在怎样的区域中满足解的存在唯一性定理的条件.并求通过点)0,0(O 的一切解.解 设3123),(y y x f =,则3221-=∂∂y y f )0(≠y .故在0≠y 的任何有界闭区域上),(y x f 及y y x f ∂∂),(都是连续的,因而方程在这种区域中满足解的存在唯一性定理的条件.显然,0=y 是过)0,0(O 的一个解.又由3123y dx dy =解得23)(C x y -±=.其中0≥-C x .所以通过点)0,0(O 的一切解为0=y 及,,,)(,023C x C x C x y >≤⎪⎩⎪⎨⎧-=.,,)(,023C x C x C x y >≤⎪⎩⎪⎨⎧--=如图. 4. 试求初值问题1++=y x dxdy,0)0(=y , 的毕卡序列,并由此取极限求解.解 按初值问题取零次近似为0)(0=x y ,一次近似为2121)10()(x x ds s x y x+=++=⎰, 二次近似为 3220261]1)21([)(x x x ds s s s x y x++=+++=⎰, 三次近似为 432320324131]1)61([)(x x x x ds s s s s x y x+++=++++=⎰, 四次近似为 !5)!5!4!3!2(2!5134131)(5543254324x x x x x x x x x x x x x y --++++=+⨯+++=,五次近似为 !6)!6!5!4!3!2(2)(6654325x x x x x x x x x y --+++++=,一般地,利用数学归纳法可得n 次近似为)!1()!1(!4!3!22)(11432+--⎥⎦⎤⎢⎣⎡++++++=++n x x n x x x x x x y n n n 2)!1()!1(!4!3!21211432-+--⎥⎦⎤⎢⎣⎡+++++++=++n x x n x x x x x n n , 所以取极限得原方程的解为22)()(lim --==+∞→x e x y x y x n n .5. 设连续函数),(y x f 对y 是递减的,则初值问题),(y x f dxdy=,00)(y x y =的右侧解是唯一的. 证 设)(1x y ϕ=,)(2x y ϕ=是初值问题的两个解,令)()()(21x x x ϕϕϕ-=,则有0)(000=-=y y x ϕ.下面要证明的是当0x x ≥时,有0)(≡x ϕ.用反证法.假设当0x x ≥时,)(x ϕ不恒等于0,即存在01x x ≥,使得0)(1≠x ϕ,不妨设0)(1>x ϕ,由)(x ϕ的连续性及0)(0=x ϕ,必有100x x x <≤,使得0)(0=x ϕ,0)(>x ϕ,10x x x ≤<.又对于],[10x x x ∈,有00201)()(y x x ==ϕϕ,⎰+=xx dx x x f y x 0)](,[)(101ϕϕ,⎰+=xx dx x x f y x 0)](,[)(202ϕϕ,则有)()()(21x x x ϕϕϕ-=⎰-=xx dx x x f x x f 0)]}(,[)](,[{21ϕϕ,10x x x ≤<.由0)()()(21>-=x x x ϕϕϕ(10x x x ≤<)以及),(y x f 对y 是递减的,可以知道:上式左端大于零,而右端小于零.这一矛盾结果,说明假设不成立,即当0x x ≥时,有0)(≡x ϕ.从而证明方程的右侧解是唯一的.习题3—31. 利用定理5证明:线性微分方程)()(x b y x a dxdy+= (I x ∈) )1( 的每一个解)(x y y =的(最大)存在区间为I ,这里假设)(),(x b x a 在区间I 上是连续的.证 )()(),(x b y x a y x f +=在任何条形区域{}∞<<-∞≤≤y x y x ,),(βα(其中I ∈βα,)中连续,取[])(max ,x a M x βα∈=,[])(max ,x b N x βα∈=,则有N y M x b y x a y x f +≤+≤)()(),(.故由定理5知道,方程)1(的每一个解)(x y y =在区间],[βα中存在,由于βα,是任意选取的,不难看出)(x y 可被延拓到整个区间I 上.2. 讨论下列微分方程解的存在区间: 1))1(-=y y dx dy ; 2))sin(xy y dx dy =; 3)21y dxdy +=. 解 1)因)1(),(-=y y y x f 在整个xOy 平面上连续可微,所以对任意初始点),(00y x ,方程满足初始条件00)(y x y =的解存在唯一.这个方程的通解为xCe y -=11.显然0=y ,1=y 均是该方程在),(∞-∞上的解.现以0=y ,1=y 为界将整个xOy 平面分为三个区域来讨论.ⅰ)在区域1R {}10,),(<<+∞<=y x y x 内任一点),(00y x ,方程满足00)(y x y =的解存在唯一.由延伸定理知,它可以向左、右延伸,但不能与0=y ,1=y 两直线相交,因而解的存在区间为),(∞-∞.又在1R 内,0),(<y x f ,则方程满足00)(y x y =的解)(x y ϕ=递减,当-∞→x 时,以1=y 为渐近线,当+∞→x 时,以0=y 为渐近线.ⅱ)在区域2R {}1,),(>+∞<=y x y x 中,对任意常数0>C ,由通解可推知,解的最大存在区间是)ln ,(C --∞,又由于0),(>y x f ,则对任意200),(R y x ∈,方程满足00)(y x y =的解)(x y ϕ=递增.当-∞→x 时,以1=y 为渐近线,且每个最大解都有竖渐近线,每一条与x 轴垂直的直线皆为某解的竖渐近线.ⅲ)在区域3R {}0,),(<+∞<=y x y x 中,类似2R ,对任意常数0>C ,解的最大存在区间是),ln (+∞-C ,又由于0),(>y x f ,则对任意300),(R y x ∈,方程满足00)(y x y =的解)(x y ϕ=递增.当+∞→x 时,以0=y 为渐近线,且每个最大解都有竖渐近线.其积分曲线分布如图( ).2)因)sin(),(xy y y x f =在整个xOy 平面上连续,且满足不等式y xy y y x f ≤=)sin(),(,从而满足定理5的条件,故由定理5知,该方程的每一个解都以+∞<<∞-x 为最大存在区间.3)变量分离求得通解)tan(C x y -=,故解的存在区间为)2,2(ππ+-C C .3.设初值问题)(E :2)(2)32(y x e y y dxdy+--=,00)(y x y = 的解的最大存在区间为b x a <<,其中),(00y x 是平面上的任一点,则-∞=a 和+∞=b 中至少有一个成立.证明 因2)(2)32(),(y x ey y y x f +--=在整个xOy 平面上连续可微,所以对任意初始点),(00y x ,方程满足初始条件00)(y x y =的解存在唯一.很显然3=y ,1-=y 均是该方程在),(∞-∞上的解.现以3=y ,1-=y 为界将整个xOy 平面分为三个区域来进行讨论.ⅰ)在区域1R {}31,),(<<-+∞<<∞-=y x y x 内任一点),(00y x ,方程满足00)(y x y =的解存在唯一.由延伸定理知,它可以向左、右延伸,但不能与3=y ,1-=y 两直线相交,因而解的存在区间为),(∞-∞.这里有-∞=a ,+∞=b .ⅱ)在区域2R {}1,),(-<+∞<<∞-=y x y x 中,由于0)1)(3(),(2)(>+-=+y x e y y y x f ,积分曲线单调上升.现设),(000y x P 位于直线1-=y 的下方,即10-<y ,则利用)(E 的右行解的延伸定理,得出)(E 的解Γ可以延伸到2R 的边界.另一方面,直线1-=y 的下方,积分曲线Γ是单调上升的,并且它在向右延伸时不可能从直线1-=y 穿越到上方.因此它必可向右延伸到区间+∞<<x a .故至少+∞=b 成立.类似可证,对3R {}3,),(>+∞<<∞-=y x y x ,至少有-∞=a 成立.4. 设二元函数),(y x f 在全平面连续.求证:对任何0x ,只要0y 适当小,方程),()(22y x f e y dxdyx -= )1( 的满足初值条件00)(y x y =的解必可延拓到+∞<≤x x 0.证明 因为),(y x f 在全平面上连续,令),()(),(22y x f e y y x F x -=,则),(y x F 在全平面上连续,且满足0),(),(≡-≡x x e x F e x F .对任何0x ,选取0y ,使之满足00xe y <.设方程)1(经过点),(00y x 的解为)(x y ϕ=,在平面内延伸)(x y ϕ=为方程的最大存在解时,它的最大存在区间为),[0βx ,由延伸定理可推知,或+∞=β或为有限数且+∞=-→)(lim 0x x ϕβ.下证后一种情形不可能出现. 事实上,若不然,则必存在β<x ,使βϕe x >)(.不妨设βϕe x >)(.于是必存在),(00βx x ∈,使0()x x e ϕ=,x e x <)(ϕ(00x x x <≤).此时必有0)(00'>=≥x x xx e dxde x ϕ,但0),())(,()(00000'===x x e x F x x F x ϕϕ,从而矛盾.因此,+∞=β,即方程)1(的解)(x y ϕ=(00)(y x y =)必可延拓到+∞<≤x x 0.。