单臂电桥的工作原理
- 格式:doc
- 大小:564.50 KB
- 文档页数:8
传感器原理,,单臂桥实验报告单臂半桥全桥传感器实验报告实验一金属箔式应变片――单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R =Kε,式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。
对单臂电桥输出电压Uo1= EKε/4。
图1-1 应变式传感器安装示意图三、需用器件与单元:应变式传感器实验模板、应变式传感器-电子秤、砝码、数显表、±15V电源、±4V电源、万用表(自备)。
四、实验步骤:1.根据图(1-1)应变式传感器(电子秤)已装于应变传感器模板上。
传感器中各应变片已接入模板的左上方的R1、R2、R3、R4。
加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右。
2.接入模板电源±15V(从主控台引入),检查无误后,合上主控台电源开关,将实验模板调节增益电位器RW3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正负输入端与地短接,输出端与主控台面板上数显表电压输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档)。
关闭主控箱电源(注意:当Rw3、Rw4的位置一旦确定,就不能改变。
一直到做完实验三为止)。
3.将应变式传感器的其中一个电阻应变片R1(即模板左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已接好),接好电桥调零电位器RW1,接上桥路电源±4V(从主控台引入),此时应将±4地与±15地短接。
单臂电桥与双臂电桥的主要区别
1、工作原理:单桥内部只有一个桥臂回路,双桥有两个桥臂回路,分别为测量电阻值和消除引线电阻影响的作用。
2、适用条件:单桥一般用于测量10欧以上的电阻,双桥一般测量10欧及其以下的电阻。
关于“单臂电桥与双臂电桥的主要区别”的详细说明。
1.单臂电桥与双臂电桥的主要区别
1、工作原理:单桥内部只有一个桥臂回路,双桥有两个桥臂回路,分别为测量电阻值和消除引线电阻影响的作用。
2、适用条件:单桥一般用于测量10欧以上的电阻,双桥一般测量10欧及其以下的电阻。
3、测量端:单桥有两个测量端,双桥有四个测量端。
且灵敏度单桥比双桥灵敏。
4、适用测量电源:单桥一般测量电压在3v以上;双桥一般测量电压1.5v以下。
5、电路结构:单桥测量桥臂一般为独立结构,不需要标准电阻;双桥的内臂和外臂为联动调节,且阻值保持同步,需加标准电阻,连接线需粗导线,结构比单桥复杂。
单臂电桥测量中值电阻实验报告一、实验目的本实验旨在通过单臂电桥测量中值电阻,掌握单臂电桥的基本原理和操作方法,熟悉测量中值电阻的技巧。
二、实验原理1. 单臂电桥的基本原理单臂电桥是一种简单而常用的电桥,在测量中值电阻时尤为方便。
其基本原理是利用一个稳流源和一个可调节的标准电阻串联,通过调节标准电阻达到平衡状态,再用待测电阻代替标准电阻进行测量。
2. 测量中值电阻的技巧在测量中值电阻时,需要注意以下几点:(1)选取合适的稳流源和标准电阻;(2)调节标准电阻,使其与待测电阻相等;(3)保证稳流源输出稳定,并避免温度变化对测量结果产生影响;(4)使用万用表或其他合适的仪器进行精确测量。
三、实验步骤及操作方法1. 准备工作(1)将单臂电桥接线板连接至直流稳压源;(2)将待测元件接入单臂电桥中;(3)接入万用表或其他合适的仪器。
2. 调节标准电阻(1)将标准电阻接入单臂电桥中;(2)调节标准电阻,使其与待测电阻相等;(3)保持稳流源输出稳定,并避免温度变化对测量结果产生影响。
3. 测量待测电阻(1)将标准电阻替换为待测电阻;(2)调节标准电阻,使其与待测电阻相等;(3)使用万用表或其他合适的仪器进行精确测量。
四、实验结果及分析在本次实验中,我们选取了一个500欧姆的标准电阻和一个未知值的待测电阻进行测试。
经过多次调节和测量,最终得到了如下结果:标准电阻值:500欧姆待测电阻值:498.6欧姆通过计算可知,误差为0.28%,符合实验要求。
同时,在实验过程中我们还发现,在调节标准电阻时需反复微调才能达到平衡状态,这需要耐心和细心操作。
五、实验总结本次实验通过单臂电桥测量中值电阻,我们深入了解了单臂电桥的基本原理和操作方法,掌握了测量中值电阻的技巧。
同时,在实验过程中我们也发现了一些需要注意的问题,比如稳流源输出稳定性和温度变化对测量结果的影响等。
通过本次实验,我们不仅提高了实验操作能力,还加深了对电学理论知识的理解。
单臂电桥工作原理
单臂电桥是一种测量电阻值的电路,其工作原理如下:
1. 单臂电桥是由一个电阻R1、一个电流源和一个电压测量仪
器组成的电路。
2. 电流源通过电阻R1产生一个已知大小的电流,将其称为I。
3. 电流I通过未知电阻Rx,形成两个支路:一个是从R1到Rx,另一个是从Rx到电流源。
4. 在电阻R1和Rx之间,我们接入了一个电压测量仪器,测
量电流I通过Rx时产生的电压差,称为Ux。
5. 根据欧姆定律,我们知道Ux与Rx之间的关系为:Ux = I * Rx。
6. 如果Rx等于R1,则Ux等于0;如果Rx大于R1,则Ux
为正值;如果Rx小于R1,则Ux为负值。
7. 通过测量Ux的大小和正负,我们可以判断Rx与R1的相对大小关系。
8. 通过改变R1和测量Ux的大小和正负,可以计算出未知电
阻Rx的准确值。
9. 单臂电桥通常用于测量电阻值。
通过与标准电阻相比较,可以精确地确定未知电阻的数值。
实验一金属箔式应变片性能一单臂电桥一、实验目的:了解金属箔式应变片及单臂电桥的工作原理。
二、实验原理:本实验说明箔式应变片及单臂直流电桥工作原理:箔式应变片是最常用的测力传感元件,使用时应变片要牢固地粘贴在测试体表面,当测试体受力发生形变时,应变片的敏感栅长度也随同发生变形,其电阻也随之发生相应的变化,通过测量电路,将应变片电阻的变化变成电信号输出,完成力(非电量)与电量的转换。
差动电桥电路是应变片最常用的测量电路,当桥路4个电阻处于对臂阻值乘积相等时,电桥平衡,输出为零。
设:桥臂四个电阻分别是R1、R2、R3、R4,各电阻的相对变化率分别为ΔR1/R1、ΔR2/R2、ΔR3/R3、ΔR4/R4,如:R1=R2=R3=R4=R、ΔR1=ΔR2=ΔR3=ΔR4=ΔR、ΔR<<R, 则:桥路输出电压(Vo)为:Vo=Vi×(ΔR1/R1+ΔR2/R2+ΔR3/R3+ΔR4/R4)/4 = Vi×(ΔR/R)/4,注:Vi——供桥电压,由此可知当使用一个应变片(单臂电桥)时:Vo=Vi(ΔR/R)/4;当使用二个应变片(半桥)时:Vo=Vi(ΔR/R)/2;当使用四个应变片(全桥)时:Vo=Vi(ΔR/R);因此在差动电桥电路中单臂、半桥、全桥电路的灵敏度依次增大。
三、所需单元及部件:直流稳压电源、电桥、差动放大器、双孔悬臂梁称重传感器(998A 和N型适用)或应变悬臂梁(998B型适用)、砝码、F/V表。
四、旋钮初始位置:直流稳压电源置±4V档,F/V表置2V档,差动放大增益最大。
五、实验步骤:1、了解所需单元、部件在实验仪上的所在位置,观察称重传感器(998A和N型适用)或应变悬臂梁(998B型适用)上的应变片,应变片为棕色衬底箔式结构小方薄片。
上下二片梁的外表各贴二片受力应变片。
2、将差动放大器调零:用连线将差动放大器正(+)、负(-)端对地短接。
差动放大器输出端与F/V表的输入插口Vi相连;差动放大器增益旋至最大,开启主电源,然后调整差动放大器调零旋钮使F/V表显示为零,关闭主电源。
金属箔式应变片性能单臂电桥实验报告一、实验目的1. 通过金属箔式应变片单臂电桥实验,学习如何使用应变片进行测量;2. 掌握单臂电桥测量电阻的方法;3. 分析电桥测量误差,为提高测量精度提供基础。
二、实验原理1. 金属箔式应变片金属箔式应变片是一种材料表面加贴细小金属箔片的应变测量元件。
其基本原理是应变预应力引起的电阻变化,即金属箔在受力后,电阻随着应变量的改变而产生变化。
金属箔式应变片常用于测量应变和受力。
2. 单臂电桥单臂电桥是一种测量电阻的电桥,由电源、电桥电阻、待测电阻和检流计组成。
其基本原理是利用电流经过电桥时,经过待测电阻后在检流计处产生的电压大小来间接测量电阻的大小。
三、实验步骤1. 准备工作:将金属箔式应变片加载到机械压力测试平台上,调整相应参数并进行预热;2. 将电桥电路组装好,确保电源、检流计的连接正确无误;3. 调整电桥电阻使电路达到平衡状态;4. 施加一定的荷载,通过对应变不同的金属箔电阻值变化的测量,计算应变值;5. 多次重复测量,获得稳定可靠的数据。
四、实验结果及分析1. 多次测量获得的应变数据分别如下:0.0012,0.0013,0.0011;2. 将上述测量数据平均后计算得到平均应变值为0.0012;3. 分析误差:在实际测量中,应变片到载荷的变形以及电器元件的误差都会对测量产生一定的影响。
若误差过大,将会对测量结果产生较大的影响,因此在实验中应尽力减小误差。
五、实验结论与思考通过金属箔式应变片单臂电桥实验,我们掌握了应变片的应用技能以及单臂电桥的测量原理,学习了如何通过电桥实验获得待测电阻的精确值,同时深入了解了误差分析和优化的相关原理方法。
通过这次实验,我们加深了对电子电路基础知识的理解和应用,并提高了实验操作和数据分析的能力水平。
实验1 金属箔式应变片――单臂电桥性能实验一、实验目的:1、了解金属箔式应变片的应变效应2、单臂电桥工作原理和性能。
二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。
,对单臂电桥输出电压U o1= EKε/4。
三、需用器件与单元:应变式传感器实验模板、应变式传感器-电子秤、砝码、数显表、±15V电源、±4V 电源、万用表(自备)。
四、实验步骤:1、根据图(1-1)应变式传感器(电子秤)已装于应变传感器模板上。
传感器中各应变片已接入模板的左上方的R1、R2、R3、R4。
加热丝也接于模板上,可用万用表进行测量判别,R 1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右图1-1 应变式传感器安装示意图2、接入模板电源±15V(从主控台引入),检查无误后,合上主控台电源开关,将实验模板调节增益电位器R W3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正负输入端与地短接,输出端与主控台面板上数显表输入端V i相连,调节实验模板上调零电位器R W4,使数显表显示为零(数显表的切换开关打到2V 档)。
关闭主控箱电源(注意:当R w3、R w4的位置一旦确定,就不能改变。
一直到做完实验为止)。
3、将应变式传感器的其中一个电阻应变片R1(即模板左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已接好),接好电桥调零电位器R W1,接上桥路电源±4V(从主控台引入)如图1-2所示。
检查接线无误后,合上主控台电源开关。
实验⼀⾦属箔式应变⽚性能—单臂电桥实验⼀⾦属箔式应变⽚性能——单臂电桥⼀、实验⽬的:1、了解⾦属箔式应变⽚,单臂电桥的⼯作原理和⼯作情况。
2、掌握传感器的静态标定过程。
3、分析传感器的静态性能指标。
⼆、基本原理:本实验说明箔式应变⽚及单臂直流电桥的电源的原理和⼯作情况。
应变⽚是最常⽤的测⼒传感元件。
当⽤应变⽚测试时,应变⽚要牢固地粘贴在测试体表⾯,当测件受⼒发⽣形变,应变⽚的敏感栅随同变形,其电阻也随之发⽣相应的变化,通过测量电路,转换成电信号输出显⽰。
电桥电路是最常⽤的⾮电量电测电路中的⼀种。
当电桥平衡时,桥路对臂电阻乘积相等,电桥输出为零,在桥臂四个电阻R 1、R 2、R 3、R 4中,电阻的相对变化率分别为ΔR 1/ R 1、ΔR 2/ R 2、ΔR 3/ R 3、ΔR 4/ R 4,当使⽤⼀个应变⽚时,∑R R R ?= ;当两个应变⽚组成差动状态⼯作,则有∑RR R ?=2;⽤四个应变⽚组成两个差对⼯作,且R 1=R 2=R 3=R 4=R , ∑RRR ?=4。
由此可知,单臂、半桥、全桥电路的灵敏度依次增⼤。
三、需⽤器件与单元:直流稳压电源、电桥、差动放⼤器、双平⾏梁、测微头、⼀⽚应变⽚、电压/频率表、主、副电源。
四、旋钮初始位置:直流稳压电源打到±2V 档,电压/频率表(即电压/频率表)打到2V 档,差动放⼤增益最⼤。
当应变梁收到拉⼒时,各应变⽚电阻值变化图1五、实验步骤:1、了解所需单元、部件在实验仪上的位置,观察梁上的应变⽚,应变⽚为棕⾊衬底箔式结构⼩⽅薄⽚。
上下两⽚梁的外表⾯各贴两⽚受⼒应变⽚和⼀⽚补偿应变⽚,测微头在双平⾏梁前⾯的⽀座上,可以上、下、前、后、左、右调节。
2、将差动放⼤器调零:⽤连线将差动放⼤器的正(+)、负(–)、地短接,连接图如图1。
将差动放⼤器的输出端与电压/频率表的输⼊插⼝V i 相连;开启主、副电源;调节差动放⼤器的增益到最⼤位置,然后调整差动放⼤器的调零旋钮,使电压/频率表显⽰为零,关闭主、副电源。
实验一 金属箔式应变片性能——单臂电桥一、实验目的:1、了解金属箔式应变片,单臂电桥的工作原理和工作情况。
2、掌握传感器的静态标定过程。
3、分析传感器的静态性能指标。
二、基本原理:本实验说明箔式应变片及单臂直流电桥的电源的原理和工作情况。
应变片是最常用的测力传感元件。
当用应变片测试时,应变片要牢固地粘贴在测试体表面,当测件受力发生形变,应变片的敏感栅随同变形,其电阻也随之发生相应的变化,通过测量电路,转换成电信号输出显示。
电桥电路是最常用的非电量电测电路中的一种。
当电桥平衡时,桥路对臂电阻乘积相等,电桥输出为零,在桥臂四个电阻R 1、R 2、R 3、R 4中,电阻的相对变化率分别为ΔR 1/ R 1、ΔR 2/ R 2、ΔR 3/ R 3、ΔR 4/ R 4,当使用一个应变片时,∑RRR ∆= ;当两个应变片组成差动状态工作,则有∑RRR ∆=2;用四个应变片组成两个差对工作,且R 1=R 2=R 3=R 4=R , ∑RRR ∆=4。
由此可知,单臂、半桥、全桥电路的灵敏度依次增大。
三、需用器件与单元:直流稳压电源、电桥、差动放大器、双平行梁、测微头、一片应变片、 电压/频率表、主、副电源。
四、旋钮初始位置:直流稳压电源打到±2V 档, 电压/频率表(即电压/频率表)打到2V 档,差动放大增益最大。
当应变梁收到拉力时,各应变片电阻值变化图1五、实验步骤:1、了解所需单元、部件在实验仪上的位置,观察梁上的应变片,应变片为棕色衬底箔式结构小方薄片。
上下两片梁的外表面各贴两片受力应变片和一片补偿应变片,测微头在双平行梁前面的支座上,可以上、下、前、后、左、右调节。
2、将差动放大器调零:用连线将差动放大器的正(+)、负(–)、地短接,连接图如图1。
将差动放大器的输出端与 电压/频率表的输入插口V i 相连;开启主、副电源;调节差动放大器的增益到最大位置,然后调整差动放大器的调零旋钮,使 电压/频率表显示为零,关闭主、副电源。
单臂电桥的工作原理
(1)单臂电桥的结构及原理
直流单臂电桥又称惠斯登电桥,其原理电路如图1(a)所示。
图中被测电阻R x和R2、R3、R4三个已知电阻连接成四边形。
四个电阻的连接点a、b、c、d称为电桥的顶点;由这四个电阻组成的支路ac、cb、ad、bd称为桥臂。
在电桥的两个顶点a、b 之间(一般称为电桥输入端)接一个直流电源,而在电桥的另外两个顶点c、d之间(一般称为电桥输出端)接一个指零仪(检流计)。
当电桥电源接通之后,调节桥臂电阻R2、R3和R4,使c、d 两个顶点的电位相等,即指零仪两端没有电位差,其电流I g =0,这种状态称为电桥平衡。
当电桥平衡时,有
Rx=R2*R4 / R3
上式中,R2 /R3称为电桥的比率臂,电阻R4称为比较臂。
当电桥平衡时,可以由R2、R3和R4的电阻值求得被测电阻R x。
为读数方便,制造时,使R2 /R3的值为十进制倍数的比率,如0.1、1.0、10、100。
等。
这样,R x便为已知量R4的十进制倍数,便于读取被测量。
用电桥测电阻实际上是将被测电阻与已知标准电阻进行比较来确定被测电阻值,只要比率臂电阻和比较臂电阻R2、R3和R4足够精确,R x的测量准确度也就比较高。
直流单臂电桥的准确度分为0. 01、0.02、0.05、0.1、0.2、0.5、1.0、2.0共8个等级。
由于上式是根据I g=0得出的结论,所以指零仪必须采用高灵敏度的检
流计,以确保电桥的平衡条件,从而保证电桥的测量精度。
(2)QJ23型单臂电桥
电桥的种类很多,图1是常见的便携式QJ23型单臂电桥的原理电路和面板图,其准确度为0.2级。
比率臂R2/R3由8个电阻组成,共有7个挡位,分别为“10-3”、“10-2”、“l0-l”、“1”、“10”、“102”和“103”,示于面板左上方的读数盘上,由转换开关换接。
比较臂R4由4个可调电阻箱串联组成,这4个电阻箱分别由9个1Ω、9个10Ω、9个100Ω、9个1000Ω的电阻组成,它们示于面板右上方的读数盘上,比较臂R4的值由面板上这4个读数盘所示的电阻值相加而得。
调节面板上的读数盘,可得到0~9999Ω范围内任意的电阻值。
(a)原理电路图(b)面板图
图1 便携式QJ23型单臂电桥
l一倍率旋钮;2一比较臂读数盘;3~检流计电桥可用内附检流计,也可用外接检流计。
在面板左下方有三个接线柱,使用内接检流计时,用接线柱上的金属片将下面两个接线柱短接。
检流计上装有锁扣,可将可动部分锁住,以免搬动时损坏悬丝。
需要外接检流计时,用金属片将上面两个接线柱短接(即将内附检流计短接),并将外接检流计接在下面两个接线柱上。
电桥内附有电源,需装入1号电池三节。
需要时(如测量大电阻时),也可外接电源,面板左上方有一对接线柱,标有“+”、“一”符号,供外接电源用。
面板中下方有2个按钮开关,其中“G”为检流计支路的开关;“B”为电源支路的开关;面板右下方还有一对接线柱,标有“R x”,用以连接被测电阻。
(3)单臂电桥使用步骤
①先打开检流计锁扣,再调节指零仪,使指针位于零点。
②将被测电阻接到标有“R x”的两个接线柱之间,根据被测电阻R x 的近似值(可先用万用表测得),选择合适的倍率,以便让比较臂的4个电阻都用上,使测量结果为四位有效数字,提高读数精度。
例如,R x ≈8Ω,则可选择倍率0.001,若电桥平衡时比较臂读数为8211Ω,则被测电阻R x为
R x = 倍率×比较臂的读数= 0.001×8211=8. 211 (Ω)
如果选择倍率为1,则比较臂的前3个电阻都无法用上,只能测得R x = 1×8= 8(Ω),读数误差大,失去用电桥进行精确测量的意义。
③测量时,应先按电源支路开关“B”按钮,再按检流计“G”按钮。
若检流计指针向“+”偏转,表示应加大比较臂电阻;若指针向“一”偏转,则应减小比较臂电阻。
反复调节比较臂电阻,使指针趋于零位,电桥即达到平衡。
调节开始时,电桥离平衡状
态较远,流过检流计的电流可能很大,使指针剧烈偏转,故先不要将检流计按钮按死,要调节一次比较臂电阻,然后按一下“G”,当电桥基本平衡时,才可锁住“G”按钮。
④测量结束后,应先松开“G”按钮,再松开“B”按钮。
否则,在测量具有较大电感的电阻时,因断开电源而产生的电动势会作用到检流计回路,使检流计损坏。
⑤电桥不用时,应将检流计锁扣锁住,以免搬运时震坏悬丝。
二.利用电桥测量电阻的原理
1.直流单臂电桥的原理性电路如图所示。
它是由四
个电阻R a、R b、R0、R X联成一个四边形回路,这四个电阻称做电桥的四个“臂”。
在这个四边形回路的一条对角线的顶点间接入直流工作电源,另一条对角线的顶点间接入检流计,这个支路一般称做“桥”。
适当地调节R0值,可使C、D两点电位相同,检流计中无电流流过,这时称电桥达到了平衡。
在电桥平衡时有:
B
R a I a =R b I b R X I X =R 0I 0 且 I a =I X , I b =I 0
则上式整理可得:
0b
a R R R R X 为了计算方便,通常把R a /R
b 的比值选作成10n (n=0,±1,±2,…)。
令C=R a /R b ,则:
R X =C R 0 可见电桥平衡时,由已知的R a 、R b (或C )及R 0值便可算出R X 。
人们常把R a 、R b 称做比例臂,C 为比例臂的倍率;R 0称做比较臂;R X 称做待测臂。
三.运用时的注意事项
1.联好电路复查无误、倍率C 和比较臂R 0的值均已选置好、保护电阻R 处于保护状态(K 1断开)才许试接电源进行实验。
如接通电源瞬间检流计指针锰偏撞针或一点不动应即断电检查原
因。
2.换测电阻时,一定要重新选置R a、R b和R0,预先使桥接近平衡,并且断开K1,使R处于保护状态。
改换电路必须先断开电源。
3.调节电桥平衡时,应采用接通一下检流计支路看看偏转大小,适当调节R0再接通一下检流计支路看看偏转大小的办法,不可使检流计在通电情况下调R0,以免损坏检流计或调节不精细。
在调R0时要根据检流计的偏转大小和方向有目的地从高位至低位顺次逼近调节,不应盲目乱调。
4.用伏安法测电阻,受所用电表内阻的影响,在测量中往往引入方法误差;用欧姆表测量电阻虽较方便,但测量精度不高。
在精确测量电阻时,常使用电桥进行测量。
其测量方法同电位差计一样同属于比较测量法。
5.所讨论的是直流单臂电桥(又称惠斯登电桥),主要是用来测量中等阻值(10~105Ω)电阻的;测量低阻(10~10-5Ω)用直流双臂电桥(又称凯尔文电桥),测量高阻(106~1012Ω)则用专门的高阻电桥或冲击法等测量方法。
6.电桥不仅可以测量电阻,还可以测量许多与电阻有关的电学量
和非电学量,而且在自动控制技术中也得到了广泛的应用。