高中数学(人教A版,选修2-3)备选练习:1.1 第2课时两个基本原理的应用
- 格式:doc
- 大小:56.50 KB
- 文档页数:1
第一章计数原理1.1 分类加法计数原理与分步乘法计数原理第2课时两个计数原理的综合应用A级基础巩固一、选择题1.某同学逛书店,发现三本喜欢的书,决定至少买其中的一本,则购买方案有()A.3种B.6种C.7种D.9种解析:买一本,有3种方案;买两本,有3种方案;买三本有1种方案.因此共有方案:3+3+1=7(种).答案:C2.从1,2,3,4,5五个数中任取3个,可组成不同的等差数列的个数为()A.2 B.4C.6 D.8解析:分两类:第一类,公差大于0,有以下4个等差数列:①1,2,3,②2,3,4,③3,4,5,④1,3,5;第二类,公差小于0,也有4个.根据分类加法计数原理可知,可组成的不同的等差数列共有4+4=8(个).答案:D3.从集合{1,2,3}和{1,4,5,6}中各取1个元素作为点的坐标,则在直角坐标系中能确定不同点的个数为()A.12 B.11C.24 D.23解析:先在{1,2,3}中取出1个元素,共有3种取法,再在{1,4,5,6}中取出1个元素,共有4种取法,取出的2个数作为点的坐标有2种方法,由分步乘法计数原理知不同的点的个数有N=3×4×2=24(个).又点(1,1)被算了两次,所以共有24-1=23(个).答案:D4.要把3张不同的电影票分给10个人,每人最多一张,则有不同的分法种数是()A.2 160 B.720C.240 D.120解析:可分三步:第一步,任取一张电影票分给一人,有10种不同分法;第二步,从剩下的两张中任取一张,由于一人已得电影票,不能再参与,故有9种不同分法;第三步,前面两人已得电影票,不再参与,因而剩余最后一张有8种不同分法.所以不同的分法种数是10×9×8=720(种).答案:B5.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数的个数是()A.20 B.16C.14 D.12解析:因为四位数的每个位数上都有两种可能性(取2或3),其中四个数字全是2或3的不合题意,所以适合题意的四位数共有2×2×2×2-2=14(个).答案:C二、填空题6.3位旅客投宿到1个旅馆的4个房间(每房间最多可住3人)有________种不同的住宿方法.解析:分三步,每位旅客都有4种不同的住宿方法,因而共有不同的方法4×4×4=43=64(种).答案:647.甲、乙、丙3个班各有三好学生3,5,2名,现准备推选2名来自不同班的三好学生去参加校三好学生代表大会,共有________种不同的推选方法.解析:分为三类:第一类,甲班选一名,乙班选一名,根据分步乘法计数原理,选法有3×5=15(种);第二类,甲班选一名,丙班选一名,根据分步乘法计数原理,选法有3×2=6(种);第三类,乙班选一名,丙班选一名,根据分步乘法计数原理,选法有5×2=10(种).综合以上三类,根据分类加法计数原理,不同选法共有15+6+10=31(种).答案:318.下图的阴影部分由方格纸上3个小方格组成,我们称这样的图案为L形,那么在由3×5个小方格组成的方格纸上可以画出不同位置的L形图案的个数为________(注:其他方向的也是L形).解析:每四个小正方形图案都可画出四个不同的L形图案,该图中共有8个这样的小正方形.故可画出不同的位置的L形图案的个数为4×8=32.答案:32三、解答题9.某单位职工义务献血,在体检合格的人中,O型血的共有28人,A型血的共有7人,B型血的共有9人,AB型血的共有3人.(1)从中任选1人去献血,有多少种不同的选法?(2)从四种血型的人中各选1人去献血,有多少种不同的选法?解:从O型血的人中选1人有28种不同的选法,从A型血的人中选1人有7种不同的选法,从B型血的人中选1人有9种不同的选法,从AB型血的人中选1人有3种不同的选法.(1)任选1人去献血,即无论选哪种血型的哪一个人,“任选1人去献血”这件事情都可以完成,所以用分类加法计数原理,不同的选法有28+7+9+3=47(种).(2)要从四种血型的人中各选1人,即从每种血型的人中各选出1人后,“各选1人去献血”这件事情才完成,所以用分步乘法计数原理,不同的选法有28×7×9×3=5 292(种).10.由1,2,3,4可以组成多少个自然数(数字可以重复,最多只能是四位数)?解:组成的自然数可以分为以下四类:第一类:一位自然数,共有4个;第二类:二位自然数,又可分两步来完成.先取出十位上的数字,再取出个位上的数字,共有4×4=16(个);第三类:三位自然数,又可分三步来完成.每一步都可以从4个不同的数字中任取一个,共有4×4×4=64(个);第四类:四位自然数,又可分四步来完成.每一步都可以从4个不同的数字中任取一个,共有4×4×4×4=256(个).由分类加法计数原理知,可以组成的不同的自然数为4+16+64+256=340(个).B级能力提升1.用1,2,3三个数字组成一个四位数,规定这三个数必须全部使用,且同一数字不能相邻出现,这样的四位数有() A.36个B.18个C.9个D.6个解析:分3步完成,1,2,3这三个数中必有某一个数字被重复使用2次.第1步,确定哪一个数字被重复使用2次,有3种方法;第2步,把这2个相同的数字排在四位数不相邻的两个位置上有3种方法;第3步,将余下的2个数字排在四位数余下的两个位置上,有2种方法.故可组成的不同的四位数有3×3×2=18(个).答案:B2.把9个相同的小球放入编号为1,2,3的三个箱子里,要求每个箱子放球的个数不小于其编号数,则不同的放球方法共有________种.解析:分四类:第一个箱子放入1个小球,将剩余的8个小球放入2,3号箱子,共有4种放法;第一个箱子放入2个小球,将剩余的7个小球放入2,3号箱子,共有3种放法;第一个箱子放入3个小球,将剩余的6个小球放入2,3号箱子,共有2种放法;第一个箱子放入4个小球则共有1种放法.根据分类加法计数原理共有10种情况.答案:103.某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如图所示的6个点A,B,C,A1,B1,C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有多少种?解:第一步,在点A1,B1,C1上安装灯泡,A1有4种方法,B1有3种方法,C1有2种方法,4×3×2=24,即共有24种方法.第二步,从A,B,C中选一个点安装第4种颜色的灯泡,有3种方法.第三步,再给剩余的两个点安装灯泡,共有3种方法,由分步乘法计数原理可得,安装方法共有4×3×2×3×3=216(种).高中数学学习技巧:在学习的过程中逐步做到:提出问题,实验探究,展开讨论,形成新知,应用反思。
基本计数原理(1)分类加法计数原理:做一件事情,完成它有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法.那么完成这件事情共有N=m1+m2 +……+m n种不同的方法。
(2)分步乘法计数原理:做一件事情,完成它需要n个步骤,做第一个步骤有m1种不同的方法,做第二个步骤有m2种不同的方法……做第n个步骤有m n种不同的方法,那么完成这件事情共有N= m1 ×m2 ×……× m n种不同的方法。
计数问题是数学中的重要研究对象,解决计数问题,其基本方法是列举法、列表法、树形图法等:其中级方法是分类加法原理和分步乘法原理:其高级方法是排列组合,基本计数原理是连接初级方法和高级方法的“桥梁”,是核心的方法,是解决计数问题的最重要的方法,而排列组合问题的方法:①特殊元素、特殊位置优先法。
②间接法。
③相邻问题捆绑法。
④不相邻(相间)问题插空法。
⑤有序问题组合法。
⑥选取问题先选后排法。
⑦至多至少问题间接法。
⑧相同元素分组可采用隔板法。
⑨分组问题等。
[例1]用0, 1, ..9十个数字,可以组成有重复数字的三位数的个数为()。
A.243B.252C.261D.279[解析]0,1, 2,…,9共能组成9×10×10=900 (个)三位数,其中无重复数字的三位数有9×9×8=648 (个),∴有重复数字的三位数有900-648=252 (个)。
故选B。
[注意]三位数一定要保证最高位不为0.[例2] 6名同学排成一排照相,要求同学甲既不站在最左边又不站在最右边,共有()种不同站法。
[解析]法一: (位置分析法)先从其他5人中安排2人站在最左边和最右边,再安排余下4人的位置,分为两步:第1步,从除甲外的5人中选2人站在最左边和最右边,有25A 种站法:第2步,余下4人(含甲)站在剩下的4个位置上,有44A 种站法。
选修2-3第一章 1.1第2课时一、选择题1.把10个苹果分成三堆,要求每堆至少有1个,至多5个,则不同的分法共有() A.4种B.5种C.6种D.7种[答案] A[解析]分类考虑,若最少一堆是1个,那由至多5个知另两堆分别为4个、5个,只有一种分法;若最少一堆是2个,则由3+5=4+4知有2种分法;若最少一堆是3个,则另两堆为3个、4个,故共有分法1+2+1=4种.2.四个同学,争夺三项冠军,冠军获得者可能有的种类是()A.4 B.24C.43D.34[答案] C[解析]依分步乘法计数原理,冠军获得者可能有的种数是4×4×4=43.故选C.3.已知函数y=ax2+bx+c,其中a、b、c∈{0,1,2,3,4},则不同的二次函数的个数共有()A.125个B.15个C.100个D.10个[答案] C[解析]由题意可得a≠0,可分以下几类,第一类:b=0,c≠0,此时a有4种选择,c也有4种选择,共有4×4=16个不同的函数;第二类:c=0,b≠0,此时a有4种选择,b也有4种选择,共有4×4=16个不同的函数;第三类:b≠0,c≠0,此时a,b,c都各有4种选择,共有4×4×4=64个不同的函数;第四类:b=0,c=0,此时a有4种选择,共有4个不同的函数.由分类加法计数原理,可确定不同的二次函数共有N=16+16+64+4=100(个).故选C.4.将5名世博会志愿者全部分配给4个不同的地方服务,不同的分配方案有() A.8 B.15C.512 D.1024[答案] D[解析] 由分步计数原理得4×4×4×4×4=1024,故选D.5.如图,某电子器件是由三个电阻组成的回路,其中共有6个焊接点A 、B 、C 、D 、E 、F ,如果某个焊接点脱落,整个电路就会不通,现在电路不通了,那么焊接点脱落的可能性共有( )A .6种B .36种C .63种D .64种[答案] C[解析] 每个焊接点都有正常与脱落两种情况,只要有一个脱落电路即不通,∴共有26-1=63种.故选C.6.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为( )A .3B .4C .6D .8 [答案] D[解析] 当公比为2时,等比数列可为1、2、4,2、4、8.当公比为3时,等比数列可为1、3、9.当公比为32时,等比数列可为4、6、9. 同时,4、2、1,8、4、2,9、3、1和9、6、4也是等比数列,共8个.二、填空题7.(2014·杭州模拟)有一质地均匀的正四面体,它的四个面上分别标有1、2、3、4四个数字,现将它连续抛掷3次,其底面落于桌面,记三次在正四面体底面的数字和为S ,则“S 恰好为4”的概率为________.[答案] 364 [解析] 本题是一道古典概型问题.用有序实数对(a ,b ,c )来表示连续抛掷3次所得的3个数字,则该试验中共含4×4×4=64个基本事件,取S =a +b +c ,事件“S 恰好为4”中包含了(1,1,2),(1,2,1),(2,1,1)三个基本事件,则所求概率P =364. 8.设椭圆x 2m +y 2n=1的焦点在y 轴上,m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},则这样的椭圆个数为__________________________.[答案] 20[解析] 曲线是焦点在y 轴上的椭圆,∴n >m .当m =1时,n 有6种取法,当m =2时,n 有5种取法……当m =5时n 有2种取法,∴这样的椭圆共有6+5+4+3+2=20个.9.有10本不同的数学书,9本不同的语文书,8本不同的英语书,从中任取两本不同类的书,共有不同的取法__________________种.[答案] 242[解析] 取两本书中,一本数学、一本语文,根据分步乘法计数原理有10×9=90(种)不同取法;取两本书中,一本语文、一本英语,有9×8=72(种)不同取法;取两本书中,一本数学、一本英语,有10×8=80(种)不同取法.综合以上三类,利用分类加法计数原理,共有90+72+80=242(种)不同取法.三、解答题10.有三项体育运动项目,每个项目均设冠军和亚军各一名奖项.(1)学生甲参加了这三个运动项目,但只获得一个奖项,学生甲获奖的不同情况有多少种?(2)有4名学生参加了这三个运动项目,若一个学生可以获得多项冠军,那么各项冠军获得者的不同情况有多少种?[解析] (1)三个运动项目,共有六个奖项,由于甲获得一个奖项且甲可获得六个奖项中的任何一个.∴甲有6种不同的获奖情况.(2)每一项体育运动项目中冠军的归属都有4种不同的情况,故各项冠军获得者的不同情况有4×4×4=64(种).一、选择题11.(2012·广东理,7)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( )A .49B .13C .29D .19[答案] D[解析] 本题考查计数原理与古典概型,∵两数之和为奇数,则两数一奇一偶,若个位数为奇数,则共有4×5=20个数,若个位数为偶数,共有5×5=25个数,其中个位为0的数共有5个,∴P =520+25=19.12.某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位连在一起,则不同的停放方法的种数为( )A .16B .18C .24D .32[答案] C[解析] 若将7个车位从左向右按1~7进行编号,则该3辆车有4种不同的停放方法:(1)停放在1~3号车位;(2)停放在5~7号车位;(3)停放在1、2、7号车位;(4)停放在1、6、7号车位.每一种停放方法均有6种,故共有24种不同的停放方法.13.(2014·张家界月考)先后掷两次正方体骰子(骰子的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为m 、n ,则mn 是奇数的概率是( )A .12B .13C .14D .16 [答案] C[解析] 先后掷两次正方体骰子总共有36种可能,要使mn 是奇数,则m 、n 都是奇数,因此有以下几种可能:(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5)共9种可能.因此P =936=14. 14.若三角形的三边长均为正整数,其中一边长为4,另外两边长分别为b 、c ,且满足b ≤4≤c ,则这样的三角形有( )A .10个B .14个C .15个D .21个 [答案] A[解析] 当b =1时,c =4;当b =2时,c =4,5;当b =3时,c =4,5,6;当b =4时,c =4,5,6,7.故共有10个这样的三角形.选A.[点评] 注意三角形两边之和大于第三边,两边之差小于第三边.二、填空题15.连掷两次骰子得到的点数分别为m 和n ,向量a =(m ,n )和向量b =(1,-1)的夹角为θ,则θ为锐角的概率是________.[答案] 512 [解析] cos θ=a ·b |a ||b |=m -n 2·m 2+n 2, ∵θ∈(0,π2),∴⎩⎪⎨⎪⎧m -n >0,m -n 2m 2+2n 2<1. ∴m >n ,则m =2时,n =1;m =3时,n =1,2;m =4时,n =1,2,3;m =5时,n =1,2,3,4;m =6时,n =1,2,3,4,5.则这样的向量a 共有1+2+3+4+5=15(个),而第一次投掷骰子得到的点数m 有6种情形,同样n 也有6种情形,∴不同的向量a=(m ,n ),共有6×6=36个,因此所求概率P =1536=512. 三、解答题16.现有高三四个班的学生共34人,其中一、二、三、四班分别有7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选二人作发言,这二人需来自不同的班级,有多少种不同的选法?[解析] (1)分四类:第一类,从一班学生中选1人,有7种选法;第二类,从二班学生中选1人,有8种选法;第三类,从三班学生中选1人,有9种选法;第四类,从四班学生中选1人,有10种选法,所以,共有不同的选法N =7+8+9+10=34(种).(2)分四步:第一、二、三、四步分别为从一、二、三、四班的学生中选一人任组长,所以共有不同的选法N =7×8×9×10=5040(种).(3)分六类:每类又分两步,从一、二班的学生中各选1人,有7×8种不同的选法;从一、三班的学生中各选1人,有7×9种不同的选法;从一、四班的学生中各选1人,有7×10种不同的选法;从二、三班的学生中各选1人,有8×9种不同的选法;从二、四班的学生中各选1人,有8×10种不同的选法:从三、四班的学生中各选1人,有9×10种不同的选法;所以共有不同的选法N =7×8+7×9+7×10+8×9+8×10+9×10=431(种).17.用1、2、3、4四个数字(可重复)排成三位数,并把这些三位数由小到大排成一个数列{a n }.(1)写出这个数列的前11项;(2)这个数列共有多少项?(3)若a n =341,求n .[解析] (1)111,112,113,114,121,122,123,124,131,132,133.(2)这个数列的项数就是用1、2、3、4排成的三位数,每个位上都有4种排法,则共有4×4×4=64项.(3)比a n=341小的数有两类:①;②.共有2×4×4+1×3×4=44项.∴n=44+1=45(项).。
第一章计数原理1.2 排列与组合1.2.2 组合第2课时组合的综合应用A级基础巩固一、选择题1.一个口袋中装有大小相同的6个白球和4个黑球,从中取2个球,则这两个球同色的不同取法有()A.27种B.24种C.21种D.18种解析:分两类:一类是2个白球有C26=15种取法,另一类是2个黑球有C24=6种取法,所以取法共有15+6=21(种).答案:C2.4位同学每人从甲、乙、丙三门课程中选修1门,则恰有2人选修课程甲的不同选法共有()A.12种B.24种C.30种D.36种解析:依题意,满足题意的选法共有C24×2×2=24(种).答案:B3.从编号为1、2、3、4的四种不同的种子中选出3种,在3块不同的土地上试种,每块土地上试种一种,其中1号种子必须试种,则不同的试种方法有()A.24种B.18种C.12种D.96种解析:从3块不同的土地中选1块种1号种子,有C13种方法,从其余的3种种子中选2种种在另外的2块土地上,有A23种方法,所以所求方法有C13A23=18(种).答案:B4.将4个颜色互不相同的球全部收入编号为1和2的2个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有()A.10种B.20种C.36种D.52种解析:根据2号盒子里放球的个数分类:第一类,2号盒子里放2个球,有C24种放法,第二类,2号盒子里放3个球,有C34种放法,剩下的小球放入1号盒中,共有不同放球方法C24+C34=10(种).答案:A5.某电视台连续播放5个广告,其中有3个不同的商业广告和2个不同的公益广告,要求最后播放的必须是公益广告,且2个公益广告不能连续播放,则不同的播放方式有()A.120种B.48种C.36种D.18种解析:依题意,所求播放方式的种数为C12C13A33=2×3×6=36.答案:C二、填空题6.北京市某中学要把9台型号相同的电脑送给西部地区的三所希望小学,每所小学至少得到2台,共有________种不同送法.解析:每校先各得一台,再将剩余6台分成3份,用插板法解,共有C25=10(种).答案:107.某校开设9门课程供学生选修,其中A、B、C三门由于上课时间相同,至多选一门,学校规定每位同学选修4门,共有________种不同选修的方案(用数字作答).解析:分两类,第一类学生不选A,B,C中的任意一门,选法有C46=15(种).第二类学生从A,B,C中选一门,再从其他6门中选3门课程,共有C13C36=60种选法.所以选法共有15+60=75(种).答案:758.以正方体的顶点为顶点的四面体共有________个.解析:先从8个顶点中任取4个的取法为C48种,其中,共面的4点有12个,则四面体的个数为C48-12=58(个).答案:58三、解答题9.为了提高学生参加体育锻炼的热情,光明中学组织篮球比赛,共24个班参加,第一轮比赛是先分四组进行单循环赛,然后各组取前两名再进行第二轮单循环赛(在第一轮中相遇过的两个队不再进行比赛),问要进行多少场比赛?解:第一轮每组6个队进行单循环赛,共有C26场比赛,4个组共计4C26场.第二轮每组取前两名,共计8个组,应比赛C28场,由于第一轮中在同一组的两队不再比赛,故应减少4场,因此第二轮的比赛应进行C28=4(场).综上,两轮比赛共进行4C26+C28-4=84(场).10.有6本不同的书按下列分配方式分配,问共有多少种不同的分配方式?(1)分成1本、2本、3本三组;(2)分给甲、乙、丙三人,其中一人1本,一人2本,一人3本;(3)分成每组都是2本的三组;(4)分给甲、乙、丙三人,每人2本.解:(1)分三步:选选一本有C16种选法;再从余下的5本中选2本有C25有种选法;对于余下的三本全选有C33种选法,由分步乘法计数原理知选法有C16C25C33=60(种).(2)由于甲、乙、丙是不同的三人,在(1)的基础上,还应考虑再分配的问题,因此选法共有C16C25C33A33=360(种).(3)先分三步,则应是C26C24C22种选法,但是这里面出现了重复,不妨记6本书分别为A,B,C,D,E,F,若第一步取了(AB,CD,EF),则C26C24C22种分法中还有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB),(EF,AB,CD),(EF,CD,AB)共A33种情况,而且这A33种情况仅是AB,CD,EF的顺序不同,因此,只算作一种情况,故分配方式有C26C24C22A33=15(种).(4)在问题(3)的基础上再分配,故分配方式有C26C24C22A33·A33=C26C24C22=90(种).B级能力提升1.已知圆上9个点,每两点连一线段,所有线段在圆内的交点有()A.36个B.72个C.63个D.126个解析:此题可化归为:圆上9个点可组成多少个四边形,每个四边形的对角线的交点即为所求,所以,交点有C49=126(个).答案:D2.某科技小组有六名学生,现从中选出三人去参观展览,至少有一名女生入选的不同选法有16种,则该小组中的女生人数为________.解析:设男生人数为x,则女生有(6-x)人.依题意C36-C3x=16,则6×5×4=x(x-1)(x-2)+16×6,所以x(x-1)(x-2)=2×3×4,解得x=4.即女生有2人.答案:23.有五张卡片,它们的正、反面分别写0与1,2与3,4与5,6与7,8与9.将其中任意三张并排放在一起组成三位数,共可组成多少个不同的三位数?解:法一依0与1两个特殊值分析,可分三类:(1)取0不取1,可先从另四张卡片中选一张作百位,有C14种方法;0可在后两位;有C12种方法;最后需从剩下的三张中任取一张,有C13种方法;又除含0的那张外,其他两张都有正面或反面两种可能,故此时可得不同的三位数有C14C12C13·22个.(2)取1不取0,同上分析可得不同的三位数C24·22·A33个.(3)0和1都不取,有不同三位数C34·23·A33个.综上所述,不同的三位数共有C14C12C13·22+C24·22·A23+C34·23·A33=432(个).法二任取三张卡片可以组成不同三位数C35·23·A33个,其中0在百位的有C24·22·A22个,这是不合题意的,故可组成的不同三位数共有C35·23·A33-C24·22·A22=432(个).小课堂:如何培养学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。
人教A版高中数学选修2-3全册同步课时练习1.1计数原理第一课时分类加法计数原理与分步乘法计数原理填一填一、分类加法计数原理1.分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.2.分类加法计数原理的推广:完成一件事有n类不同的方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,……在第n类方案中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法.二、分步乘法计数原理1.分步乘法计数原理:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.2.分步乘法计数原理的推广:完成一件事需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,……做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.三、分类加法计数原理和分步乘法计数原理的区别1.分类加法计数原理针对的是“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事.2.分步乘法计数原理针对的是“分步”问题,各个步骤中的方法相互依存,只有各个判一判判断(1.在分类加法计数原理中,两类不同方案中的方法可以相同.(×)2.在分类加法计数原理中,每类方案中的方法都能完成这件事.(√)3.在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.(√)4.在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.(×)想一想1.提示:两个计数原理主要解决完成一件事情的方法数问题.2.在实际问题中如何判断到底是用分类加法计数原理还是用分步乘法计数原理?提示:关键在于看这种方法是能完成这件事还是完成这件事的一步,能独立完成这件事用分类加法计数原理,只能完成一步用分步乘法计数原理.3.从甲地到乙地有3班汽车,两班火车,则从甲地到乙地有多少种不同方法?提示:从甲地到乙地,可以选择乘坐汽车和火车两类办法,应用分类加法计数原理,汽车有3种,火车有2种,共有3+2=5种方法.4.从甲地到乙地先乘火车,后乘汽车,火车有2趟,汽车有3班,从甲到乙有多少种到达方法?提示:完成从甲地到乙地这件事,分两步,坐火车再坐汽车,分步完成,应用分步乘法计数原理,共有2×3=6种方法.思考感悟:练一练1.5位同学只会用分析法证明,现任选1名同学证明这个问题,不同的选法种数为________.解析:由分类加法计数原理可得,有7+5=12种不同的选法.答案:122.一个科技小组有3名男同学,5名女同学,从中任选1名同学参加学科竞赛,不同的选派方法共有________种.解析:任选1名同学参加学科竞赛,有两类方案:第一类,从男同学中选取1名参加学科竞赛,有3种不同的选法;第二类,从女同学中选取1名参加学科竞争,有5种不同的选法.由分类加法计数原理得,不同的选派方法共有3+5=8(种).答案:83.在平面直角坐标系内,若点P(x,y)的横、纵坐标均在{0,1,2,3}内取值,则不同的点P有________个.解析:确定点P的坐标分两步,即分布确定点P的横坐标与纵坐标.第一步,确定横坐标,从0,1,2,3四个数字中选一个,有4种方法;第二步,确定纵坐标,从0,1,2,3四个数字中选一个,也有4种方法.根据分步乘法计数原理,所有不同的点P的个数为4×4=16.答案:164.人们习惯把最后一位是6的多位数叫作“吉祥数”,则无重复数字的四位吉祥数(首位不能是零)共有________个.解析:第一步,确定千位,除去0和6,有8种不同的选法;第二步,确定百位,除去6和千位数字外,有8种不同的选法;第三步,确定十位,除去6和千位、百位上的数字外,有7种不同的选法.故共有8×8×7=448个不同的“吉祥数”.答案:448知识点一分类加法计数原理1.2种方法完成,从中选出1人来完成这件工作,不同选法的种数是()A.8 B.15C.16 D.30解析:运用分类加法计数原理可得,不同选法的种数是5+3=8.答案:A2.在一宝宝面前摆着4件学习用品,3件生活用品,4件娱乐用品,若他只抓其中的一件物品,则他抓的结果有________种.解析:抓物品的不同结果分三类,由分类加法计数原理,得共有4+3+4=11(种).答案:3.现有套,那么不同的配法种数为()A.7 B.12C.64 D.81解析:要完成配套需分两步:第1步,选上衣,从4件上衣中任选一件,有4种不同选法;第2步,选长裤,从3条长裤中任选一条,有3种不同选法.故共有4×3=12(种)不同的配法.答案:B4.某乒乓球队里有男队员6人,女队员5人,从中选取男、女队员各一人组成混合双打队,不同的组队总数有()A.11种B.30种C.56种D.65种解析:先选1男有6种方法,再选1女有5种方法,故共有6×5=30种不同的组队方法.故选B项.5.的两人参加市里组织的活动,有多少种不同的选法?解析:分三类:(1)选出的是高一、高二学生,有5×6=30(种)选法;(2)选出的是高一、高三学生,有5×4=20(种)选法;(3)选出的是高二、高三学生,有6×4=24(种)选法.由分类加法计数原理,可得共有N=30+20+24=74(种)不同的选法.6.现有高一四个班的学生34人,其中一、二、三、四班分别有7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选两人做中心发言,这两人需来自不同的班级,有多少种不同的选法?解析:(1)分四类:第一类,从一班学生中选1人,有7种选法;第二类,从二班学生中选1人,有8种选法;第三类,从三班学生中选1人,有9种选法;第四类,从四班学生中选1人,有10种选法.所以,共有不同的选法N=7+8+9+10=34(种).(2)分四步:第一、二、三、四步分别从一、二、三、四班学生中选一人任组长.所以,共有不同的选法N=7×8×9×10=5 040(种).(3)分六类,每类又分两步:从一、二班学生中各选1人,有7×8种不同的选法;从一、三班学生中各选1人,有7×9种不同的选法;从一、四班学生中各选1人,有7×10种不同的选法;从二、三班学生中各选1人,有8×9种不同的选法;从二、四班学生中各选1人,有8×10种不同的选法;从三、四班学生中各选1人,有9×10种不同的选法.所以,共有不同的选法N=7×8+7×9+7×10+8×9+8×10+9×10=431(种).7.某单位职工义务献血,在体验合格的人中,O型血的共有28人,A型血的共有7人,B型血的共有9人,AB型血的共有3人.(1)从中任选1人去献血,有多少种不同的选法?(2)从四种血型的人中各选1人去献血,有多少种不同的选法?解析:从O型血的人中选1人有28种不同的选法;从A型血的人中选1人有7种不同的选法;从B型血的人中选1人有9种不同的选法;从AB 型血的人中选1人有3种不同的选法.(1)任选1人去献血,即无论选哪种血型的哪一个人,“任选1人去献血”这件事情都可以完成,所以用分类加法计数原理,有28+7+9+3=47种不同的选法.(2)要从四种血型的人中各选1人,即从每种血型的人中各选出1人后,“各选1人去献血”这件事情才完成,所以用分步乘法计数原理,有28×7×9×3=5 292种不同的选法.基础达标 一、选择题1.一楼到二楼有4个通道,二楼到三楼有2个通道,则从一楼到三楼的不同走法有( )A .2种B .4种C .6种D .8种解析:根据分步乘法计数原理,从一楼到三楼的不同走法有4×2=8(种).故选D 项. 答案:D2.甲、乙两个班级分别有29名、30名学生,从两个班中选一名学生,则( )A .有29种不同的选法B .有30种不同的选法C .有59种不同的选法D .有29×30种不同的选法解析:从两个班中选一名学生,可以从甲班中选,也可以从乙班中选,分两类,利用分类加法计数原理得不同的选法有29+30=59(种).答案:C3.已知x ∈{1,2,3,4},y ∈{5,6,7,8},则xy 可表示不同值的个数为( )A .16B .4C .8D .15解析:完成xy 这件事分两步走,第一步:从集合{1,2,3,4}中选一个数,共有4种选法;第二步:从集合{5,6,7,8}中选一个数,共有4种选法,共有4×4=16种选法.其中3×8=4×6,所以xy 可表示的不同值的个数为15.答案:D4.现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( )A .56B .65C.5×6×5×4×3×22D .6×5×4×3×2 解析:每位同学都有5种选择,则6名同学共有56种不同的选法,故选A 项.答案:A5.已知集合M ={1,-2,3},N ={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,可得直角坐标系中第一、二象限不同点的个数是( )A .18B .16C .14D .10解析:分两类:第一类M 中取横坐标,N 中取纵坐标,共有3×2=6(个)第一、二象限的点;第二类M 中取纵坐标,N 中取横坐标,共有2×4=8(个)第一、二象限的点.综上可知,共有6+8=14(个)不同的点.答案:C6.从集合{1,2,3,…,10}中任意选出3个不同的数,使这3个数成等比数列,这样的等比数列的个数为()A.3 B.4C.6 D.8解析:以1为首项的等比数列为1,2,4;1,3,9.以2为首项的等比数列为2,4,8.以4为首项的等比数列为4,6,9.把这4个数列的顺序颠倒,又得到4个数列,所以所求的数列共有2×(2+1+1)=8(个).答案:D7.十字路口来往的车辆,如果不允许回头,则不同的行车路线有()A.24种B.16种C.12种D.10种解析:完成该任务可分为四类,从每一个方向的入口进入都可作为一类,如图,从第1个入口进入时,有3种行车路线;同理,从第2个,第3个,第4个入口进入时,都分别有3种行车路线,由分类加法计数原理可得共有3+3+3+3=12种不同的行车路线,故选C 项.答案:C二、填空题8.从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有________种.解析:有2个面不相邻即有一组对面,所以3个面中有2个面不相邻的选法有3×4=12(种).答案:129.甲有3本不同的书,乙去借阅,并且至少借1本,则不同借法的种数为________.(用数字作答)解析:由题意知可分为三类:第一类,借一本,共有3种方法;第二类,借两本,共有3种方法;第三类,借三本,共有1种方法.所以不同借法的种数为3+3+1=7.答案:710.直线方程Ax+By=0,若从0,1,2,3,5,7这6个数字中每次取两个不同的数作为A,B的值,则可表示________条不同的直线.解析:若A或B中有一个为零时,有2条;当AB≠0时,有5×4=20条,则共有20+2=22(条),即所求的不同的直线共有22条.答案:2211.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,…,9}且P Q,把满足上述条件的一对有序整数(x,y)作为一个点,这样的点的个数是________.解析:当x=2时,y可取3,4,5,6,7,8,9,共有7个点.当x=y时,y可取3,4,5,6,7,8,9,共有7个点.所以这样的点的个数为7+7=14.答案:1412.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有________种.解析:由题意知本题是一个分类计数问题,第一格填2,则第二格有A13,第三、四格自动对号入座,不用排列;第一格填3,则第三格有A13,第二、四格自动对号入座,不用排列;第一格填4,则第四格有A13,第二、三格自动对号入座,不用排列;根据分类计数原理知共有3A13=9.答案:9三、解答题13.某节目中准备了两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封,现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?解析:抽奖过程分三步完成,考虑到幸运之星可分别出现在两个信箱中,故可分两种情形考虑,分两大类:(1)幸运之星在甲箱中抽,先定幸运之星,再在两箱中各定一名幸运伙伴有30×29×20=17 400种结果.(2)幸运之星在乙箱中抽,同理有20×19×30=11 400种结果.因此共有不同结果17 400+11 400=28 800种.14.用1,2,3,4四个数字组成可有重复数字的三位数,这些数从小到大构成数列{a n }.(1)这个数列共有多少项?(2)若a n =341,求n 的值.解析:(1)由题意,知这个数列的项数就是由1,2,3,4四个数字组成的可有重复数字的三位数的个数.由于每个数位上的数都有4种取法,由分步乘法计数原理,得满足条件的三位数的个数为4×4×4=64,即数列{a n }共有64项.(2)比341小的数分为两类:第一类,百位上的数是1或2,有2×4×4=32个三位数;第二类,百位上的数是3,十位上的数可以是1,2,3中的任一个,个位上的数可以是1,2,3,4中的任一个,有3×4=12个三位数,所以比341小的三位数的个数为32+12=44,因此341能力提升15.某出版社的7还有2人既会排版又会印刷,现从7人中安排2人排版,2人印刷,有几种不同的安排方法?解析:首先分类的标准要正确,可以选择“只会排版”“只会印刷”“既会排版又会印刷”中的一个作为分类的标准.下面选择“既会排版又会印刷”作为分类的标准,按照被选出的人数,可将问题分为三类:第一类:2人全不被选出,即从只会排版的3人中选2人,有3种选法;只会印刷的2人全被选出,有1种选法,由分步乘法计数原理知共有3×1=3种选法.第二类:2人中被选出一人,有2种选法.若此人去排版,则再从会排版的3人中选1人,有3种选法,只会印刷的2人全被选出,有1种选法,由分步乘法计数原理知共有2×3×1=6种选法;若此人去印刷,则再从会印刷的2人中选1人,有2种选法,从会排版的3人中选2人,有3种选法,由分步乘法计数原理知共有2×3×2=12种选法.再由分类加法计数原理知共有6+12=18种选法.第三类:2人全被选出,同理共有16种选法.所以共有3+18+16=37种选法.16.某赛季足球比赛的计分规则是:胜一场得3分;平一场得1分;负一场得0分.一球队打完15场,积分33分.若不考虑顺序,问该队胜、负、平的情况共有多少种.解析:总积分的来源分为胜、平、负3类,可以考虑用分类加法计数原理.设该队胜x 场,平y 场,则负(15-x -y )场,其中x ,y ∈N .由题意,得3x +y =33,又因为y =33-3x ≥0,所以x ≤11且x +y ≤15,所以有如下三种情况:⎩⎪⎨⎪⎧ x =11,y =0,或⎩⎪⎨⎪⎧ x =10,y =3,或⎩⎪⎨⎪⎧x =9,y =6. 故该队胜、负、平的情况共有3种.第二课时分类加法计数原理与分步乘法计数原理的应用填一填1.分类加法计数原理与分步乘法计数原理的区别和联系(1)联系:分类加法计数原理与分步乘法计数原理,回答的都是有关做一件事的不同方法种数的问题.(2)区别:分类加法计数原理针对的是分类问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事.分步乘法计数原理针对的是分步问题,各个步骤中的方法相互依存,只有各个步骤都完成之后才算做完这件事.2.应用两个计数原理解决计数问题的标准(1)分类要做到不重不漏,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.(2)分步要做到步骤完整,步与步之间要相互独立,根据分步乘法计数原理,把完成每一步的方法数相乘得到总数.判一判判断(1.一个科技小组中有4名女同学,5名男同学,从中任选一名同学参加学科竞赛,共有不同的选派方法9种.(√)2.一个科技小组中有4名女同学,5名男同学若从中选任一名女同学和一名男同学参加学科竞赛,共有不同的选派方法20种.(√)3.某校高一年级共8个班,高二年级共6个班,从中选一个班级担任星期一早晨升旗任务,安排方法共有14种.(√)4.在一次运动会上有四项比赛,冠军在甲、乙、丙三人中产生,那么不同的夺冠情况共有43种.(×)5.3个不同的小球放入5个不同的盒子,每个盒子至多放一个小球,共有35种.(×) 6.有三只口袋装有小球,一只装有5个白色小球,一只装有6个黑色小球,一只装有7个红色小球,若每次从中取两个不同颜色的小球,共有36种不同的取法.(×) 7.由1,2,3,4想一想1.的信号,顺序不同也表示不同的信号,共可以组成多少种不同的信号?某同学解答如下:每次升1面旗可组成3种不同的信号;每次升2面旗可组成3×2=6种不同的信号;每次升3面旗可组成3×2×1=6种不同的信号,根据分类加法计数原理知,共有不同信号3+6+6=15种.他解答的对么,问题出在哪里?提示:每次升起2面或3面旗时,颜色可以相同.每次升1面旗可组成3种不同的信号;每次升2面旗可组成3×3=9种不同的信号;每次升3面旗可组成3×3×3=27种不同的信号;根据分类加法计数原理得,共可组成:3+9+27=39种不同的信号.审题时要细致,把题意弄清楚.本题中没有规定升起旗子的颜色不同,故既要考虑升起旗子的面数,又要考虑其颜色,不可偏废遗漏.2.甲、乙、丙、丁4名同学争夺数学、物理、化学3门学科知识竞赛的冠军,且每门学科只有1名冠军产生,则不同的冠军获得情况有34还是43种?提示:要完成的“一件事”是“争夺3门学科知识竞赛的冠军,且每门学科只有1名冠军产生”.可先举例说出其中的一种情况,如数学、物理、化学3门学科知识竞赛的冠军分别是甲、甲、丙,可见研究的对象是“3门学科”,只有3门学科各产生1名冠军,才完成了这件事,而4名同学不一定每人都能获得冠军,故完成这件事分三步.第1步,产生第1个学科冠军,它一定被其中1名同学获得,有4种不同的获得情况;第2步,产生第2个学科冠军,因为夺得第1个学科冠军的同学还可以去争夺第2个学科的冠军,所以第2个学科冠军也是由4名同学去争夺,有4种不同的获得情况;第3步,同理,产生第3个学科冠军,也有4种不同的获得情况.由分步乘法计数原理知,共有4×4×4=43=64种不同的冠军获得情况.此类问题是一类元素允许重复选取的计数问题,可以用分步乘法计数原理来解决,关键是明确要完成的一件事是什么.也就是说,用分步乘法计数原理求解元素可重复选取的问题时,哪类元素必须“用完”就以哪类元素作为分步的依据.思考感悟:练一练1.(a1+a2)(b1+b2)(c123A.9 B.12C.18 D.24解析:由分步乘法计数原理得,完全展开后的项数为2×2×3=12.答案:B2.某年级要从3名男生,2名女生中选派3人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案有()A.6种B.7种C.8种D.9种解析:可按女生人数分类:若选派一名女生,有2×3=6种;若选派2名女生,则有3种.由分类加法计数原理,共有9种不同的选派方法.答案:D3.小张正在玩“QQ农场”游戏,他计划从仓库里的玉米、土豆、茄子、辣椒、胡萝卜这5种种子中选出4种分别种植在四块不同的空地上(一块空地只能种植一种作物),若小张已决定在第一块空地上种茄子或辣椒,则不同的种植方案共有________种.解析:当第一块地种茄子时,有4×3×2=24种不同的种法;当第一块地种辣椒时,有4×3×2=24种不同的种法,故共有48种不同的种植方案.答案:484.如图所示,从点A沿圆或三角形的边运动到点C,则不同的走法有________种.解析:由A直接到C有2种不同的走法,由A经点B到C有2×2=4种不同的走法.因此由分类加法计数原理共有2+4=6种不同走法.答案:6知识点一 选取与分配问题1.3人会日语,从中选出会英语和日语的各一人,有多少种不同的选法?解析:由题意9人中既会英语又会日语的“多面手”有1人.则可分三类:第一类:“多面手”去参加英语时,选出只会日语的一人即可,有2种选法;第二类:“多面手”去参加日语时,选出只会英语的一人即可,有6种选法;第三类:“多面手”既不参加英语又不参加日语,则需从只会日语和只会英语中各选一人,有2×6=12种方法.故共有2+6+12=20种选法.2.有4位老师在同一年级的4个班级中各教一个班的数学,在数学考试时,要求每位老师均不在本班监考,则安排监考的方法种数是( )A .11B .10C .9D .8解析:法一:设四个班级分别是A ,B ,C ,D ,它们的老师分别是a ,b ,c ,d ,并设a 监考的是B ,则剩下的三个老师分别监考剩下的三个班级,共有3种不同的方法;同理当a 监考C ,D 时,剩下的三个老师分别监考剩下的三个班级也各有3种不同的方法.这样,由分类加法计数原理知共有3+3+3=9种不同的安排方法.法二:让a 先选,可从B ,C ,D 中选一个,即有3种选法.若选的是B ,则b 从剩下的3个班级中任选一个,也有3种选法,剩下的两个老师都只有一种选法,根据分步乘法计数原理知,共有3×3×1×1=9种不同安排方法.答案:C 知识点二 组数问题3.从lg a -lg b 的不同值的个数是( )A .9B .10C .18D .20解析:lg a -lg b =lg a b ,lg a b 有多少个不同值,只要看a b不同值的个数即可.分两步分别取出a ,b ;第1步,从5个数中取出1个数作为a ,有5种取法;第2步,从剩下的4个数中取出1个数作为b ,有4种取法.根据分步乘法计数原理,共有5×4=20(种)取法.由于13=39,31=93,故lg a -lg b 的不同值的个数为20-2=18. 答案:C4.用0,1,2,3,4五个数字,(1)可以排出多少个三位数字的电话号码?(2)可以排成多少个三位数?(3)可以排成多少个能被2整除的无重复数字的三位数?解析:(1)三位数字的电话号码,首位可以是0,数字也可以重复,每个位置都有5种排法,共有5×5×5=53=125种.(2)三位数的首位不能为0,但可以有重复数字,首先考虑首位的排法,除0外共有4种方法,第二、三位可以排0,因此,共有4×5×5=100种.(3)被2整除的数即偶数,末位数字可取0,2,4,因此,可以分两类,一类是末位数字是0,则有4×3=12种排法;一类是末位数字不是0,则末位有2种排法,即2或4,再排首位,因0不能在首位,所以有3种排法,十位有3种排法,因此有2×3×3=18种排法.因而有12+18=30种排法,即可以排成30个能被2整除的无重复数字的三位数.知识点三涂色问题5.如图,用4种不同的颜色涂图中的矩形A,B,C,D,要求相邻的矩形涂色不同,则不同的涂法有()A BCDA.72种B.48种C.24种D.12种解析:法一:先分两类.一是四种颜色都用,这时A有4种涂法,B有3种涂法,C有两种涂法,D有一种涂法,共有4×3×2×1=24(种)涂法;二是用三种颜色,这时A,B,C 的涂法有4×3×2=24(种),D只要不与C同色即可,故D有两种涂法.故不同的涂法共有24+24×2=72(种).故选A.法二:分步先给A涂4种方法,再给B涂3种,再给C涂2种,最后涂D有3种方法,完成4步,完成涂色共有4×3×2×3=72种,故选A项.答案:A6.如图所示,一环形花坛分成A,B,C,D四块,现有四种不同的花供选种,要求在每块里种一种花,且相邻的两块种不同的花,则不同的种法种数为() A.96 B.84C.60 D.48解析:依次种A,B,C,D 4块,当C与A种同一种花时,有4×3×1×3=36种种法;当C与A所种的花不同时,有4×3×2×2=48种种法.由分类加法计数原理知,不同的种法种数为36+48=84.知识点四计数原理在几何中的应用7.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有()A.24对B.30对C.48对D.60对解析:如图,在上底面中选B1D1,四个侧面中的面对角线都与它成60°,共8对,同样A1C1对应的也有8对,下底面也有16对,共有32对;左右侧面与前后侧面中共有16对.所以全部共有48对.答案:C8.已知集合M={-3,-2,-1,0,1,2},a,b∈M,P(a,b)表示平面上的点.(1)P可表示平面上多少个不同的点?(2)P可表示平面上多少个第二象限内的点?(3)P可表示多少个不在直线y=x上的点?解析:(1)确定一点坐标分两步,先确定横坐标有6种方法,再确定纵坐标有6种方法,所以共有6×6=36种不同坐标.(2)确定a有3种,确定b有两种,根据分步计数原理,第二象限内点的个数是3×2=6.(3)点P(a,b)在直线y=x上的充要条件是a=b.因此a和b必须在集合M中取同一元素,共有6种取法,即在直线y=x上的点有6个.结合(1)可得不在直线y=x上的点共有36-6=30(个).基础达标一、选择题1.由数字0,1,2,3,4可组成无重复数字的三位数的个数是()A.60B.48C.24 D.10解析:分3步.第一步:首位数有4种不同的选法;第二步:十位数字有4种不同的选法;第三步:个位数字有3种不同的选法.由分步乘法计数原理知可以组成无重复数字的三位数的个数是4×4×3=48.故选B项.答案:B2.如图所示,电路中有4个电阻和一个电流表,若没有电流通过电流表,其原因仅因电阻断路的可能性共有()A.9种B.10种C.11种D.12种解析:分两类:第1类,R1断路时,若R4断路,R2,R3有4种可能,若R4不断路,则R2,R3至少有一个断路,有3种可能,故R1断路时有7种可能.第2类,R1不断路时,R4必断路,此时,R2,R3共有4种可能,则共有4+7=11种可能.故选C项.答案:C3.(a1+a2+a3+a4)·(b1+b2)·(c1+c2+c3)展开后共有不同的项数为()A.9 B.12C.18 D.24解析:由分步乘法计数原理得共有不同的项数为4×2×3=24.故选D项.答案:D4.我们把各位数之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有()A.18个B.15个C.12个D.9个解析:依题意知,这个四位数的百位数、十位数、个位数之和为4.由4,0,0组成3个数,分别为400,040,004;由3,1,0组成6个数,分别为310,301,130,103,013,031;由2,2,0组成3个数,分别为220,202,022;由2,1,1组成3个数,分别为211,121,112,共计3+6+3+3=15个.答案:B。
1.1 第2课时两个基本原理的应用
1、元旦来临之际,某寝室四人各写一张贺卡,先集中起来,然后每人从中拿一张别人送出的贺卡,则四张贺卡不同的分配方式有( )
A .6种
B .9种
C .11种
D .23种
[答案] B
[解析] 解法1:设四人A 、B 、C 、D 写的贺卡分别是a 、b 、c 、d ,当A 拿贺卡b ,则B 可拿a 、c 、d 中的任何一张,即B 拿a ,C 拿d ,D 拿c 或B 拿c ,D 拿a ,C 拿d 或B 拿d ,C 拿a ,D 拿c ,所以A 拿b 时有三种不同的分配方式.同理,A 拿c ,d 时也各有三种不同的分配方式.由分类加法计数原理,四张贺卡共有3+3+3=9(种)分配方式.
解法2:让四人A 、B 、C 、D 依次拿一张别人送出的贺卡,如果A 先拿,有3种,此时被A 拿走的那张贺卡的人也有3种不同的取法.接下来,剩下的两个人都各只有1种取法,由分步乘法计数原理,四张贺卡不同的分配方式有3×3×1×1=9(种).
2.从集合{1,2,3,4,5,6}中任取两个元素作为双曲线x 2a 2-y 2
b 2=1中的几何量a 、b 的值,则“双曲线渐近线的斜率k 满足|k |≤1”的概率为________.
[答案] 12
[解析] 所有可能取法有6×5=30种,由|k |=b a
≤1知b ≤a ,满足此条件的有(2,1),(3,2),(3,1),(4,3),(4,2),(4,1),(5,4),(5,3),(5,2),(5,1),(6,5),(6,4),(6,3),(6,2),(6,1)共15种,
∴所求概率P =1530=12.。