【含名校开学考6份试卷合集】山东省菏泽单县联考2019年高二数学上学期开学考试试卷
- 格式:doc
- 大小:1.64 MB
- 文档页数:42
高二上学期暑假返校考试数学试题第I 卷(选择题)一、选择题(本题共12道小题,每小题5分,共60分)1.已知集合A ={x ||x +1|<1},⎭⎬⎫⎩⎨⎧≥-=0221/xx B )(,则B R C A =( ) A .(﹣2,﹣1) B .(﹣2,﹣1]C .(﹣1,0)D .[﹣1,0)2.甲、乙两人下棋,两人下成和棋的概率是21,甲获胜的概率是31,则甲不输的概率为A .65B .52 C .61 D .31 3.已知向量(cos ,2),(sin ,1),//tan()4a b a b πααα=-=-且,则等于A.3B.-3C.31 D. 31- 4.如图是一棱锥的三视图,在该棱锥的侧面中,面积最大的侧面的面积为 A .4B .7C .2D .35.5,21=-==,则向量,的夹角为A.6πB.3π C.4π D.2π 6.设⎪⎩⎪⎨⎧≥-<<=,1),1(2,10,)(x x x x x f ,若f (a )=f (a +1),则)1(a fA. 2B. 4C. 6D. 87.如图所示,程序框图(算法流程图)的输出结果是( )A .15B .2524C.316D .348.等差数列的公差,且,,成等比数列,若,为数列的前项和,则数列的前项和取最小值时的为( ) A. 3B. 3或4C. 4或5D. 59.已知非零向量,a b 满足4,2a b ==,且a 在b 方向上的投影与b 在a 方向上的投影相等,则a b -等于( ) A .1B.CD .310.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示,则函数4f x π⎛⎫- ⎪⎝⎭图象的一个对称中心是( )A .,03π⎛⎫-⎪⎝⎭ B .,012π⎛⎫- ⎪⎝⎭ C .7,012π⎛⎫ ⎪⎝⎭D .3,04π⎛⎫ ⎪⎝⎭ 11.已知3)(x x f =,若]2,1[∈x 时,0)1()(2≤-+-x f ax x f ,则a 的取值范围是( )1.≤a A 1.≥a B 23.≥a C 23.≤a D 12.已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤的解集为( ) A .1247[,][,]4334B .3112[,][,]4343--C .1347[,][,]3434D .3113[,][,]4334--第II 卷(非选择题)二、填空题(本题共4道小题,每小题5分,共20分)13.图2是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为_________.08910352图(注:方差2222121()()()n s x x x x x x n⎡⎤=-+-++-⎣⎦,其中x 为x 1,x 2,…,x n 的平均数)[来14.等比数列{n a }的公比0q >, 已知2a =1,216n n n a a a +++=,则{n a }的前4项和4S = 。
2023-2024学年山东省名校考试联盟高二(上)期中数学试卷一、单项选择题。
本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.直线x −√3y −1=0的倾斜角为( ) A .π6B .π3C .2π3D .5π62.已知椭圆C 的焦点为(﹣1,0)和(1,0),离心率为√22,则C 的方程为( ) A .x 23+y 22=1 B .x 22+y 2=1C .x 24+y 22=1D .x 24+y 23=13.在四面体ABCD 中,点M ,N 满足AM →=2MB →,CD →=2CN →,若MN →=xAB →+yAC →+zAD →,则x +y +z =( ) A .−13B .13C .12D .14.已知圆C :x 2+y 2=4,直线l 过点(0,1),则直线l 被圆C 所截得的弦长的最小值为( ) A .1B .√3C .2D .2√35.在平行六面体ABCD ﹣A 1B 1C 1D 1中,AB =AD =AA 1=2,AB ⊥AD ,∠A 1AB =∠A 1AD =π3,则AC 1的长为( ) A .2√3B .2√5C .12D .206.已知点M 是直线y =x +1上一点,A (1,0),B (2,1),则|AM |+|BM |的最小值为( ) A .√2B .2√2C .1+√2D .√107.将直线3x ﹣y +a =0向上平移1个单位,所得直线与圆x 2+y 2﹣2x +6y =0相切,则实数a 的值为( ) A .5或﹣15B .﹣5或15C .3或﹣17D .﹣3或178.已知焦点在x 轴上的椭圆C :x 24+y 2b 2=1,点P (x 0,0),当x 0≥1时,C 上有且仅有一点到点P 的距离最小,则C 的离心率的取值范围为( ) A .(0,√22] B .(0,12]C .[√32,1) D .[12,1)二、多项选择题。
2018-2019学年高一下学期数学期末模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1. 已知集合 }{221,A x x x =->{}2,1,0,1,2,3B =--,则A B ⋂=A .{}3B .{}2,1--C .{}0,1,2D .{}2,1,3-- 2. 已知0a b <<,则下列不等式成立的是A.22a b < B.11a b < C. b aa b < D. 2ab b <3. 已知向量11(0,1),(,)22a b r r =-=-,则下列结论正确的是A. a b r r PB. ()a b b r r r +⊥C. ()a b b r r r-⊥ D. a b b r r r -=4. 某赛季甲、乙两名篮球运动员5场比赛得分的茎叶图如图所示,已知甲得分的极差为32,乙得分的平均值为24,则下列结论错误的是乙甲x 484615 6 y 20123A.8x =B.8y =C.乙得分的中位数和众数都为26D.乙得分的方差小于甲得分的方差5. 已知,x y 满足约束条件1030,210x y x y y --≥⎧⎪+-≤⎨⎪+≥⎩,则2z x y =+的最小值为A.12 B.1 C. 32D.2 6. 根据如下样本数据:求得y 关于x 的线性回归方程为ˆˆ0.7ybx =+,则x 每减少1个单位,y A. 增加0.7个单位 B. 减少0.7个单位 C. 增加2.2个单位 D. 减少2.2个单位7. 已知公差不为0的等差数列{}n a 的前n 项和为n S ,31267,,,a a a a =成等比数列,则4S = A. 22 B.24 C. 26 D.34 8. 执行如图所示的程序框图,输出的T 为D. 19. 平行四边形ABCD 中,03,2,60AB AD BAD ==∠=,若AE AB AD uu u r uu u r uuu rλ=+,且DB AE ⊥,则λ的值为A. 16B. 15C. 14D. 13 10.对任意正实数,x y ,下列不等式恒成立的是A .ln()ln ln 4422x y x y +≥⋅⋅ B .ln()ln ln 4422x y x y +≤⋅⋅ C .ln()ln4ln ln 4222x y x y +≥⋅⋅ D .ln()ln4ln ln 4222x y x y +≤⋅⋅11. 要得到函数()sin(2)cos 26f x x x π=+- 只需将函数()cos 2g x x =的图像A.向左平移3π个单位 B. 向右平移3π个单位 C. 向左平移12π个单位 D. 向右平移12π个单位12. 已知函数()xf x e-=,设0.33(),(ln 0.3),(log 10)a f e b f c f -===,则A .a b c >>B .b a c >>C .c a b >>D .c b a >> 二、填空题:本大题共 4 小题,每小题 5分13.已知非零向量,a b r r满足:a b r r =,且a b r r +=,则a r 与b r 的夹角为 ;14. 设ABC ∆中的内角,,A B C 所对的边分别为,,a b c,且23,3a b c C π+===,则ABC ∆ 的面积为 ; 15. 已知1tan 2α=,则sin()cos()tan()24ππαπαα-+-= ; 16. 已知正实数,x y ,满足35x y xy +=,若不等式2344x y m m +≤-有解则实数m 的取值范围是_____;三、解答题:共70分。
2019学年度第一学高二开学考试数学试题本试卷分第I 卷和第Ⅱ卷两部分,考试时间120分钟,满分150分第Ⅰ卷(60分)一、选择题(本大题共12小题,毎小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U ={1,2,3,4,5},A ={1,3},则U A C =( )A .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}2.下列函数中,既是奇函数又在(0,+∞)单调递增的是( )A .x xy e e -=+ B .()ln 1y x =+ C .sin x y x =D .1y x x=- 3.若3412a ⎛⎫=⎪⎝⎭,1234b ⎛⎫= ⎪⎝⎭,c =log 23,则a ,b ,c 大小关系是( )A .a <b <cB .b <a <cC .b <c <aD .c <b <a4.已知α为第二象限的角,且3tan 4α=-,则sin α+cos α=( ) A .75- B .34- C .15- D .155.已知△ABC 的边BC 上有一点D 满足3BD DC =,则AD 可表示为( ) A .23AD AB AC =-+ B .3144AD AB AC =+ C .1344AD AB AC =+ D .2133AD AB AC =+ 6.一个几何体的三视图如图,其左视图是一个等边三角形,则这个几何体的体积为( )A .(43π+ B .(86π+ C .(83π+D .(4π+7.设n S 为等差数列{}n a 的前n 项和,已知a 1=S 3=3,则S 4的值为( ) A .﹣3 B .0 C .3 D .6 8.设锐角△ABC 的三内角A 、B 、C 所对边的边长分别为a 、b 、c ,且 a =1,B =2A ,则b 的取值范围为( )A .B .(C .)2 D .()0,29.已知变量x ,y 满足约束条件206010x y x y x -+≤⎧⎪+-≤⎨⎪-≥⎩,则2x ﹣y 的最小值是( )A .2B .﹣2C .﹣3D .﹣1 10.若直线220mx ny --=(m >0,n >0)过点(1,﹣2),则12m n+最小值( ) A .2 B .6C .12D .3+211.已知函数()11x x f x e e +-=+,则满足()221f x e -<+的x 的取值范围是( )A .x <3B .0<x <3C .1<x <eD .1<x <312.设等差数列{}n a 满足22222222272718sin cos cos cos sin sin 1sin()a a a a a a a a -+-=+,公差()1,0d ∈-,若当且仅当n =11时,数列{}n a 的前n 项和n S 取得最大值,则首项1a 的取值范围是( )A .9,10ππ⎛⎫⎪⎝⎭ B .11,10ππ⎡⎤⎢⎥⎣⎦ C .9,10ππ⎡⎤⎢⎥⎣⎦D .11,10ππ⎛⎫⎪⎝⎭第Ⅱ卷(90分)二、填空题(本大题共4小题,每小题5分,共20分)13.设向量()1,0a =,()1,b m =-.若()a mab ⊥-,则m = . 14.已知1cos 123πθ⎛⎫-=⎪⎝⎭,则5sin 12πθ⎛⎫+ ⎪⎝⎭的值是 . 15.函数f (x )=Asin (ωx+φ)(A >0,ω>0,0≤φ<2π)在R 上的部分图象如图所示,则f (2018)的值为 .16.已知直线l:30mx y m ++=与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D两点,若AB =,则|CD |= .三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)如图,在四棱锥P ﹣ABCD 中,∠ADB =90°,CB =CD ,点E 为棱PB 的中点. (Ⅰ)若PB =PD ,求证:PC ⊥BD ;(Ⅱ)求证:CE ∥平面PAD .18.(12分)已知{}n a 的前n 项和24n S n n =-.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列72n na -⎧⎫⎨⎬⎩⎭的前n 项和T n .19.在平行四边形ABCD 中,设边AB 、BC 、CD 的中点分别为E 、F 、G ,设DF 与AG 、EG 的交点分别为H 、K ,设AB a =,BC b =,试用a 、b 表示GK 、AH .20.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知sin cos 6b A a B π⎛⎫=- ⎪⎝⎭. (Ⅰ)求角B 的大小;(Ⅱ)设a =2,c =3,求b 和sin (2A ﹣B )的值.21.已知方程x 2+y 2﹣2x ﹣4y +m =0.(Ⅰ)若此方程表示圆,求实数m 的取值范围;(Ⅱ)若(Ⅰ)中的圆与直线x +2y ﹣4=0相交于M ,N 两点,且坐标原点O 在以MN 为直径的圆的外部,求实数m 的取值范围.22.已知函数()•,xxf x e a e x R -=+∈.(Ⅰ)当1a =时,证明: ()f x 为偶函数;(Ⅱ)若()f x 在[)0,+∞上单调递增,求实数a 的取值范围;(Ⅲ)若1a =,求实数m 的取值范围,使()()221m f x f x ⎡⎤+≥+⎣⎦在R 上恒成立.参考答案与试题解析一.选择题(共12小题)8.【解答】解:锐角△ABC中,角A、B、C所对的边分别为a、b、c,B=2A,∴0<2A<,且B+A=3A,∴<3A<π.∴<A<,∴<cosA<,∵a=1,B=2A,∴由正弦定理可得:=b==2cosA,∴<2cosA<,则b的取值范围为(,).故选:A.11.【解答】解:∵f(x)=e1+x+e1﹣x =,令t=e x,可得y=e(t+),内函数t=e x为增函数,而外函数y=e(t+)在(0,1)上为减函数,在(1,+∞)上为增函数,∴函数f(x)=e1+x+e1﹣x 的减区间为(﹣∞,0),增区间为(0,+∞).又f(x)=e1+x+e1﹣x为偶函数,∴由f(x﹣2)<e2+1,得f(|x﹣2|)<f(1),得|x﹣2|<1,解得1<x<3.故选:D.12.【解答】解:∵等差数列{a n}满足=1,∴精品===sin(a2﹣a7)=sin(﹣5d)=1,∴sin(5d)=﹣1,∵d∈(﹣1,0),∴5d∈(﹣5,0),∴5d=﹣,d=﹣.由S n=na1+d=na1﹣=﹣π+(a1+)n.对称轴方程为n=(a1+),由题意当且仅当n=11时,数列{a n}的前n项和S n取得最大值,∴<(a1+)<,解得:π<a1<.∴首项a1的取值范围是(π,).故选:D.二.填空题(共4小题)13.﹣1. 14. 1315. 2 16. 415.【解答】解:由函数f(x)=Asin(ωx+φ)的部分图象知,=11﹣2=9,解得T=12,ω==;又f(0)=Asinφ=1,∴sinφ=;f(2)=Asin(×2+φ)=A,∴φ=,∴=sin=,∴A=2,∴f(2018)=f(168×12+2)=f(2)=A=2.故答案为:2.16.【分析】先求出m,可得直线l的倾斜角为30°,再利用三角函数求出|CD|即可.【解答】解:由题意,|AB|=2,∴圆心到直线的距离d=3,∴=3,∴m=﹣∴直线l的倾斜角为30°,∵过A,B分别作l的垂线与x轴交于C,D两点,∴|CD|==4.故答案为:4.三.解答题(共6小题,满分22分)17.【解答】证明:(1)取BD的中点O,连结CO,PO,因为CD=CB,所以△CBD为等腰三角形,所以BD⊥CO.因为PB=PD,所以△PBD为等腰三角形,所以BD⊥PO.又PO∩CO=O,所以BD⊥平面PCO.因为PC⊂平面PCO,所以PC⊥BD.解:(2)由E为PB中点,连EO,则EO∥PD,又EO⊄平面PAD,所以EO∥平面PAD.由∠ADB=90°,以及BD⊥CO,所以CO∥AD,又CO⊄平面PAD,所以CO∥平面PAD.又CO∩EO=O,所以平面CEO∥平面PAD,而CE⊂平面CEO,所以CE∥平面PAD.18.【解答】(Ⅰ)解:已知{a n}的前n项和,则:当n≥2时,a n=S n﹣S n﹣1=4n﹣n2﹣4(n﹣1)+(n﹣1)2=5﹣2n.当n=1时,a1=S1=3,适合上式∴a n=5﹣2n.(Ⅱ)解:令=,+…+①,所以:+…+②,①﹣②得:﹣,=,=.整理得:.19.【解答】解:如图所示,因为AB、BC、CD的中点分别为E、F、G,所以=+=+(﹣)=﹣+(﹣+)=.因为A、H、G三点共线,所以存在实数m,使=m=m(+)=m+m;又D、H、F三点共线,所以存在实数n,使=n=n(﹣)=n﹣n.因为+=,所以+n=m+因为a、b不共线,∴解得m=,即=(+)=+.20.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.21.【解答】解:(1)∵程x2+y2﹣2x﹣4y+m=0表示圆,∴△=(﹣2)2+(﹣4)2﹣4m>0,解得m<5,∴实数m的取值范围是(﹣∞,5).(2)直线x+2y﹣4=0代入圆的方程,消去x可得:5y2﹣16y+8+m=0∵△>0,∴m<,设M(x1,y1),N(x2,y2),则y1+y2=,y1y2=,∴x1x2=(4﹣2y1)(4﹣2y2)=16﹣8(y1+y2)+4y1y2=,∵坐标原点O在以MN为径的圆的外部,精 品∴>0,∴x 1x 2+y 1y 2>0, ∴+>0解得m >. 22. 【解答】:(1)当1a =时, ()xxf x e e -=+,定义域(),-∞+∞关于原点对称,而()()xx f x ee f x --=+=,说明()f x 为偶函数;(2)在[)0,+∞上任取1x 、2x ,且12x x <, 则()()()()()121211221212x x x x x x x x x x e e eaf x f x e aee aee +--+---=+-+=,因为12x x <,函数x y e =为增函数,得12x x e e <, 120x xe e -<,而()f x 在[)0,+∞上单调递增,得()()12f x f x <, ()()120f x f x -<, 于是必须120x x e a +->恒成立,即12x x a e +<对任意的120x x ≤<恒成立,1a ∴≤;(3)由(1)、(2)知函数()f x 在(],0-∞上递减,在[)0,+∞上递增, 其最小值()02f =,且()()22222x x x xf x e e e e --=+=+-,设x xt e e -=+,则[)2,t ∈+∞, 110,2t ⎛⎤∈ ⎥⎝⎦于是不等式()()221m f x f x ⎡⎤⋅+≥+⎣⎦恒成立,等价于21m t t ⋅≥+,即21t m t +≥恒成立, 而22211111124t t t t t +⎛⎫=+=+- ⎪⎝⎭,仅当112t =,即2t =时取最大值34,精 品- 11 - 故34m。
河北武邑中学2018-2019学年上学期高二开学摸底考试数学试题第Ⅰ卷选择题:(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合,,则()A. B. C. D.【答案】C【解析】,,则故选2.△ABC中,则△ABC的形状是()A. 直角三角形B. 等边三角形C. 钝角三角形D. 锐角三角形【答案】B【解析】试题分析:由余弦定理得∴故选B.考点:余弦定理的应用3.在△ABC中,B=135°,C=15°,a=5,则此三角形的最大边长为 ( )A. B. C. D.【答案】A【解析】【分析】由题意得△ABC的最大边为,根据三角形内角和定理求出A=30°后再根据正弦定理求出即可.【详解】由题意得B> C,B> A,∴△ABC的最大边为.又,由正弦定理得,∴,即三角形的最大边长为.故选A.【点睛】本题考查正弦定理的应用和三角形中边角间的关系,考查计算能力,属于基础题.4.已知两个等差数列{a n}和{b n}的前n项和分别为A n和B n,且=,则使得为整数的正整数n的个数是()A. 2B. 3C. 4D. 5【答案】D【解析】【分析】根据等差数列前n项和公式可得,于是将表示为n的关系式,分离常数后再进行讨论,最后可得所求.【详解】由等差数列的前n项和公式可得,,所以当时,为整数,即为整数,因此使得为整数的正整数n共有5个.故选D.【点睛】本题考查等差数列的和与项的关系和推理论证能力,解题时要结合求和公式进行变形,然后再根据变形后的式子进行分析,本题具有一定的综合性和难度,能较好地考查学生的综合素质.5.下列事件是随机事件的是()①当时,;②当有解③当关于x的方程在实数集内有解;④当时,A. ①②B. ②③C. ③④D. ①④【答案】C【解析】【分析】根据随机事件的概念对四个事件分别进行分析即可得到结论.【详解】对于①,由于时,成立,故事件①为必然事件;对于②,由于无实数根,故事件②为不可能事件;对于③,当关于x的方程在实数集内可能有解、也可能无解,故事件③为随机事件;对于④,当时,可能成立,也可能不成立,故事件④为随机事件.综上,事件③④为随机事件.故选C.【点睛】本题考查随机事件的概念和判断,解题时根据随机事件的概念求解即可,考查对基础知识的理解和掌握,属于基础题,.6.二次函数的最大值为0,则()A. 1B. -1C.D.【答案】B【解析】【分析】根据题意得到,然后再根据二次函数的最大值可求出的值.【详解】因为二次函数有最大值,所以.又二次函数的最大值为,由题意得,解得.故选B.【点睛】解题时要先根据二次函数的最值情况判断出的符号,然后再根据最值情况求得的值即可,考查理解判断和计算能力.7.容量为100的样本,其数据分布在,将样本数据分为4组:,,,,得到频率分布直方图如图所示,则下列说法不正确的是()A. 样本数据分布在的频率为0.32B. 样本数据分布在的频数为40C. 样本数据分布在的频数为40D. 估计总体数据大约有10%分布在【答案】D 【解析】 【分析】根据频率分布直方图对给出的四个选项逐一分析、判断后可得结果. 【详解】对于A ,由图可得样本数据分布在的频率为,所以A 正确. 对于B ,由图可得样本数据分布在的频数为,所以B 正确.对于C ,由图可得样本数据分布在的频数为,所以C 正确. 对于D ,由图可估计总体数据分布在的比例为,故D 不正确.故选D .【点睛】本题考查频率分布直方图的应用,考查识图和用图解题的能力,解题时容易出现的错误是误认为图中小长方形的高为频率,求解时要注意这一点.8.甲、乙、丙三名运动员在某次比赛中各射击20次,三人成绩如下表用分别表示甲、乙、丙三人这次射击成绩的标准差,则下列关系正确的是( )A. B.C.D.【答案】B 【解析】 【分析】根据题中数据求出甲、乙、丙三名运动员的比赛成绩的平均数和方差后比较即可得到结论. 【详解】用分别表示甲、乙、丙三人这次射击成绩的平均数,由题意得:,,.所以,,,故,所以.故选B.【点睛】本题考查样本平均数、方差的计算,由于解题时涉及到大量的计算,因此本题中容易出现的问题是计算中的错误,要求平时要做好这方面的训练.9.△ABC的内角A、B、C的对边分别为a,b,c,且sinA,sinB,sinC成等比数列,且c=2a,则cosB的值为()A. B. C. D.【答案】B【解析】【分析】由sinA,sinB,sinC成等比数列得到,再结合和余弦定理可得的值.【详解】∵sinA,sinB,sinC成等比数列,∴,由正弦定理得.又,故在△ABC中,由余弦定理的推论得.故选B.【点睛】本题考查用余弦定理解三角形,其中解题的关键是根据题意得到三角形中三边的关系,考查计算能力和转化能力,属于基础题.10.数列满足,,,则等于( )A. 15B. 10C. .9D. 5【答案】A【解析】【分析】先由题意计算得到的值,然后再根据的值求出即可.【详解】由题意得,即,解得,∴,∴.故选A.【点睛】解答本题的关键是求出,进而得到数列的递推关系,然后再结合题意求解,考查推理和计算能力,属于基础题.11.下列命题中错误..的是( )A. 如果平面⊥平面,那么平面内一定存在直线平行于平面B. 如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面C. 如果平面⊥平面,平面⊥平面,,那么⊥平面D. 如果平面⊥平面,那么平面内所有直线都垂直于平面【答案】D【解析】A. 如图,平面α⊥平面β,α∩β=l,l⊂α,l不垂直于平面β,所以不正确;B. 如A中的图,平面α⊥平面β,α∩β=l,a⊂α,若a∥l,则a∥β,所以正确;C. 如图,设α∩γ=a,β∩γ=b,在γ内直线a、b外任取一点O,作OA⊥a,交点为A,因为平面α⊥平面γ,所以OA⊥α,所以OA⊥l,作OB⊥b,交点为B,因为平面β⊥平面γ,所以OB⊥β,所以OB⊥l,又OA∩OB=O,所以l⊥γ.所以正确。
2019~2020学年度高二年级第一学期开学测试数学试卷考试范围:必修二必修五难度区间:A(难度大)考试时间:120分钟分值:150分注意:本试卷包含Ⅰ、Ⅱ两卷。
第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。
第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。
答案写在试卷上均无效,不予记分。
第I卷(选择题共50分)一、选择题(本大题共10小题,共50.0分)1.在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=120°,AP=,,M是线段BC上一动点,线段PM长度最小值为,则三棱锥P-ABC的外接球的表面积是()A. B. C. D.2.正方体ABCD-A1B1C1D1的棱上到异面直线AB,CC1的距离相等的点的个数为()A. 2B. 3C. 4D. 53.若直线x+(1+m)y-2=0与直线mx+2y+4=0平行,则m的值是()A. 1B.C. 1或D.4.函数y=f(x)的图象如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,…,x n,使得=…=,则n的取值范围是()A.B. 3,C. 4,D.5.已知平面上点,其中,当,变化时,则满足条件的点P在平面上所组成图形的面积是A. B. C. D.6.已知数列中,.若对于任意的,不等式恒成立,则实数的取值范围为()A. B.C. D.7.在锐角三角形ABC中,已知,则的取值范围为A. B. C. D.8.在锐角三角形ABC中,cos(A+)=-,AB=7,AC=2,则=()A. B. 40 C. D. 349.已知三棱锥A—BCD的所有顶点都在球O的球面上,AD⊥平面ABC,∠BAC=90°,AD=2,若球O的表面积为29π,则三棱锥A—BCD的侧面积的最大值为( )A. B. C. D.10.如图,正方体ABCD-A′B′C′D′中,M为BC边的中点,点P在底面A′B′C′D′和侧面CDD′C′上运动并且使∠MAC′=∠PAC′,那么点P的轨迹是()A. 两段圆弧B. 两段椭圆弧C. 两段双曲线弧D. 两段抛物线弧第II卷(非选择题共60分)二、填空题(本大题共4小题,共20.0分)11.已知在体积为4π的圆柱中,AB,CD分别是上、下底面直径,且AB⊥CD,则三棱锥A-BCD的体积为______.12.底面边长为2m,高为1m的正三棱锥的全面积为______ m2.13.在锐角△ABC中,角A,B,C的对边分别为a,b,c ,已知=,b=4a,a+c=5,则△ABC的面积为______.14.已知数列{a n}中,a1=1,a n-a n-1=n(n≥2,n N),设b n=+++…+,若对任意的正整数n,当m[1,2]时,不等式m2-mt+>b n恒成立,则实数t的取值范围是______.三、解答题(本大题共8小题,共80.0分)15.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.16.已知函数f(x)=|x-|+|x+|,M为不等式f(x)<2的解集.(Ⅰ)求M;(Ⅱ)证明:当a,b M时,|a+b|<|1+ab|.17.已知数列的前n项和为,且.Ⅰ求数列的通项公式;Ⅱ若,设数列的前n项和为,证明.18.如图,在边长为2的正方形ABCD中,点E,F分别是AB,BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于P.(Ⅰ)求证:平面PBD⊥平面BFDE;(Ⅱ)求四棱锥P-BFDE的体积.19.已知圆M的方程为,直线l的方程为,点P在直线l上,过点P作圆M的切线PA,PB,切点为A,B.(1)若,试求点P的坐标;(2)求证:经过A,P,M三点的圆必过定点,并求出所有定点的坐标.20.如图,在四棱锥P-ABCD中,底面ABCD是边长为 3 的菱形,∠ABC=60°,PA⊥平面ABCD,PA=3,F是棱PA上的一个动点,E为PD的中点.(Ⅰ)若AF=1,求证:CE∥平面BDF;(Ⅱ)若AF=2,求平面BDF与平面PCD所成的锐二面角的余弦值.21.已知圆C:,直线l:,.求证:对,直线l与圆C总有两个不同的交点A、B;求弦AB的中点M的轨迹方程,并说明其轨迹是什么曲线;是否存在实数m,使得圆C上有四点到直线l的距离为?若存在,求出m的范围;若不存在,说明理由.22.如图,在平面直角坐标系中,已知圆:,圆:.(1)若过点的直线被圆截得的弦长为,求直线的方程;(2)设动圆同时平分圆的周长、圆的周长.①证明:动圆圆心C在一条定直线上运动;②动圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.答案和解析1.【答案】C【解析】【分析】本题考查的知识要点:三棱锥的外接球的球心的确定及球的表面积公式的应用.首先确定三角形ABC为等腰三角形,进一步确定球的球心,再求出球的半径,最后确定球的表面积.【解答】解:如图所示:三棱锥P-ABC中,PA⊥平面ABC,AP=,M是线段BC上一动点,线段PM长度最小值为,则当AM⊥BC时,线段PM达到最小值,由于PA⊥平面ABC,AM平面ABC,所以PA AM所以在中,PA2+AM2=PM2,解得AM=1,因为PA⊥平面ABC,BM平面ABC,则由,,平面PAM,故有BM平面PAM,AM平面PAM,BM,所以在中,BM==,则tan∠BAM==,则∠BAM=60°,由于∠BAC=120°,所以∠MAC=∠BAC-∠BAM=60°则△ABC为等腰三角形.所以BC=2,在△ABC中,设外接圆的直径为2r=,则r=2,设球心距离平面ABC的的高度为h,则,解得,所以外接球的半径R═,则S=,故选:C.2.【答案】C【解析】解:如图:正方体ABCD-A1B1C1D1,E、F分别是BC和A1D1的中点,连接AF和FC1,根据正方体的性质知,BB1⊥AB,C1C⊥B1C1,故B1到异面直线AB,CC1的距离相等,同理可得,D到异面直线AB,CC1的距离相等,又有AB⊥BC,C1C⊥BC,故E到异面直线AB,CC1的距离相等,F为A1D1的中点,易计算FA=FC1,故F到异面直线AB,CC1的距离相等,共有4个点.故选C.画出正方体,结合正方体中线面、线线垂直,先找定点、再找棱的中点,找出符合条件的所有的点.本题考查了正方体体的结构特征,考查了线面、线线垂直定理的应用,利用异面直线之间距离的定义进行判断,考查了观察能力和空间想象能力.3.【答案】A【解析】【分析】本题主要考查两直线的位置关系,由两直线平行的充要条件,列出方程求解即可.【解答】解:直线x+(1+m)y-2=0和直线mx+2y+4=0平行,可得,得:m=1.故选A.4.【答案】B【解析】解:令y=f(x),y=kx,作直线y=kx,可以得出2,3,4个交点,故k=(x>0)可分别有2,3,4个解.故n的取值范围为2,3,4.故选:B.由表示(x,f(x))点与原点连线的斜率,结合函数y=f(x)的图象,数形结合分析可得答案.本题考查的知识点是斜率公式,正确理解表示(x,f(x))点与原点连线的斜率是解答的关键.5.【答案】C【解析】解:由题意可得,点;而且圆心(x0,y0)在以原点为圆心,以2为半径的圆上.满足条件的点P在平面内所组成的图形的面积是以6为半径的圆的面积减去以2为半径的圆的面积,即36π-4π=32π,故选:C.先根据圆的标准方程求出圆心和半径,然后研究圆心的轨迹,根据点P在平面内所组成的图形是一个环面进行求解即可.本题主要考查了圆的参数方程,题目比较新颖,正确理解题意是解题的关键,属于中档题.6.【答案】C【解析】【分析】本题主要考查数列的求和、一元二次不等式,根据题中等式变形得,构造,从而解出本题.【解答】根据题意,,所以,所以,所以,因为对于任意的,,不等式恒成立,所以在时恒成立,即在时恒成立,设,,则,即,解得或,即实数的取值范围为.故选C.7.【答案】A【解析】【分析】本题考查了锐角三角形内角和定理及其性质、余弦函数的单调性、不等式的性质,考查了推理能力与计算能力,属于中档题.在锐角三角形ABC中,A>B>C,A+B+C=π,可得,于是>,即可得出.【解答】解:∵在锐角三角形ABC中,A>B>C,A+B+C=π,∴,∴,又∵,∴,∴.故选A.8.【答案】A【解析】【分析】本题考查了平面向量数量积的性质及其运算,属中档题.由cos(A+)=解得cosA=,再由余弦定理得BC=,cosB=,再根据向量数量积可得结果.【解答】解:由cos(A+)=-得:cosAcos -sinAsin =-,得cosA=sinA-,两边平方得:cos2A=sin2A-sinA+,整理得sin2A-sinA+-=0,解得sinA=或sinA=-(舍去),又A为锐角,∴cosA=,∴BC2=AB2+AC2-2AB•AC•cosA=72+(2)2-2××=43,∴BC=,∴cosB===,∴•=AB•BC•cos(π-B)=7××(-)=-40.故选A.9.【答案】A【解析】【分析】本题考查三棱锥的内接球的问题,找到球心所在是解题的关键.【解答】解析:因为球O的表面积为29π,所以球的半径为,设AB=a,AC=b,则底面直角三角形ABC的斜边为其外接圆的半径为因为AD⊥平面ABC,所以外接球的半径为=,则,由题意可知,所求三棱锥的侧面积为,运用基本不等式,,当且仅当时,等号成立,即侧面积的最大值为.故选A.10.【答案】C【解析】【分析】本题考查正圆锥曲线被与中心轴成θ的平面所截曲线的轨迹,考查分析运算能力,属于难题.以A点为坐标原点建立空间直角坐标系,可求得A,C′,M等点的坐标,从而可求得cos∠MAC′,设设AC′与底面A′B′C′D′所成的角为θ,继而可求得cosθ,比较θ与∠MAC′的大小,利用正圆锥曲线被与中心轴成θ的平面所截曲线,即可得到答案.【解答】解:P点的轨迹实际是一个正圆锥面和两个平面的交线;这个正圆锥面的中心轴即为AC′,顶点为A,顶角的一半即为∠MAC′;以A点为坐标原点建立空间直角坐标系,则A(0,0,1),C′(1,1,0),M (,1,1),∴=(1,1,-1),=(,1,0),∵cos∠MAC′====,设AC′与底面A′B′C′D′所成的角为θ,则cosθ====>,∴θ<∠MAC′,∴该正圆锥面和底面A′B′C′D′的交线是双曲线弧;同理可知,P点在平面CDD′C′的交线是双曲线弧,故选C.11.【答案】【解析】解:取AB的中点O,连接OC,OD,则AD=BD,∴OD⊥AB,又AB⊥CD,CD∩OD=D,∴AB⊥平面OCD,设圆柱的底面半径为R,高为h,则V圆柱=πR2h=4π,即R2h=4,∴三棱锥A-BCD的体积为V A-OCD+V B-OCD=S△OCD•AB===.故答案为:.将三棱锥分解成两个小棱锥计算.本题考查了圆柱、圆锥的体积计算,属于中档题.12.【答案】【解析】解:如图所示,正三棱锥S-ABC,O为顶点S在底面BCD内的射影,则O为正△ABC的垂心,过C作CH⊥AB于H,连接SH.则SO⊥HC,且,在Rt△SHO 中,.于是,,.所以.故答案为由已知中正三棱锥的底面边长为2m,高为1m,我们易出求棱锥的侧高,进而求出棱侧面积和底面面积即可求出棱锥的全面积.本题主要考查基本运算,应强调考生回归课本、注重运算、留心单位、认真审题.13.【答案】【解析】【分析】本题主要考查了正弦定理,同角三角函数基本关系式,余弦定理,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.由已知及正弦定理可求= ,又b = 4a,可求sinC,利用同角三角函数基本关系式可求cosC,利用余弦定理解得a,b,c的值,进而利用三角形面积公式即可计算得解.【解答】解:由正弦定理及= ,得= ,又b=4a,∴sinC= ,∵△ABC为锐角三角形,∴cosC= ,∴cosC= == =,解得a = 1,b = 4 ,c = 4,∴S△ABC=absinC == .故答案为.14.【答案】(-∞,1)【解析】【分析】本题考查数列的通项及前n项和,涉及利用导数研究函数的单调性,考查运算求解能力,注意解题方法的积累,属于难题.通过并项相加可知当n≥2时a n-a1=n+(n-1)+…+3+2,进而可得数列{a n}的通项公式a n =n(n+1),裂项、并项相加可知b n=2(-)==,通过求导可知f(x)=2x+(x≥1)是增函数,进而问题转化为m2-mt+>(b n)max,由恒成立思想,即可得结论.【解答】解:∵a1=1,a n-a n-1=n(n≥2,n N),当n≥2时,a n-a n-1=n,a n-1-a n-2=n-1,…,a2-a1=2,并项相加,得:a n-a1=n+(n-1)+…+3+2,∴a n=1+2+3+…+n=n(n+1),又∵当n=1时,a1=×1×(1+1)=1也满足上式,∴数列{a n}的通项公式为a n =n(n+1),∴b n =+++…+=++…+=2(-+-+…+-)=2(-)==,令f(x)=2x+(x≥1),设x1>x2>1,则f(x1)-f(x2)=,,f(x1)-f(x2)>0∴f(x)在x[1,+∞)上是增函数,故当x=1时,f(x)min=f(1)=3,即当n=1时,(b n)max =,对任意的正整数n,当m[1,2]时,不等式m2-mt+>b n恒成立,则须使m2-mt+>(b n)max=,即m2-mt>0对∀m[1,2]恒成立,即t<m的最小值,可得得t<1,∴实数t的取值范围为(-∞,1),故答案为:(-∞,1).15.【答案】解:(1)sin(A+C)=8sin2,∴sin B=4(1-cos B),∵sin2B+cos2B=1,∴16(1-cos B)2+cos2B=1,∴16(1-cos B)2+cos2B-1=0,∴16(cos B-1)2+(cos B-1)(cos B+1)=0,∴(17cos B-15)(cos B-1)=0,∴cos B=;(2)由(1)可知sin B=,∵S△ABC=ac•sin B=2,∴ac=,∴b2=a2+c2-2ac cos B=a2+c2-2××=a2+c2-15=(a+c)2-2ac-15=36-17-15=4,∴b=2.【解析】(1)利用三角形的内角和定理可知A+C=π-B,再利用诱导公式化简sin (A+C),利用降幂公式化简8sin 2,结合sin2B+cos2B=1,求出cosB,(2)由(1)可知sinB=,利用勾面积公式求出ac,再利用余弦定理即可求出b.本题考查了三角形的内角和定理,三角形的面积公式,二倍角公式和同角的三角函数的关系,属于中档题.16.【答案】解:(I)当x<时,不等式f(x)<2可化为:-x-x-<2,解得:x>-1,∴-1<x<,当≤x≤时,不等式f(x)<2可化为:-x+x+=1<2,此时不等式恒成立,∴≤x≤,当x>时,不等式f(x)<2可化为:-+x+x+<2,解得:x<1,∴<x<1,综上可得:M=(-1,1);证明:(Ⅱ)当a,b M时,(a2-1)(b2-1)>0,即a2b2+1>a2+b2,即a2b2+1+2ab>a2+b2+2ab,即(ab+1)2>(a+b)2,即|a+b|<|1+ab|.【解析】本题考查的知识点是绝对值不等式的解法,不等式的证明,是中档题.(I)分当x <时,当≤x≤时,当x >时三种情况,分别求解不等式,综合可得答案;(Ⅱ)当a,b M时,(a2-1)(b2-1)>0,即a2b2+1>a2+b2,配方后,可证得结论.本题考查的知识点是绝对值不等式的解法,不等式的证明,难度困难.17.【答案】解:(1)当时,,得,当时,,得,∴数列是公比为3的等比数列,∴ .(2)由(1)得:,又①∴②两式相减得:,故,∴.【解析】本题考査了等比数列的通项公式与求和公式、“错位相减法”、数列的递推关系,考查了推理能力与计算能力,属于中档题.(1)利用时,即可得出.(2)利用“错位相减法”、等比数列的求和公式即可得出.18.【答案】(Ⅰ)证明:连接EF交BD于O,连接OP.在正方形ABCD中,点E是AB中点,点F是BC中点,∴BE=BF,DE=DF,∴△DEB≌△DFB,∴在等腰△DEF中,O是EF的中点,且EF⊥OD,因此在等腰△PEF中,EF⊥OP,从而EF⊥平面OPD,又EF⊂平面BFDE,∴平面BFDE⊥平面OPD,即平面PBD⊥平面BFDE;(Ⅱ)解:由(Ⅰ)的证明可知平面POD⊥平面DEF,可得,,,PD=2,由于,∴∠OPD=90°,作PH⊥OD于H,则PH⊥平面DEF,在Rt△POD中,由OD•PH=OP•PD,得.又四边形BFDE的面积,∴四棱锥P-BFDE的体积.【解析】(Ⅰ)连接EF交BD于O,连接OP,在正方形ABCD中,点E是AB中点,点F是BC中点,可得EF⊥OP,又EF⊂平面BFDE,即可证得平面PBD⊥平面BFDE;(Ⅱ)由(Ⅰ)的证明可知平面POD⊥平面DEF,进一步得到∠OPD=90°,作PH⊥OD于H,则PH⊥平面DEF,求出PH的值,则答案可求.本题主要考查空间面面垂直的判定与性质、空间面面夹角的计算等基础知识,考查空间想象能力、推理论证能力、运算求解能力,是中档题.19.【答案】解:(1)根据题意,点P在直线上,设P(3m,m),连接MP,因为圆M的方程为,∴圆心M(0,2),半径r=1,∵过点P作圆M的切线PA,PB,切点为A,B,则有⊥,⊥,且,易得≌,又,即,则,即有,解得或,即P点的坐标为或,(2)根据题意,PA是圆M的切线,则⊥,则过点A,P,M三点的圆以MP为直径的圆,设P点坐标为(3m,m),M(0,2),则以MP为直径的圆为,变形得,即,则有,解得或,则当和时,恒成立,则经过A,P,M三点的圆必过定点,且定点坐标为和.【解析】本题主要考查了直线和圆的方程的综合应用以及圆锥曲线中的定点问题,考查学生的运算求解能力和逻辑思维能力,难度较大. (1)根据题意,设P 点坐标,利用全等关系解得,即可解出m 的值,即P 点的坐标. (2)根据题意可得,根据斜率可得,解出n 的之即可解出面积最小值.(3)根据题意,PA 是圆M 的切线,则,可得以MP 为直径的圆为,即可解得经过A,P,M 三点的圆必过定点,且定点坐标为和.20.【答案】(Ⅰ)证明:如图所示,取PF 中点G ,连接EG ,CG .连接AC 交BD 于O ,连接FO . 由题可得F 为AG 中点,O 为AC 中点,∴FO ∥GC ; 又G 为PF 中点,E 为PD 中点,∴GE ∥FD .又GE ∩GC =G ,GE 、GC ⊂面GEC ,FO ∩FD =F ,FO ,FD ⊂面FOD . ∴面GEC ∥面FOD . ∵CE ⊂面GEC ,∴CE ∥面BDF ;(Ⅱ)解:∵底面ABCD 是边长为 3 的菱形,∴AC ⊥BD ,设交点为O ,以O 为坐标原点建立如图所示空间直角坐标系, 则B (0,- ,0),D (0,,0),P (- ,0,3),C ( ,0,0),F ( ,0,2).则 , , ,,, ,,, ,,, . 设平面BDF 的一个法向量为 , , ,则,取z =3,得 , , . 设平面PCD 的一个法向量为 , , ,则,取y = ,得 , , . ∴cos < , >==. ∴平面 BDF 与平面 PCD 所成的锐二面角的余弦值为.【解析】(Ⅰ)取PF 中点G ,连接EG ,CG .连接AC 交BD 于O ,连接FO .由三角形中位线定理可得FO ∥GC ,GE ∥FD .然后利用平面与平面平行的判定得到面GEC ∥面FOD ,进一步得到CE ∥面BDF ;(Ⅱ)由底面ABCD 是边长为 3 的菱形,可得AC ⊥BD ,设交点为O ,以O为坐标原点建立如图所示空间直角坐标系,求出所用点的坐标,再求出平面 BDF 与平面 PCD的一个法向量,由两法向量所成角的余弦值求得平面 BDF 与平面 PCD所成的锐二面角的余弦值.本题考查直线与平面平行的判定,考查利用空间向量求二面角的平面角,是中档题.21.【答案】(1)证明:圆C:(x+2)2+y2=5的圆心为C(-2,0),半径为,所以圆心C到直线l:mx-y+1+2m=0的距离<.所以直线l与圆C相交,即直线l与圆C总有两个不同的交点;(2)解:设中点为M(x,y),因为直线l:mx-y+1+2m=0恒过定点N(-2,1),则,又所以,所以M的轨迹方程是,它是一个以,为圆心,以为半径的圆.(3)解:假设存在直线l,使得圆上有四点到直线l的距离为,由于圆心C(-2,0),半径为,则圆心C(-2,0)到直线l的距离为,由于圆心C(-2,0) ,半径为,则圆心C(-2,0)到直线l的距离为<化简得m2>4,解得m>2或m<-2.【解析】本题考查点到直线的距离公式,直线的一般式方程,轨迹方程,直线和圆的方程的应用,考查转化思想,考查分析问题解决问题的能力,计算能力,是中档题.(1)圆心C到直线l:mx-y+1+2m=0的距离,可得:对m R,直线l与圆C总有两个不同的交点A、B;(2)设中点为M(x,y),利用k AB•k MC=-1,即可求弦AB的中点M的轨迹方程,并说明其轨迹是什么曲线;(3)利用圆心C(-2,0)到直线l的距离为,求出m的范围.22.【答案】(1)解:设直线l的方程为y=k(x+1),即kx-y+k=0.因为直线l被圆C2截得的弦长为,而圆C2的半径为1,所以圆心C2(3,4)到直线l:kx-y+k=0的距离为+,化简,得12k2-25k+12=0,解得或.所以直线l的方程为4x-3y+4=0或3x-4y+3=0;②写出动圆的方程即可求解.(2)①证明:设圆心C(x,y),由题意,得|CC1|=|CC2|,即+++.化简得x+y-3=0,即动圆圆心C在定直线x+y-3=0上运动;②解:圆C过定点,设C(m,3-m),则动圆C的半径为++++.于是动圆C的方程为(x-m)2+(y-3+m)2=1+(m+1)2+(3-m)2,整理,得x2+y2-6y-2-2m(x-y+1)=0.由得或,所以动圆C经过定点,其坐标为,.【解析】本题考查直线与圆及圆与圆的位置关系,同时考查动点轨迹的探求.(1)利用圆的弦长计算方法即可求解;(2)①由已知有|CC1|=|CC2|,从而求出动圆圆心的轨迹即可求解;。
山东省菏泽市高二上学期开学数学试卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分) (2019高一上·惠州期末) 已知,则()A .B .C .D .2. (2分)已知集合,,则()A .B .C .D .3. (2分)某学校高一年级有35个班,每个班的56名同学都是从1到56编的号码,为了交流学习经验,要求每班号码为14的同学留下进行交流,这里运用的是()A . 分层抽样B . 抽签抽样C . 随机抽样D . 系统抽样4. (2分) (2017高二上·四川期中) “ ”是“对任意的正数,”的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件5. (2分) (2016高一下·蕲春期中) 己知α为第二象限角,cosa=﹣,则sin2α=()A . ﹣B . ﹣C .D .6. (2分) (2016高二上·赣州开学考) 在等比数列{an}中,若a3=2,a5=16,则a4=()A . ±4B . ﹣4C . 4D . 47. (2分) (2018高一下·瓦房店期末) 已知是的角平分线与边交于点,且,,,则()A .B .C .D .8. (2分) (2016高二上·清城期中) 函数f(x)=ax3+bx2+cx+d的图象如图,则函数y=ax2+ bx+ 的单调递增区间是()A . (﹣∞,2]B . ,+∞)C . [﹣2,3]D . ,+∞)9. (2分) (2016高一下·漳州期末) 已知等差数列{an}中,a1+a9=16,a4=1,则a6的值是()A . 64B . 31C . 30D . 1510. (2分)某程序框图如图所示,若输出的S=26,则判断框内应填()A . k>3?B . k>4?C . k>5?D . k>6?11. (2分) (2017高一上·河北月考) 已知函数满足:,且,分别是上的偶函数和奇函数,若使得不等式恒成立,则实数的取值范围是()A .B .C .D .12. (2分) (2017高三上·湖南月考) 下列选项中为函数的一个对称中心为()A .B .C .D .二、填空题: (共4题;共6分)13. (1分) (2018高三上·西安模拟) 从集合中任选一个元素,则满足的概率为________.14. (3分) (2017高二下·东城期末) 已知平面向量,平面向量,(其中).定义:.若,,则 =________;若,且,,则 ________, ________(写出一组满足此条件的和即可).15. (1分) (2016高一下·宿州期中) 已知定义:在数列{an}中,若a ﹣a =p(n≥2,n∈N* , p为常数),则称数列{an}为等方差数列,下列判断:①若{an}是“等方差数列”,则数列{an2}是等差数列;②{(﹣1)n}是“等方差数列”;③若{an}是“等方差数列”,则数列{akn}(k∈N* , k为常数)不可能还是“等方差数列”;④若{an}既是“等方差数列”,又是等差数列,则该数列是常数列.其中正确的结论是________.(写出所有正确结论的编号)16. (1分) (2018高二上·凌源期末) 已知函数,则关于的不等式的解集为________.三、解答题 (共6题;共55分)17. (5分) (2016高三上·成都期中) 为了解甲、乙两校高三年级学生某次期末联考地理成绩情况,从这两学校中分别随机抽取30名高三年级的地理成绩(百分制)作为样本,样本数据的茎叶图如图所示:(Ⅰ)若乙校高三年级每位学生被抽取的概率为0.15,求乙校高三年级学生总人数;(Ⅱ)根据茎叶图,分析甲、乙两校高三年级学生在这次联考中地理成绩;(Ⅲ)从样本中甲、乙两校高三年级学生地理成绩不及格(低于60分为不及格)的学生中随机抽取2人,求至少抽到一名乙校学生的概率.18. (15分)已知函数f(x)=sin(2x+ )+sin(2x﹣)+2cos2x﹣1,x∈R(1)求函数f(x)的最小正周期;(2)求函数f(x)的增区间;(3)求函数f(x)在区间[﹣, ]上的值域.19. (10分) (2015高三上·合肥期末) 在△ABC中,BC= ,∠A=60°.(1)若cosB= ,求AC的长;(2)若AB=2,求△ABC的面积.20. (5分)(2017·昆明模拟) 数列{an}和{bn}中,已知,且a1=2,b3﹣b2=3,若数列{an}为等比数列.(Ⅰ)求a3及数列{bn}的通项公式;(Ⅱ)令,是否存在正整数m,n(m≠n),使c2 , cm , cn成等差数列?若存在,求出m,n的值;若不存在,请说明理由.21. (10分) (2018高二上·会宁月考) 已知数列满足,.(1)求数列的通项公式;(2)令,求数列的前项和。
2018-2019学年高一下学期数学期末模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本大题共l2小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.的值为)6cos(π-( )A .21B .23C . 3D .12 函数x y 21sin =是( )A .最小正周期为2πB .最小正周期为2πC .最小正周期为πD .最小正周期为4π3.设向量 a ,b 的长度分别为4和3,夹角为60°,则a · b 的值为 ( )A. 6B. 13C.36 D 13 4. 中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的 a 为2,2,5,则输出的s=( ) A 7 B 12 C 17 D 345. 已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m=( )A -8B -6C 6D 86.我国古代数学名著《九章算术》中有如下问题:“今有北乡算八千七百五十八,西乡算七千二百三十六,南乡算八千三百五十六,凡三乡,发役三百七十八人,欲以算数多少衰出之,问各几何?”意思是:北乡有8758人,西乡有7236人,南乡有8356人,现要按人数多少从三乡共征集378人,问从各乡各征集多少人?在上述问题中,需从西乡征集的人数是( )A. 102B. 112C. 130D. 1367. 为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点( ) A .向左平行移动12个单位长度 B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度8.在平行四边形ABCD 中,AC 与BD 交于点O ,E 为线段OD 的中点,AE 的延长线与CD 交于点F ,若AC →=a ,BD →=b ,则AF →=( )A.14a +12b B.23a +13b C.12a +14b D.13a +23b 9. 4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率( ) A18 B 38 C. 58 D. 7810. 函数=sin()y A x ωϕ+的部分图像如图所示,则( )A 2sin(2)6y x π=-B 2sin(2)3y x π=-C 2sin(2+)6y x π=D 2sin(2+)3y x π=11、若sinx <,则x 的取值范围为( )A (2k π,2k π+)∪(2k π+,2k π+π)B (2k π+,2k π+)C (2k π+,2k π+)D (2k π-,2k π+) 以上k∈z12. 已知函数()sin f x x x ωω=的图像与直线2y =交于,A B 两点,若AB 的最小值为π ,则函数()f x 的一条对称轴是( )A .3x π=B .4x π=C .6x π=D . 12x π=二、填空题:(本大题共10,每小题4分,共40把答案填在题中横线上.) 13. 若向量a =(2,1),b =(-3,4),a +b= . a · b = . 14. 如图是我国三国时期著名数学家赵爽弦图.图中大正方形的面积是34,四个全等直角三角形围成一个小正方形,直角三角形的较短边长为3.现向大正 方形内随机抛一粒绿豆,则绿豆落在小正方形内的概率为__________. 15. 已知A ,B ,C 是圆O 上的三点,若1()2AO AB AC =+,则AB 与AC 的夹角为 .16. 求值:tan20°+tan40°+tan20°tan40°=_____________。
第II 卷(共90分)三、解答题:(本大题共6小题,共60分.) 17.(本小题满分12分))23,(),,2(,43cos ,32sin ππβππαβα∈∈-==已知求下列值:(1)αtan (2))cos(βα- (3))sin(βα+ (4)α2cos18.(本小题满分10分)改革开放以来,我国高等教育事业有了迅速发展,这里我们得到了某省从1990—2000年18—24岁的青年人每年考入大学的百分比。
我们把农村、县镇和城市分开统计。
为了便于计算,把1990年编号为0,1991年编号为1……2000年编号为10.如果把每年考入大学的百分比作为因变量,把年份从0到10作为自变量进行回归分析,可得到下面三条回归直线:城市103ˆ+=x y县镇 75.2ˆ+=x y农村 25.0ˆ+=x y(1)在同一坐标系内作出三条回归直线。
(2)对于农村青年来讲,系数等于0.5意味着什么? (3)在这一阶段,三个组哪一个的大学入学率年增长最快?19. (本小题满分12分)(1)已知|a|=4,|b|=3,(2 a-3 b )·(2 a + b )=61,求a 与b 的夹角θ.(2)已知|a|=3,|b|=2 ,a 与b 的夹角为30,求|a+ b |,|a- b |。
20.(本小题满分12分)在△ABC 中,,53cos ,135sin ==B A 求cosC 的值21.(本小题满分12分)某养殖场的水产品在临近收获时,工人随机从水中捕捞100只,其质量分别在[100,150),[150,200),[200,250),[250,300),[300,350),[350,400](单位:克)中,经统计得频率分布直方图如图所示.(Ⅰ) 求这组数据的众数;(Ⅱ)现按分层抽样从质量为[250,300),[300,350)的水产品中随机抽取6只,再从这6只中随机抽取3只,求这3只水产品中恰有1只在[300,350)内的概率;(Ⅲ)某经销商来收购水产品时,该养殖场现还有水产品共计约10000只要出售,经销商提出如下两种收购方案:方案A :所有水产品以14元/只收购;方案B :对质量低于300克的水产品以10元/只收购,不低于300克的以28元/只收购. 通过计算确定养殖场选择哪种方案获利更多?22.(本小题满分12分)已知向量()(),cos2,sin 2,a m x b x n ==,函数()f x a b =⋅,且()y f x =的图像过点12π⎛⎝和点2,23π⎛⎫- ⎪⎝⎭. (I )求,m n 的值;(II )将()y f x =的图像向左平移()0ϕϕπ<<个单位后得到函数()y g x =的图像,若()y g x =图像上各最高点到点()0,3的距离的最小值为1,求()y g x =的单调递增区间.理数答案1-12 B D A C D B A B D A D D 13 (-1,5) -2 14 4/34 15 90°17 (1) 18 课本原题19 (1) 120° (220 课本原题 21 (1)275 (2)22.解:(Ⅰ)已知x n x m x f 2cos 2sin )(+=⋅=,)(x f 过点)2,32(),3,12(-ππ36cos 6sin )12(=+=∴πππn m f234cos 34sin )32(-=+=πππn m f⎪⎪⎩⎪⎪⎨⎧-=--=+∴2212332321n m 解得⎩⎨⎧==13n m (Ⅱ))62sin(22cos 2sin 3)(π+=+=x x x x f)(x f 左移ϕ后得到)622sin(2)(πϕ++=x x g设)(x g 的对称轴为0x x =,1120=+=x d 解得00=x2)0(=∴g ,解得6πϕ=x x x x g 2cos 2)22sin(2)632sin(2)(=+=++=∴πππz k k x k ∈≤≤+-∴,222πππz k k x k ∈≤≤+-,2πππ)(x f ∴的单调增区间为z k k k ∈+-],,2[πππ2018-2019学年高一下学期数学期末模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:(本题共 12 小题,每小题 5 分,共 60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. 0sin(600)-的值是( )A ..12- C .12D 2.不等式12x x-≥的解集为( ) A. [)1,-+∞B. [)1,0-C.(],1-∞-D. (](),10,-∞-⋃+∞3.下列命题正确的是( )A .若两条直线和同一个平面所成的角相等,则这两条直线平行B .若一个平面内 有三个点到另一个平面的距离相等,则这两个平面平行C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行4. 在 ABC ∆ 中,若sin()cos cos()sin 1A B B A B B -+-≥,则ABC ∆ 是( )A.锐角三角形;B.直角三角形;C.钝角三角形;D.直角三角形或钝角三角形 5. 已知 {}n a 是等差数列,12784,28a a a a +=+=,则该数列前10项和n S 等于( ) A.64 B.100 C.110 D.1206.已知非零向量,a b r r ,且2,56,72AB a b BC a b CD a b u u u r r r u u u r r r u u u r r r=+=-+=-则一定共线的三点是( )A .A 、B 、D B .A 、B 、C C .B 、C 、D D .A 、C 、D 7.在正项等比数列{}n a 中,369lg lg lg 3a a a ++=,则111a a ⋅的值是( )A.10000B.1000C.100D.10 8. 若θ是ABC ∆的一个内角,且1sin cos 8θθ=- 则sin cos θθ- 的值为( )A.2-B.2 C.2-.29. 同时具有以下性质:“①最小正周期实π ;②图象关于直线3x π=③在,63ππ⎡⎤-⎢⎥⎣⎦上是增函数” 的 一个函数是( ) A .()sin()26x f x π=+B .()cos(2)3f x x π=+C .()sin(2)6f x x π=- D .()cos(2)6f x x π=-10.若1,a b r r ==,()a b a r r r-⊥,则a r 与b r 的夹角为()A .030 B .045 C .060 D .075 11.某几何体的三视图如图所示,则此几何体的体积为( )A .23 B .1 C .43 D .8312.将函数()3sin(2)3f x x π=+的图像向左平移6π个单位长度,再向上平移1个单位长度,得到()g x 的图像,若12()()16g x g x =,且1233,,22x x ππ⎡⎤∈-⎢⎥⎣⎦,则122x x -的最大值为( ) A .3512π B .2112π C .196π D .5912π二、填空题:(本题共 4 小题,每小题 5 分,共 20 分)13.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和,已知数列{}n a 是等和数列,且12a =,公和为 5那么18a =______;14.已知实数,m n 满足不等式组242,30m n m n m n m +≤⎧⎪-≤⎪⎨+≤⎪⎪≥⎩则关于x 的方程2(32)60x m n x mn -++=两根之和的最大值是______;15.如右图,在空间四边形ABCD 中,2AD BC ==,,E F 分别是,AB CD 的中点EF =AD 与BC所成角的大小为______;16.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,图中的实心点的个数 1、5、12、22、…,被称为五角形数,其中第 1 个五角形数记作11a =,第 2 个五角形数记作25a =,第 3 个五角形数记作312a =,第 4 个五角形数记作422a =,…,若按此规律继续下去,若145n a =,则n =______.三、解答题:(共 70 分。