2014届高三数学一轮复习专讲专练:7.6 直接证明与间接证明
- 格式:ppt
- 大小:1.89 MB
- 文档页数:46
《最高考系列 高考总复习》2014届高考数学总复习(考点引领+技巧点拨)第七章 推理与证明第2课时 直接证明与间接证明1. 已知向量m =(1,1)与向量n =(x ,2-2x)垂直,则x =________. 答案:2解析:m ·n =x +(2-2x)=2-x. ∵ m ⊥n ,∴ m ·n =0,即x =2.2. 用反证法证明命题“如果a>b ,那么3a>3b ”时,假设的内容应为______________. 答案:3a =3b 或3a<3b解析:根据反证法的步骤,假设是对原命题结论的否定,即3a =3b 或3a<3b. 3. (选修12P 44练习题3改编)6-22与5-7的大小关系是______________. 答案:6-22>5-7解析:由分析法可得,要证6-22>5-7,只需证6+7>5+22,即证13+242>13+410,即42>210.因为42>40,所以6-22>5-7成立.4. 定义集合运算:A·B={Z|Z =xy ,x ∈A ,y ∈B},设集合A ={-1,0,1},B ={sin α,cos α},则集合A·B 的所有元素之和为________.答案:0解析:依题意知α≠k π+π4,k ∈Z .①α=k π+3π4(k∈Z )时,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫22,-22,A ·B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫0,22,-22; ②α=2k π或α=2k π+π2(k∈Z )时,B ={0,1},A ·B ={0,1,-1};③α=2k π+π或α=2k π-π2(k∈Z )时,B ={0,-1},A ·B ={0,1,-1};④α≠k π2且α≠k π+3π4(k∈Z )时,B ={sin α,cos α},A ·B ={0,sin α,cos α,-sin α,-cos α}.综上可知A·B 中的所有元素之和为0.5. (选修12P 44练习题4改编)设a 、b 为两个正数,且a +b =1,则使得1a +1b≥μ恒成立的μ的取值范围是________.答案:(-∞,4]解析:∵ a+b =1,且a 、b 为两个正数,∴ 1a +1b =(a +b)⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b ≥2+2b a ·a b=4.要使得1a +1b≥μ恒成立,只要μ≤4.1. 直接证明(1) 定义:直接从原命题的条件逐步推得命题成立的证明方法. (2) 一般形式⎭⎪⎬⎪⎫本题条件已知定义已知公理已知定理 ÞA ÞB Þ C … 本题结论.(3) 综合法① 定义:从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止.这种证明方法称为综合法.② 推证过程已知条件Þ …Þ … Þ结论(4) 分析法① 定义:从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止.这种证明方法称为分析法.② 推证过程结论 Ü…Ü …Ü 已知条件2. 间接证明(1) 常用的间接证明方法有反证法、正难则反等. (2) 反证法的基本步骤① 反设——假设命题的结论不成立,即假定原结论的反面为真.② 归谬——从反设和已知出发,经过一系列正确的逻辑推理,得出矛盾结果. ③ 存真——由矛盾结果,断定反设不真,从而肯定原结论成立. [备课札记]题型1 直接证明(综合法和分析法)例1 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n =1,2,3,…),证明:(1) 数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2) S n +1=4a n .证明:(1) ∵ a n +1=S n +1-S n ,a n +1=n +2nS n (n =1,2,3,…),∴ (n +2)S n =n(S n +1-S n ),整理得nS n +1=2(n +1)S n ,∴ S n +1n +1=2·S nn,即S n +1n +1S n n=2,∴ 数列⎩⎨⎧⎭⎬⎫S n n 是等比数列.(2) 由(1)知:S n +1n +1=4·S n -1n -1(n≥2),于是S n +1=4·(n +1)·S n -1n -1=4a n (n≥2).又a 2=3S 1=3,∴ S 2=a 1+a 2=1+3=4a 1,∴ 对一切n∈N *,都有S n +1=4a n .例2 设a 、b 、c 均为大于1的正数,且ab =10,求证:log a c +log b c ≥4lgc.证明:(分析法)由于a>1,b>1,c>1,故要证明log a c +log b c ≥4lgc ,只要证明lgc lga +lgclgb≥4lgc ,即lga +lgb lga ·lgb ≥4,因为ab =10,故lga +lgb =1.只要证明1lgalgb≥4,由于a>1,b>1,故lga>0,lgb>0,所以0<lgalgb ≤⎝ ⎛⎭⎪⎫lga +lgb 22=⎝ ⎛⎭⎪⎫122=14,即1lgalgb ≥4成立.所以原不等式成立.变式训练设首项为a 1的正项数列{a n }的前n 项和为S n ,q 为非零常数,已知对任意正整数n 、m ,S n +m =S m +q mS n 总成立.求证:数列{a n }是等比数列.证明:因为对任意正整数n 、m ,S n +m =S m +q mS n 总成立,令n =m =1,得S 2=S 1+qS 1,则a 2=qa 1.令m =1,得S n +1=S 1+qS n ①, 从而S n +2=S 1+qS n +1 ②,②-①得a n +2=qa n +1(n≥1),综上得a n +1=qa n (n≥1),所以数列{a n }是等比数列.题型2 间接证明(反证法)例3 证明:2,3,5不能为同一等差数列中的三项.证明:假设2,3,5为同一等差数列的三项,则存在整数m 、n 满足⎩⎨⎧3=2+md ①,5=2+nd ②,①×n -②×m 得3n -5m =2(n -m),两边平方得3n 2+5m 2-215mn =2(n -m)2,左边为无理数,右边为有理数,且有理数≠无理数,故假设不正确,即2,3,5不能为同一等差数列的三项.备选变式(教师专享)已知下列三个方程:x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0,其中至少有一个方程有实根,求实数a 的取值范围.解:若方程没有一个实数根,则⎩⎪⎨⎪⎧16a 2-4(3-4a )<0,(a -1)2-4a 2<0,4a 2+8a<0,解之得-32<a<-1.故三个方程至少有一个方程有实数根的a 的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪⎪a≥-1或a≤32.1. 用反证法证明命题“a·b(a、b∈Z)是偶数,那么a 、b 中至少有一个是偶数.”那么反设的内容是__________________________________.答案:假设a 、b 都是奇数(a 、b 都不是偶数)解析:用反证法证明命题时反设的内容是否定结论.2. 已知a 、b 、c∈(0,+∞)且a <c ,b <c ,1a +9b=1,若以a 、b 、c 为三边构造三角形,则c 的取值范围是________.答案:(10,16)解析:要以a 、b 、c 为三边构造三角形,需要满足任意两边之和大于第三边,任意两边之差小于第三边,而a<c ,b<c ,所以a +b>c 恒成立.而a +b =(a +b)⎝ ⎛⎭⎪⎫1a +9b =10+b a +9a b ≥16,∴ c<16.又1a >1c ,1b >1c ,∴ 10c <1a +9b=1,∴ c>10,∴ 10<c<16.3. 设函数f 0(x)=1-x 2,f 1(x)=⎪⎪⎪⎪⎪⎪f 0(x )-12,f n (x)=⎪⎪⎪⎪⎪⎪f n -1(x )-12n ,(n≥1,n ≥N ),则方程f 1(x)=13有________个实数根,方程f n (x)=⎝ ⎛⎭⎪⎫13n 有________个实数根.答案:4 2n +1解析:f 1(x)=⎪⎪⎪⎪⎪⎪1-x 2-12=⎪⎪⎪⎪⎪⎪x 2-12=13,∴ x 2=16或x 2=56有4个解.∵ 可推出n =1,2,3…,根个数分别为22,23,24,∴ 通过类比得出f n (x)=⎝ ⎛⎭⎪⎫13n 有2n +1个实数根.4. 若实数x 、y 、m 满足|x -m|>|y -m|,则称x 比y 远离m.(1) 若x 2-1比1远离0,求x 的取值范围;(2) 对任意两个不相等的正数a 、b ,证明:a 3+b 3比a 2b +ab 2远离2ab ab. (1) 解:x∈(-∞,-2)∪(2,+∞). (2) 证明:对任意两个不相等的正数a 、b ,有 a 3+b 3>2ab ab ,a 2b +ab 2>2ab ab.因为|a 3+b 3-2ab ab|-|a 2b +ab 2-2ab ab|=(a +b)(a -b)2>0,所以|a 3+b 3-2ab ab|>|a 2b +ab 2-2ab ab|,即a 3+b 3比a 2b +ab 2远离2ab ab.1. 已知a>b>c ,且a +b +c =0,求证:b 2-ac<3a.证明:要证b 2-ac<3a ,只需证b 2-ac<3a 2.∵ a +b +c =0,∴ 只需证b 2+a(a +b)<3a 2,只需证2a 2-ab -b >0,只需证(a -b)(2a +b)>0,只需证(a -b)(a -c)>0.∵ a>b>c,∴ a -b>0,a -c>0,∴ (a -b)(a -c)>0显然成立.故原不等式成立.2. 已知等差数列{a n }的首项a 1>0,公差d >0,前n 项和为S n ,且m +n =2p(m 、n 、p∈N *),求证:S n +S m ≥2S p .证明:∵m 2+n 2≥2mn ,∴2(m 2+n 2)≥(m+n)2.又m +n =2p ,∴m 2+n 2≥2p 2.3. 如图,ABCD 为直角梯形,∠BCD =∠CDA=90°,AD =2BC =2CD ,P 为平面ABCD 外一点,且PB⊥BD.(1) 求证:PA⊥BD;(2) 若PC 与CD 不垂直,求证:PA≠PD.证明:(1) 因为ABCD 为直角梯形,AD =2AB =2BD ,所以AD 2=AB 2+BD 2,因此AB⊥BD.又PB⊥BD,AB ∩PB =B ,AB ,PB Ì平面PAB , 所以BD⊥平面PAB ,又PA Ì平面PAB ,所以PA⊥BD.(2) 假设PA =PD ,取AD 中点N ,连结PN 、BN , 则PN⊥AD,BN ⊥AD ,且PN∩BN=N , 所以AD⊥平面PNB ,得PB⊥AD.又PB⊥BD,且AD∩BD=D ,得PB⊥平面ABCD ,所以PB ⊥CD.又因为BC⊥CD,且PB∩BC =B ,所以CD⊥平面PBC ,所以CD⊥PC,与已知条件PC 与CD 不垂直矛盾,所以PA≠PD.4. 已知f(x)=a x+x -2x +1(a >1).(1) 证明f(x)在(-1,+∞)上为增函数; (2) 用反证法证明方程f(x)=0没有负数根.证明:(1) 设-1<x 1<x 2,则x 2-x 1>0,ax 2-x 1>1,ax 1>0,x 1+1>0,x 2+1>0,从而f(x 2)-f(x 1)=ax 2-ax 1+x 2-2x 2+1-x 1-2x 1+1=ax 1(ax 2-x 1-1)+3(x 2-x 1)(x 2+1)(x 1+1)>0,所以f(x)在(-1,+∞)上为增函数.(2) 设存在x 0<0(x 0≠-1)使f(x 0)=0,则ax 0=-x 0-2x 0+1.由0<ax 0<1 0<-x 0-2x 0+1<1,即12<x 0<2,此与x 0<0矛盾,故x 0不存在.1. 分析法的特点是从未知看已知,逐步靠拢已知,综合法的特点是从已知看未知,逐步推出未知.分析法和综合法各有优缺点.分析法思考起来比较自然,容易寻找到解题的思路和方法,缺点是思路逆行,叙述较烦;综合法从条件推出结论,较简捷地解决问题,但不便于思考,实际证明时常常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来.2. 反证法是从否定结论出发,经过逻辑推理,导出矛盾,说明结论的否定是错误的,从而肯定原结论是正确的证明方法.适宜用反证法证明的数学命题:①结论本身是以否定形式出现的一类命题;②关于唯一性、存在性的命题;③结论以“至多”“至少”等形式出现的命题;④结论的反面比原结论更具体更容易研究的命题.请使用课时训练(B )第2课时(见活页).[备课札记]。
直接证明与间接证明考纲要求1.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程和特点;2.了解间接证明的一种基本方法——反证法;了解反证法的思考过程和特点.知识梳理1.直接证明内容综合法分析法定义利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立从要证明的结论出发,逐步寻求使它成立的充分条件,直到最后把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止实质由因导果执果索因框图表示P⇒Q1→Q1⇒Q2→…→Q n⇒Q Q⇐P1→P1⇐P2→…→得到一个明显成立的条件文字语言因为……所以……或由……得……要证……只需证……即证……2.间接证明间接证明是不同于直接证明的又一类证明方法,反证法是一种常用的间接证明方法.(1)反证法的定义:假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立的证明方法.(2)用反证法证明的一般步骤:①反设——假设命题的结论不成立;②归谬——根据假设进行推理,直到推出矛盾为止;③结论——断言假设不成立,从而肯定原命题的结论成立.1.分析法是执果索因,实际上是寻找使结论成立的充分条件;综合法是由因导果,就是寻找已知的必要条件.2.综合法与分析法都是直接证明的方法,反证法是间接证明的方法.3.用反证法证题时,首先否定结论,否定结论就是找出结论的反面的情况,然后推出矛盾,矛盾可以与已知、公理、定理、事实或者假设等相矛盾.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( ) (2)用反证法证明结论“a >b ”时,应假设“a <b ”.( ) 答案 (1)× (2)×解析 (1)分析法是从要证明的结论出发,逐步寻找使结论成立的充分条件. (2)应假设“a ≤b ”.2.若P =a +6+a +7,Q =a +8+a +5(a ≥0),则P ,Q 的大小关系是( ) A .P >Q B .P =QC .P <QD .不能确定答案 A解析 假设P >Q ,只需P 2>Q 2,即2a +13+2a +6a +7>2a +13+2a +8a +5,只需a 2+13a +42>a 2+13a +40.因为42>40成立,所以P >Q 成立.故选A.3.实数a ,b ,c 满足a +b +c =0,abc >0,则1a +1b +1c 的值( )A .一定是正数B .一定是负数C .可能是0D .正、负不确定答案 B解析 由a +b +c =0,abc >0得a ,b ,c 中必有两负一正,不妨设a <0,b <0,c >0,且|a |<|c |,则1|a |>1|c |,从而-1a >1c ,而1b <0,所以1a +1b +1c<0.4.命题“对于任意角θ,cos 4θ-sin 4θ=cos 2θ”的证明:“cos 4θ-sin 4θ=(cos 2θ-sin 2θ)·(cos 2θ+sin 2θ)=cos 2θ-sin 2θ=cos 2θ”,其过程应用了( ) A .分析法B .综合法C .综合法、分析法综合使用D .间接证法答案 B5.(2020·西安月考)利用反证法证明:若x +y =0,则x =y =0,应假设为( ) A .x ,y 都不为0 B .x ,y 不都为0 C .x ,y 都不为0,且x ≠y D .x ,y 至少有一个为0 答案 B解析 x =y =0的否定为x ≠0或y ≠0,即x ,y 不都为0,选B.6.(2020·安庆检测)在不等边三角形中,a 为最大边,要想得到A 为钝角的结论,三边a ,b ,c 应满足________. 答案 b 2+c 2<a 2解析 根据余弦定理,cos A =b 2+c 2-a 22ab <0,所以b 2+c 2<a 2.考点一 综合法的应用【例1】 设a ,b ,c 均为正数,且a +b +c =1,证明: (1)ab +bc +ca ≤13;(2)a 2b +b 2c +c 2a≥1. 证明 (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca , 得a 2+b 2+c 2≥ab +bc +ca .由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1, 所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13,当且仅当“a =b =c ”时等号成立. (2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,当且仅当“a 2=b 2=c 2”时等号成立, 故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 则a 2b +b 2c +c 2a ≥a +b +c . 所以a 2b +b 2c +c 2a≥1.感悟升华 1.综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题)出发,经过一系列中间推理,最后导出所要求证结论的真实性.2.综合法的逻辑依据是三段论式的演绎推理. 【训练1】 本例的条件不变,证明a 2+b 2+c 2≥13.证明 因为a +b +c =1,所以1=(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac , 因为2ab ≤a 2+b 2,2bc ≤b 2+c 2,2ac ≤a 2+c 2, 当且仅当“a =b =c ”时,等号成立, 所以2ab +2bc +2ac ≤2(a 2+b 2+c 2), 所以1≤a 2+b 2+c 2+2(a 2+b 2+c 2), 即a 2+b 2+c 2≥13.考点二 分析法【例2】 若a ,b ∈(1,+∞),证明a +b <1+ab . 证明 要证a +b <1+ab ,只需证(a +b )2<(1+ab )2,只需证a +b -1-ab <0,即证(a -1)(1-b )<0. 因为a >1,b >1,所以a -1>0,1-b <0, 即(a -1)(1-b )<0成立,所以原不等式成立.感悟升华 分析法的证明思路:先从结论入手,由此逐步推出保证此结论成立的充分条件,而当这些判断恰恰都是已证的命题(定义、公理、定理、法则、公式等)或要证命题的已知条件时命题得证.【训练2】 已知△ABC 的三个内角A ,B ,C 成等差数列,A ,B ,C 的对边分别为a ,b ,c .求证:1a +b +1b +c =3a +b +c .证明 要证1a +b +1b +c =3a +b +c, 即证a +b +c a +b +a +b +c b +c =3,也就是c a +b +a b +c =1,只需证c (b +c )+a (a +b )=(a +b )(b +c ), 需证c 2+a 2=ac +b 2,又△ABC 三内角A ,B ,C 成等差数列,故B =60°, 由余弦定理,得b 2=c 2+a 2-2ac cos 60°, 即b 2=c 2+a 2-ac ,故c 2+a 2=ac +b 2成立. 于是原等式成立. 考点三 反证法【例3】 设数列{a n }是公比为q 的等比数列,S n 是它的前n 项和. (1)求证:数列{S n }不是等比数列; (2)数列{S n }是等差数列吗?为什么?(1)证明 假设数列{S n }是等比数列,则S 22=S 1S 3,即a 21(1+q )2=a 1·a 1·(1+q +q 2),因为a1≠0,所以(1+q)2=1+q+q2,即q=0,这与公比q≠0矛盾,所以数列{S n}不是等比数列.(2)解当q=1时,S n=na1,故{S n}是等差数列;当q≠1时,{S n}不是等差数列,否则2S2=S1+S3,即2a1(1+q)=a1+a1(1+q+q2),得q=0,这与公比q≠0矛盾.综上,当q=1时,数列{S n}是等差数列;当q≠1时,数列{S n}不是等差数列.感悟升华 1.适用范围:当一个命题的结论是以“至多”、“至少”、“唯一”或以否定形式出现时,宜用反证法来证.2.关键:在正确的推理下得出矛盾,矛盾可以是与已知条件矛盾,与假设矛盾,与定义、公理、定理矛盾,与事实矛盾等,推导出的矛盾必须是明显的.【训练3】已知a,b,c,d∈R,且a+b=1,c+d=1,ac+bd>1.求证:a,b,c,d中至少有一个是负数.证明假设a,b,c,d都是非负数,因为a+b=c+d=1,所以(a+b)(c+d)=1,即ac+bd+ad+bc=1,又ac+bd+ad+bc≥ac+bd,所以ac+bd≤1,与题设矛盾,故假设不成立,故a,b,c,d中至少有一个是负数.A级基础巩固一、选择题1.下列表述:①综合法是由因导果法;②综合法是顺推法;③分析法是执果索因法;④分析法是逆推法;⑤反证法是间接证法.其中正确的有()A.2个B.3个C.4个D.5个答案 D解析 由定义可知①②③④⑤都正确,选D.2.若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ) A .ac 2<bc 2 B .a 2>ab >b 2 C.1a <1b D .b a >a b答案 B解析 a 2-ab =a (a -b ),∵a <b <0,∴a -b <0,∴a 2-ab >0,∴a 2>ab .① 又ab -b 2=b (a -b )>0,∴ab >b 2,② 由①②得a 2>ab >b 2.3.(2020·厦门月考)用反证法证明:若整系数一元二次方程ax 2+bx +c =0(a ≠0)有有理数根,那么a ,b ,c 中至少有一个是偶数.用反证法证明时,下列假设正确的是( ) A .假设a ,b ,c 都是偶数 B .假设a ,b ,c 都不是偶数 C .假设a ,b ,c 至多有一个偶数 D .假设a ,b ,c 至多有两个偶数 答案 B解析 “至少有一个”的否定为“都不是”,故B 正确.4.在△ABC 中,sin A sin C <cos A cos C ,则△ABC 一定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不确定 答案 C解析 由sin A sin C <cos A cos C 得cos A cos C -sin A sin C >0,即cos(A +C )>0,所以A +C 是锐角,从而B >π2,△ABC 必是钝角三角形.故选C.5.分析法又称执果索因法,已知x >0,用分析法证明1+x <1+x2时,索的因是( )A .x 2>2B .x 2>4C .x 2>0D .x 2>1答案 C解析 因为x >0,所以要证1+x <1+x 2,只需证(1+x )2<⎝⎛⎭⎫1+x 22,即证0<x 24,即证x 2>0,因为x >0,所以x 2>0成立,故原不等式成立.故选C.6.(2021·西安模拟)已知a ,b ,c ∈R ,若b a ·c a >1且b a +c a ≥-2,则下列结论成立的是( )A .a ,b ,c 同号B .b ,c 同号,a 与它们异号C .a ,c 同号,b 与它们异号D .b ,c 同号,a 与b ,c 的符号关系不确定 答案 A解析 由b a ·c a >1知b a 与c a 同号,若b a >0且c a >0,不等式b a +c a ≥-2显然成立,若b a <0且ca <0,则-b a >0,-ca>0,⎝⎛⎭⎫-b a +⎝⎛⎭⎫-c a ≥2⎝⎛⎭⎫-b a ·⎝⎛⎭⎫-c a >2,即b a +c a <-2,这与b a +c a ≥-2矛盾,故b a>0且ca >0,即a ,b ,c 同号.故选A. 二、填空题7.6+7与22+5的大小关系为________. 答案6+7>22+ 5解析 要比较6+7与22+5的大小, 只需比较(6+7)2与(22+5)2的大小, 只需比较6+7+242与8+5+410的大小,只需比较42与210的大小,只需比较42与40的大小, ∵42>40,∴6+7>22+ 5.8.下列条件:①ab >0;②ab <0;③a >0,b >0;④a <0,b <0.其中能使b a +ab ≥2成立的条件的序号是________.答案 ①③④解析 要使b a +a b ≥2,只需b a >0且a b >0成立,即a ,b 不为0且同号即可,故①③④均能使ba +ab≥2成立. 9.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是________. 答案 ⎝⎛⎭⎫-3,32 解析 若二次函数f (x )≤0在区间[-1,1]内恒成立,则⎩⎪⎨⎪⎧f-1=-2p 2+p +1≤0,f1=-2p 2-3p +9≤0,解得p ≤-3或p ≥32,故满足条件的p 的取值范围为⎝⎛⎭⎫-3,32. 三、解答题10.已知x ,y ,z 是互不相等的正数,且x +y +z =1,求证:⎝⎛⎭⎫1x -1⎝⎛⎭⎫1y -1⎝⎛⎭⎫1z -1>8. 证明 因为x ,y ,z 是互不相等的正数,且x +y +z =1, 所以1x -1=1-x x =y +z x >2yz x ,①1y -1=1-y y =x +z y >2xz y ,② 1z -1=1-z z =x +y z >2xy z ,③ 又x ,y ,z 为正数,由①×②×③, 得⎝⎛⎭⎫1x -1⎝⎛⎭⎫1y -1⎝⎛⎭⎫1z -1>8.11.已知a >5,求证:a -5-a -3<a -2-a . 证明 要证a -5-a -3<a -2-a ,只需证a -5+a <a -3+a -2, 只需证(a -5+a )2<(a -3+a -2)2, 只需证2a -5+2a 2-5a <2a -5+2a 2-5a +6, 只需证a 2-5a <a 2-5a +6, 只需证a 2-5a <a 2-5a +6, 只需证0<6, 因为0<6恒成立,所以a -5-a -3<a -2-a 成立.B 级 能力提升12.(2021·长春模拟)①已知p 3+q 3=2,求证p +q ≤2,用反证法证明时,可假设p +q >2;②设a 为实数,f (x )=x 2+ax +a ,可证|f (1)|与|f (2)|中至少有一个不大于12,由反证法证明时可假设|f (1)|≥12,且|f (2)|≥12,以下说法正确的是( )A .①与②的假设都错误B .①与②的假设都正确C .①的假设正确,②的假设错误D .①的假设错误,②的假设正确 答案 C解析 用反证法证明时,应假设结论不成立,所以①正确;设a 为实数,f (x )=x 2+ax +a ,求证|f (1)|与|f (2)|中至少有一个不大于12,用反证法证明时假设应为|f (1)|>12且|f (2)|>12,所以②错误.故选C.13.若a ,b ,c 是不全相等的正数,给出下列判断:①(a -b )2+(b -c )2+(c -a )2≠0;②a >b 与a <b 及a =b 中至少有一个成立;③a ≠c ,b ≠c ,a ≠b 不能同时成立.其中判断正确的是________(填序号). 答案 ①②解析 对①,假设(a -b )2+(b -c )2+(c -a )2=0⇒a =b =c 与已知a ,b ,c 是不全相等的正数矛盾,所以①正确;对②,假设都不成立,这样的数a ,b 不存在,所以②正确;对③,举例a =1,b =2,c =3,a ≠c ,b ≠c ,a ≠b 能同时成立,所以③不正确,填①②.14.若f (x )的定义域为[a ,b ],值域为[a ,b ](a <b ),则称函数f (x )是[a ,b ]上的“四维光军”函数.(1)设g (x )=12x 2-x +32是[1,b ]上的“四维光军”函数,求常数b 的值; (2)是否存在常数a ,b (a >-2),使函数h (x )=1x +2是区间[a ,b ]上的“四维光军”函数?若存在,求出a ,b 的值;若不存在,请说明理由.解 (1)由题设得g (x )=12(x -1)2+1,其图象的对称轴为x =1,区间[1,b ]在对称轴的右边,所以函数在区间[1,b ]上单调递增.由“四维光军”函数的定义可知,g (1)=1,g (b )=b ,则12b 2-b +32=b ,解得b =1或b =3. 因为b >1,所以b =3.(2)假设函数h (x )=1x +2在区间[a ,b ](a >-2)上是“四维光军”函数, 因为h (x )=1x +2在区间(-2,+∞)上单调递减, 所以有⎩⎪⎨⎪⎧ h a =b ,h b =a ,即⎩⎨⎧1a +2=b ,1b +2=a .解得a =b ,这与已知矛盾.故不存在常数a ,b (a >-2)使函数h (x )=1x +2是[a ,b ]上的“四维光军”函数.。
直接证明与间接证明一、选择题1.“所有9的倍数都是3的倍数,某奇数是9的倍数,故该奇数是3的倍数.”上述推理( )A 小前提错B 结论错C 正确D 大前提错解析 大前提,小前提都正确,推理正确,故选C.答案 C2.在用反证法证明命题“已知a 、b 、c ∈(0,2),求证a (2-b )、b (2-c )、c (2-a )不可能都大于1”时,反证时假设正确的是( )A .假设a (2-b )、b (2-c )、c (2-a )都小于1B .假设a (2-b )、b (2-c )、c (2-a )都大于1C .假设a (2-b )、b (2-c )、c (2-a )都不大于1D .以上都不对解析 “不可能都大于1”的否定是“都大于1”,故选B.答案 B3.下列命题中的假命题是( ).A .三角形中至少有一个内角不小于60°B .四面体的三组对棱都是异面直线C .闭区间[a ,b ]上的单调函数f (x )至多有一个零点D .设a ,b ∈Z ,若a +b 是奇数,则a ,b 中至少有一个为奇数解析 a +b 为奇数⇔a ,b 中有一个为奇数,另一个为偶数,故D 错误.答案 D4.命题“如果数列{a n }的前n 项和S n =2n 2-3n ,那么数列{a n }一定是等差数列”是否成立( ).A .不成立B .成立C .不能断定D .能断定解析 ∵S n =2n 2-3n ,∴S n -1=2(n -1)2-3(n -1)(n ≥2),∴a n =S n -S n -1=4n -5(n =1时,a 1=S 1=-1符合上式).又∵a n +1-a n =4(n ≥1),∴{a n }是等差数列. 答案 B5.设a 、b 、c 均为正实数,则三个数a +1b 、b +1c 、c +1a( ). A .都大于2 B .都小于2C .至少有一个不大于2D .至少有一个不小于2解析 ∵a >0,b >0,c >0,∴⎝ ⎛⎭⎪⎫a +1b +⎝ ⎛⎭⎪⎫b +1c +⎝ ⎛⎭⎪⎫c +1a =⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b + ⎝ ⎛⎭⎪⎫c +1c ≥6, 当且仅当a =b =c =1时,“=”成立,故三者不能都小于2,即至少有一个不小于2. 答案 D6.设a =lg 2+lg 5,b =e x(x <0),则a 与b 大小关系为( )A .a >bB .a <bC .a =bD .a ≤b 解析 ∵a =lg 2+lg 5=l g 10=1,而b =e x <e 0=1,故a >b .答案 A7.定义一种运算“*”:对于自然数n 满足以下运算性质:(n +1)*1=n *1+1,则n *1=( ).A .nB .n +1C .n -1D .n 2解析 由(n +1)*1=n *1+1,得n *1=(n -1) *1+1=(n -2)*1+2=…=n.答案 A二、填空题8.用反证法证明命题“若a ,b∈N,ab 能被3整除,那么a ,b 中至少有一个能被3整除”时,假设应为 .解析 由反证法的定义可知,否定结论,即“a ,b 中至少有一个能被3整除”的否定是“a ,b 都不能被3整除”.答案 a 、b 都不能被3整除9.要证明“3+7<25”可选择的方法有以下几种,其中最合理的是________(填序号). ①反证法,②分析法,③综合法.答案 ②10.设a ,b 是两个实数,给出下列条件: ①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1.其中能推出:“a ,b 中至少有一个大于1”的条件是______.(填序号)解析 若a =12,b =23,则a +b >1, 但a <1,b <1,故①推不出;若a =b =1,则a +b =2,故②推不出;若a =-2,b =-3,则a 2+b 2>2,故④推不出;若a =-2,b =-3,则ab >1,故⑤推不出;对于③,即a +b >2,则a ,b 中至少有一个大于1,反证法:假设a ≤1且b ≤1,则a +b ≤2与a +b >2矛盾,因此假设不成立,故a ,b 中至少有一个大于1.答案 ③11.如果a a +b b >a b +b a ,则a 、b 应满足的条件是________.解析 首先a ≥0,b ≥0且a 与b 不同为0.要使a a +b b >a b +b a ,只需(a a +b b )2>(a b +b a )2,即a 3+b 3>a 2b +ab 2,只需(a +b )(a 2-ab +b 2)>ab (a +b ),只需a 2-ab +b 2>ab , 即(a -b )2>0,只需a ≠b .故a ,b 应满足a ≥0,b ≥0且a ≠b .答案 a ≥0,b ≥0且a ≠b12.若a ,b ,c 是不全相等的正数,给出下列判断:①(a -b )2+(b -c )2+(c -a )2≠0;②a >b 与a <b 及a =b 中至少有一个成立;③a ≠c ,b ≠c ,a ≠b 不能同时成立.其中判断正确的是_______.解析 ①②正确;③中a ≠c ,b ≠c ,a ≠b 可能同时成立,如a =1,b =2,c =3.选C.答案 ①② 三、解答题13.在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c ,若1a +b +1b +c =3a +b +c ,试问A ,B ,C 是否成等差数列,若不成等差数列,请说明理由.若成等差数列,请给出证明. 解析 A 、B 、C 成等差数列.证明如下:∵1a +b +1b +c =3a +b +c , ∴a +b +c a +b +a +b +c b +c =3. ∴ca +b +a b +c =1,∴c (b +c )+a (a +b )=(a +b )(b +c ),∴b 2=a 2+c 2-ac .在△ABC 中,由余弦定理,得cos B =a 2+c 2-b 22ac =ac 2ac =12, ∵0°<B <180°,∴B =60°.∴A +C =2B =120°.∴A 、B 、C 成等差数列.14.已知非零向量a ,b ,且a ⊥b ,求证:|a |+|b ||a +b |≤ 2. 证明 a ⊥b ⇔a ·b =0,要证|a |+|b ||a +b |≤ 2. 只需证|a |+|b |≤2|a +b |,只需证|a |2+2|a ||b |+|b |2≤2(a 2+2a ·b +b 2),只需证|a |2+2|a ||b |+|b |2≤2a 2+2b 2,只需证|a |2+|b |2-2|a ||b |≥0,即(|a |-|b |)2≥0,上式显然成立,故原不等式得证.15.若a 、b 、c 是不全相等的正数,求证:lg a +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c . 证明 ∵a ,b ,c ∈(0,+∞),∴a +b 2≥ab >0,b +c 2≥bc >0,a +c 2≥ab >0. 又上述三个不等式中等号不能同时成立.∴a +b 2·b +c 2·c +a 2>abc 成立.上式两边同时取常用对数,得lg ⎝⎛⎭⎪⎫a +b 2·b +c 2·c +a 2>lg(abc ), ∴lg a +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c .16.(12分)已知二次函数f (x )=ax 2+bx +c (a >0)的图象与x 轴有两个不同的交点,若f (c )=0,且0<x <c 时,f (x )>0.(1)证明:1a是f (x )=0的一个根; (2)试比较1a 与c 的大小;(3)证明:-2<b <-1.解析 (1)证明 ∵f (x )的图象与x 轴有两个不同的交点, ∴f (x )=0有两个不等实根x 1,x 2,∵f (c )=0,∴x 1=c 是f (x )=0的根,又x 1x 2=c a ,∴x 2=1a ⎝ ⎛⎭⎪⎫1a ≠c ,∴1a 是f (x )=0的一个根.(2)假设1a <c ,又1a >0,由0<x <c 时,f (x )>0,知f ⎝ ⎛⎭⎪⎫1a >0与f ⎝ ⎛⎭⎪⎫1a =0矛盾,∴1a ≥c ,又∵1a ≠c ,∴1a >c .(3)证明 由f (c )=0,得ac +b +1=0,∴b =-1-ac .又a >0,c >0,∴b <-1.二次函数f (x )的图象的对称轴方程为x =-b2a =x 1+x 22<x 2+x 22=x 2=1a ,即-b2a <1a .又a >0,∴b >-2,∴-2<b <-1.。
第六节直接证明与间接证明[备考方向要明了][归纳·知识整合]1.直接证明(1)综合法①定义:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.②框图表示:P⇒Q1―→Q1⇒Q2―→Q2⇒Q3―→…―→Q n⇒Q(其中P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论).(2)分析法①定义:从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.②框图表示:Q⇐P1―→P1⇐P2―→P2⇐P3―→…―→得到一个明显成立的条件.[探究] 1.综合法与分析法有什么联系与差异?提示:综合法与分析法是直接证明的两种基本方法,综合法的特点是从已知看可知,逐步推出未知.在使用综合法证明时,易出现的错误是因果关系不明确,逻辑表达混乱.分析法是从未知看需知,逐步靠拢已知.当命题的条件与结论之间的联系不够明显、直接,证明中需要用哪些知识不太明确具体时,往往采用从结论出发,结合已知条件,逐步反推,寻求使当前命题成立的充分条件,把证明转化为判定这些条件是否具备的问题.2.间接证明反证法:假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.[探究] 2.在什么情况下可考虑利用反证法证明问题?提示:反证法是间接证明的一种方法,它适用于以下两种情形:(1)要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;(2)若从正面证明,需要分成多种情形进行讨论,而从反面证明,只需研究一种或很少的几种情形.[自测·牛刀小试]1.下列表述:①综合法是由因导果法;②综合法是顺推法;③分析法是执果索因法;④分析法是逆推法;⑤反证法是间接证法.其中正确的有( )A .2个B .3个C .4个D .5个解析:选D 由综合法、分析法和反证法的推理过程可知,①②③④⑤都正确. 2.(教材习题改编)要证明3+7<25,可选择的方法有以下几种,其中最合理的是( )A .综合法B .分析法C .反证法D .归纳法解析:选B 要证明3+7<25成立,可采用分析法对不等式两边平方后再证明. 3.用反证法证明“如果a >b ,那么3a >3b ”假设内容应是( ) A.3a =3bB.3a <3bC.3a =3b 且3a <3b D.3a =3b 或3a <3b解析:选D 假设结论不成立, 即3a >3b 的否定为3a ≤ 3b .4.在不等边三角形中,a 为最大边,要想得到∠A 为钝角的结论,三边a ,b ,c 应满足________.解析:由余弦定理cos A =b 2+c 2-a 22bc<0,所以b 2+c 2-a 2<0,即a 2>b 2+c 2.答案:a 2>b 2+c 25.下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +a b≥2成立的条件的个数是________.解析:要使b a +a b ≥2,只要b a >0且a b>0,即a ,b 不为0且同号即可,故有3个. 答案:3[例1] 设a 、b 、c >0,证明a 2b +b 2c +c 2a≥a +b +c .[自主解答] ∵a 、b 、c >0,根据基本不等式,有a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a+a ≥2c . 三式相加:a 2b +b 2c +c 2a +a +b +c ≥2(a +b +c ),即a 2b +b 2c +c 2a≥a +b +c . ———————————————————利用综合法证明问题的步骤保持本例条件不变 ,试证明a 3+b 3+c 3≥13(a 2+b 2+c 2)·(a +b +c ).证明:∵a 、b 、c >0,∴a 2+b 2≥2ab , ∴(a 2+b 2)(a +b )≥2ab (a +b ),∴a 3+b 3+a 2b +ab 2≥2ab (a +b )=2a 2b +2ab 2, ∴a 3+b 3≥a 2b +ab 2.同理,b 3+c 3≥b 2c +bc 2,a 3+c 3≥a 2c +ac 2,将三式相加得,2(a 3+b 3+c 3)≥a 2b +ab 2+b 2c +bc 2+a 2c +ac 2.∴3(a 3+b 3+c 3)≥(a 3+a 2b +a 2c )+(b 3+b 2a +b 2c )+(c 3+c 2a +c 2b )=(a 2+b 2+c 2)(a +b +c ).∴a 3+b 3+c 3≥13(a 2+b 2+c 2)(a +b +c ).1.已知x +y +z =1,求证:x 2+y 2+z 2≥13.证明:∵x 2+y 2≥2xy ,x 2+z 2≥2xz ,y 2+z 2≥2yz , ∴2x 2+2y 2+2z 2≥2xy +2xz +2yz .∴3x 2+3y 2+3z 2≥x 2+y 2+z 2+2xy +2xz +2yz . ∴3(x 2+y 2+z 2)≥(x +y +z )2=1. ∴x 2+y 2+z 2≥13.[例2] 已知函数f (x )=tan x ,x ∈⎝ ⎛⎭⎪⎫0,π2,若x 1,x 2∈⎝⎛⎭⎪⎫0,π2,且x 1≠x 2,求证:12[f (x 1)+f (x 2)]>f ⎝ ⎛⎭⎪⎫x 1+x 22.[自主解答] 要证12[f (x 1)+f (x 2)]>f ⎝ ⎛⎭⎪⎫x 1+x 22, 即证明12(tan x 1+tan x 2)>tan x 1+x 22,只需证明12⎝ ⎛⎭⎪⎫sin x 1cos x 1+sin x 2cos x 2>tan x 1+x 22, 只需证明sin x 1+x 22cos x 1cos x 2>sin x 1+x 21+cos x 1+x 2.由于x 1、x 2∈⎝⎛⎭⎪⎫0,π2,故x 1+x 2∈(0,π).故cos x 1cos x 2>0,sin(x 1+x 2)>0, 1+cos(x 1+x 2)>0,故只需证明1+cos(x 1+x 2)>2cos x 1cos x 2,即证1+cos x 1cos x 2-sin x 1sin x 2>2cos x 1cos x 2, 即证cos(x 1-x 2)<1.这由x 1、x 2∈⎝⎛⎭⎪⎫0,π2,x 1≠x 2知上式是显然成立的.因此,12[f (x 1)+f (x 2)]>f ⎝ ⎛⎭⎪⎫x 1+x 22.———————————————————分析法的适用条件当所证命题不知从何入手时,有时可以运用分析法获得解决,特别是对于条件简单而结论复杂的题目,往往行之有效,对含有根式的证明问题要注意分析法的使用.2.已知a >0,求证: a 2+1a 2-2≥a +1a-2.证明:要证 a 2+1a 2-2≥a +1a-2,只要证a 2+1a 2+2≥a +1a+ 2. ∵a >0,故只要证⎝ ⎛⎭⎪⎫a 2+1a 2+22≥⎝⎛⎭⎪⎫a +1a +22,即a 2+1a2+4a 2+1a 2+4≥a 2+2+1a 2+22⎝ ⎛⎭⎪⎫a +1a +2, 从而只要证2a 2+1a 2≥ 2⎝ ⎛⎭⎪⎫a +1a , 只要证4⎝ ⎛⎭⎪⎫a 2+1a 2≥2⎝ ⎛⎭⎪⎫a 2+2+1a 2,即a 2+1a2≥2,而上述不等式显然成立,故原不等式成立.[例3] 设{a n }是公比为q 的等比数列,S n 是它的前n 项和. (1)求证:数列{S n }不是等比数列; (2)数列{S n }是等差数列吗?为什么?[自主解答] (1)证明:若{S n }是等比数列,则S 22=S 1·S 3,即a 21(1+q )2=a 1·a 1(1+q +q 2),∵a 1≠0,∴(1+q )2=1+q +q 2,解得q =0,这与q ≠0相矛盾,故数列{S n}不是等比数列.(2)当q=1时,{S n}是等差数列.当q≠1时,{S n}不是等差数列.假设q≠1时,S1,S2,S3成等差数列,即2S2=S1+S3,2a1(1+q)=a1+a1(1+q+q2).由于a1≠0,∴2(1+q)=2+q+q2,即q=q2,∵q≠1,∴q=0,这与q≠0相矛盾.综上可知,当q=1时,{S n}是等差数列;当q≠1时,{S n}不是等差数列.———————————————————1.反证法的解题原则反证法的原理是“正难则反”,即如果正面证明有困难时,或者直接证明需要分多种情况而反面只有一种情况时,可以考虑用反证法.2.反证法中常见词语的否定形式3.求证:a,b,c为正实数的充要条件是a+b+c>0,且ab+bc+ca>0和abc>0.证明:必要性(直接证法):∵a,b,c为正实数,∴a+b+c>0,ab+bc+ca>0,abc>0,因此必要性成立.充分性(反证法):假设a,b,c是不全为正的实数,由于abc>0,则它们只能是两负一正,不妨设a<0,b<0,c>0.又∵ab+bc+ca>0,∴a(b+c)+bc>0,且bc<0,∴a(b+c)>0.①又a<0,∴b+c<0.而a+b+c>0,∴a+(b+c)>0,∴a>0.这与a<0的假设相矛盾.故假设不成立,原结论成立,即a,b,c均为正实数.另外证明:如果从①处开始,进行如下推理:a+b+c>0,即a+(b+c)>0.又a<0,∴b+c>0.则a(b+c)<0,与①式矛盾,故假设不成立,原结论成立,即a,b,c均为正实数.3个规律——利用综合法、分析法、反证法证题的一般规律(1)综合法证题的一般规律用综合法证明命题时,必须首先找到正确的出发点,也就是能想到从哪里起步,我们一般的处理方法是广泛地联想已知条件所具备的各种性质,逐层推进,从而由已知逐步推出结论.(2)分析法证题的一般规律分析法的思路是逆向思维,用分析法证题必须从结论出发,倒着分析,寻找结论成立的充分条件.应用分析法证明问题时要严格按分析法的语言表达,下一步是上一步的充分条件.(3)反证法证题的一般规律反证法证题的实质是证明它的逆否命题成立.反证法的主要依据是逻辑中的排中律,排中律的一般形式是:或者是A,或者是非A.即在同一讨论过程中,A和非A有且仅有一个是正确的,不能有第三种情况出现.3个注意点——利用反证法证明问题应注意的问题(1)必须先否定结论,即肯定结论的反面,当结论的反面呈现多样性时,必须罗列出各种可能结论,缺少任何一种可能,反证都是不完全的;(2)反证法必须从否定结论进行推理,即应把结论的反面作为条件,且必须根据这一条件进行推证,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法;(3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与已知事实相矛盾等,推导出的矛盾必须是明显的.易误警示——不等式证明中的易误点[典例] (2011·安徽高考)(1)设x≥1,y≥1,证明x+y+1xy ≤1x+1y+xy;(2)设1<a≤b≤c,证明log a b+log b c+log c a≤log b a+log c b+log a c. 证明:(1)由于x≥1,y≥1,所以x +y +1xy ≤1x +1y+xy ⇐⇒ xy (x +y )+1≤y +x +(xy )2.将上式中的右式减左式,得[y +x +(xy )2]-[xy (x +y )+1]=[(xy )2-1]-[xy ·(x +y )-(x +y )]=(xy +1)(xy -1)-(x +y )(xy -1)=(xy -1)(xy -x -y +1)=(xy -1)(x -1)(y -1).既然x ≥1,y ≥1,所以(xy -1)(x -1)(y -1)≥0,从而所要证明的不等式成立. (2)设log a b =x ,log b c =y ,由对数的换底公式得 log c a =1xy ,log b a =1x ,log c b =1y,log a c =xy .于是,所要证明的不等式即为x +y +1xy ≤1x +1y+xy ,其中x =log a b ≥1,y =log b c ≥1. 故由(1)可知所要证明的不等式成立. [易误辨析]1.证明问题(1)有两处易误点:①不能利用分析法将其正确转化,从而无法找到证明问题的切入口;②不能灵活运用综合法将作差后的代数式变形(即分解因式),从而导致无法证明不等式成立.2.证明问题(2)时常因忽视条件“1<a ≤b ≤c ”而不能挖掘出其隐含条件,即x =log a b ,y =log b c ,从而无法证明不等式.3.在选择证明方法时,一定要有“综合性选取”的意识,明确数学证明方法不是孤立的,在实际解题时,常常把分析法和综合法结合起来运用,先以分析法为主寻求解题思路,再用综合法表述解答或证明过程.[变式训练] 1.设函数f (x )=x n +bx +c (n ∈N *,b ,c ∈R ).(1)设n ≥2,b =1,c =-1,证明:f (x )在区间⎝ ⎛⎭⎪⎫12,1内存在唯一零点;(2)设n 为偶数,|f (-1)|≤1,|f (1)|≤1,求b +3c 的最小值和最大值. 解:(1)证明:当b =1,c =-1,n ≥2时,f (x )=x n+x -1.∵f ⎝ ⎛⎭⎪⎫12f (1)=⎝ ⎛⎭⎪⎫12n -12×1<0,∴f (x )在⎝ ⎛⎭⎪⎫12,1内存在零点. 又当x ∈⎝ ⎛⎭⎪⎫12,1时,f ′(x )=nx n -1+1>0,∴f (x )在⎝ ⎛⎭⎪⎫12,1上是单调递增的.∴f (x )在⎝ ⎛⎭⎪⎫12,1内存在唯一零点.(2)法一:由题意知⎩⎪⎨⎪⎧-1≤f -1≤1,-1≤f 1≤1,即⎩⎪⎨⎪⎧0≤b -c ≤2,-2≤b +c ≤0.由图象知,b +3c 在点(0,-2)处取到最小值-6, 在点(0,0)处取到最大值0,故b +3c 的最小值为-6,最大值为0. 法二:由题意知-1≤f (1)=1+b +c ≤1, 即-2≤b +c ≤0,① -1≤f (-1)=1-b +c ≤1, 即-2≤-b +c ≤0,② ①×2+②得-6≤2(b +c )+(-b +c )=b +3c ≤0,当b =0,c =-2时,b +3c =-6;当b =c =0时,b +3c =0, 所以b +3c 的最小值为-6,最大值为0.法三:由题意知⎩⎪⎨⎪⎧f -1=1-b +c ,f 1=1+b +c ,解得b =f 1-f -12,c =f 1+f -1-22,∴b +3c =2f (1)+f (-1)-3.又∵-1≤f (-1)≤1,-1≤f (1)≤1,∴-6≤b +3c ≤0, 当b =0,c =-2时,b +3c =-6;当b =c =0时,b +3c =0, 所以b +3c 的最小值为-6,最大值为0.一、选择题(本大题共6小题,每小题5分,共30分)1.已知函数f (x )=⎝ ⎛⎭⎪⎫12x ,a ,b 为正实数,A =f ⎝ ⎛⎭⎪⎫a +b 2,B =f (ab ),C =f ⎝ ⎛⎭⎪⎫2ab a +b ,则A ,B ,C 的大小关系为( )A .A ≤B ≤C B .A ≤C ≤B C .B ≤C ≤AD .C ≤B ≤A解析:选 Aa +b2≥ab ≥2ab a +b ,又f (x )=⎝ ⎛⎭⎪⎫12x 在R 上是单调减函数,故f ⎝ ⎛⎭⎪⎫a +b 2≤f (ab )≤f ⎝⎛⎭⎪⎫2ab a +b .2.(2013·成都模拟)设a ,b ∈R ,则“a +b =1”是“4ab ≤1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 若“a +b =1”,则4ab =4a (1-a )=-4⎝ ⎛⎭⎪⎫a -122+1≤1;若“4ab ≤1”,取a =-4,b =1,a +b =-3,即“a +b =1”不成立;则“a +b =1”是“4ab ≤1”的充分不必要条件.3.若P =a +a +7,Q =a +3+a +4(a ≥0),则P 、Q 的大小关系是( ) A .P >Q B .P =QC .P <QD .由a 的取值确定解析:选C 假设P <Q ,要证P <Q ,只要证P 2<Q 2,只要证:2a +7+2a a +7<2a +7+2a +3a +4,只要证a 2+7a <a 2+7a +12,只要证0<12, ∵0<12成立,∴P <Q 成立.4.(2013·银川模拟)设a ,b ,c 是不全相等的正数,给出下列判断: ①(a -b )2+(b -c )2+(c -a )2≠0; ②a >b ,a <b 及a =b 中至少有一个成立; ③a ≠c ,b ≠c ,a ≠b 不能同时成立, 其中正确判断的个数为( ) A .0 B .1 C .2D .3解析:选C ①②正确;③中,a ≠b ,b ≠c ,a ≠c 可以同时成立,如a =1,b =2,c =3,故正确的判断有2个.5.不相等的三个正数a ,b ,c 成等差数列,并且x 是a ,b 的等比中项,y 是b ,c 的等比中项,则x 2,b 2,y 2三数( )A .成等比数列而非等差数列B .成等差数列而非等比数列C .既成等差数列又成等比数列D .既非等差数列又非等比数列解析:选B 由已知条件,可得⎩⎪⎨⎪⎧a +c =2b , ①x 2=ab , ②y 2=bc . ③由②③得⎩⎪⎨⎪⎧a =x 2b,c =y2b ,代入①,得x 2b +y 2b=2b ,即x 2+y 2=2b 2.故x 2,b 2,y 2成等差数列.6.在R 上定义运算:⎪⎪⎪⎪⎪⎪ab cd =ad -bc .若不等式⎪⎪⎪⎪⎪⎪x -1 a -2a +1 x ≥1对任意实数x 恒成立,则实数a 的最大值为( )A .-12B .-32C.12D.32解析:选D 据已知定义可得不等式x 2-x -a 2+a +1≥0恒成立,故Δ=1-4(-a 2+a +1)≤0,解得-12≤a ≤32,故a 的最大值为32.二、填空题(本大题共3小题,每小题5分,共15分)7.某同学准备用反证法证明如下一个问题:函数f (x )在[0,1]上有意义,且f (0)=f (1),如果对于不同的x 1,x 2∈[0,1],都有|f (x 1)-f (x 2)|<|x 1-x 2|,求证:|f (x 1)-f (x 2)|<12.那么他的反设应该是________.答案:“∃x 1,x 2∈[0,1],使得|f (x 1)-f (x 2)|<|x 1-x 2|则|f (x 1)-f (x 2)|≥12”8.(2013·株洲模拟)已知a ,b ,μ∈(0,+∞)且1a +9b=1,则使得a +b ≥μ恒成立的μ的取值范围是________.解析:∵a ,b ∈(0,+∞)且1a +9b=1,∴a +b =(a +b )⎝ ⎛⎭⎪⎫1a +9b =10+⎝ ⎛⎭⎪⎫9a b+b a ≥10+29=16,∴a +b 的最小值为16.∴要使a +b ≥μ恒成立,需16≥μ,∴0<μ≤16. 答案:(0,16]9.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是________.解析:法一:(补集法)令⎩⎪⎨⎪⎧f -1=-2p 2+p +1≤0,f 1=-2p 2-3p +9≤0,解得p ≤-3或p ≥32,故满足条件的p 的范围为⎝ ⎛⎭⎪⎫-3,32. 法二:(直接法)依题意有f (-1)>0或f (1)>0, 即2p 2-p -1<0或2p 2+3p -9<0, 得-12<p <1或-3<p <32,故满足条件的p 的取值范围是⎝ ⎛⎭⎪⎫-3,32.答案:⎝⎛⎭⎪⎫-3,32三、解答题(本大题共3小题,每小题12分,共36分) 10.已知a >0,1b -1a>1,求证:1+a >11-b. 证明:∵1b -1a>1,a >0,∴0<b <1, 要证1+a >11-b ,只需证1+a ·1-b >1, 只需证1+a -b -ab >1,只需证a -b -ab >0, 即a -b ab >1,即1b -1a>1. 这是已知条件,所以原不等式成立.11.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.解:(1)由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,解得d =2,故a n =2n -1+2,S n =n (n +2).(2)证明:由(1)得b n =S nn=n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r . 即(q +2)2=(p +2)(r +2). ∴(q 2-pr )+2(2q -p -r )=0.∵p ,q ,r ∈N *,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0.∴⎝⎛⎭⎪⎫p +r 22=pr ,(p -r )2=0.∴p =r . 与p ≠r 矛盾.∴数列{b n }中任意不同的三项都不可能成等比数列.12.已知{a n }是正数组成的数列,a 1=1,且点(a n ,a n +1)(n ∈N *)在函数y =x 2+1的图象上.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1=1,b n +1=b n +2a n , 求证:b n ·b n +2<b 2n +1.解:(1)由已知得a n +1=a n +1,则a n +1-a n =1,又a 1=1,所以数列{a n }是以1为首项,1为公差的等差数列.故a n =1+(n -1)×1=n .(2)由(1)知,a n =n ,从而b n +1-b n =2n.b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1=2n -1+2n -2+…+2+1=1-2n1-2=2n-1.因为b n ·b n +2-b 2n +1=(2n -1)(2n +2-1)-(2n +1-1)2=(22n +2-2n +2-2n +1)-(22n +2-2·2n +1+1)=-2n<0, 所以b n ·b n +2<b 2n +1.1.若a ,b ,c 是不全相等的正数,求证:lg a +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .证明:要证lg a +b2+lgb +c2+lgc +a2>lg a +lg b +lg c ,只需证lg ⎝⎛⎭⎪⎫a +b 2·b +c 2·c +a 2>lg(a ·b ·c ),只需证a +b 2·b +c 2·c +a2>abc .(中间结果)∵a ,b ,c 是不全相等的正数, ∴由基本不等式得:a +b2≥ab >0,b +c2≥bc >0,c +a2≥ac >0,且上三式中由于a ,b ,c 不全相等,故等号不同时成立. ∴a +b 2·b +c 2·c +a2>a ·b ·c .(中间结果)∴lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .2.如图,已知BE ,CF 分别为△ABC 的边AC ,AB 上的高,G 为EF 的中点,H 为BC 的中点.求证:HG ⊥EF .证明:连接HE ,HF ,由CF ⊥AB ,且H 是BC 的中点,可知FH 是Rt△BCF 斜边上的中线,所以HF =12BC .同理可证HE =12BC .所以HF =HE ,从而△EHF 为等腰三角形. 又G 为EF 的中点,所以HG ⊥EF .3.已知a 1+a 2+a 3+a 4>100,求证:a 1,a 2,a 3,a 4中至少有一个数大于25. 证明:假设a 1,a 2,a 3,a 4均不大于25,即a 1≤25,a 2≤25,a 3≤25,a 4≤25, 则a 1+a 2+a 3+a 4≤25+25+25+25=100, 这与已知a 1+a 2+a 3+a 4>100矛盾,故假设错误. 所以a 1,a 2,a 3,a 4中至少有一个数大于25.4.如图,已知两个正方形ABCD 和DCEF 不在同一平面内,M ,N 分别为AB ,DF 的中点.(1)若CD =2,平面ABCD ⊥平面DCEF ,求直线MN 的长; (2)用反证法证明:直线ME 与BN 是两条异面直线.解:(1)如图,取CD 的中点G ,连接MG ,NG . 因为ABCD ,DCEF 为正方形,且边长为2, 所以MG ⊥CD ,MG =2,NG = 2. 因为平面ABCD ⊥平面DCEF , 所以MG ⊥平面DCEF ,可得MG ⊥NG . 所以MN =MG 2+NG 2= 6.(2)证明:假设直线ME与BN共面,则AB⊂平面MBEN,且平面MBEN与平面DCEF交于EN,由已知,两正方形不共面,故AB ⊄平面DCEF.又AB∥CD,所以AB∥平面DCEF,而EN为平面MBEN与平面DCEF的交线,所以AB∥EN.又AB∥CD∥EF,所以EN∥EF,这与EN∩EF=E矛盾.故假设不成立.所以ME与BN不共面,它们是异面直线.。
2014高考数学考前押题:直接证明与间接证明直接证明1.如图,已知△ABC中的两条角平分线AD和CE相交于H,∠B=60°,F在AC上,且AE=AF.(1)证明:B,D,H,E四点共圆;(2)证明:CE平分∠DEF.证明:(1)在△ABC中,∵∠B=60°,∴∠BAC+∠BCA=120°.∵AD,CE是角平分线,∴∠HAC+∠HCA=60°,∴∠AHC=120°.∴∠EHD=∠AHC=120°.∵∠EBD+∠EHD=180°,∴B,D,H,E四点共圆.(2)如图所示,连结BH,则BH为∠ABC的平分线,得∠HBD=30°.由(1)知B,D,H,E四点共圆,∴∠CED=∠HBD=30°.又∠AEH=∠EBD=60°,AE=AF,AH平分∠EAF,∴EF⊥AD.可得∠CEF=30°.∴CE平分∠DEF.2.(2010年某某卷,文21)已知函数f(x)=(x-a)2(x-b)(a,b∈R,a<b).(1)当a=1,b=2时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)设x1,x2是f(x)的两个极值点,x3是f(x)的一个零点,且x3≠x1,x3≠x2.证明:存在实数x4,使得x1,x2,x3,x4按某种顺序排列后构成等差数列,并求x4.(1)解:当a=1,b=2时,f(x)=(x-1)2(x-2),f′(x)= (x-1)(3x-5),故f′(2)=1.又f(2)=0,所以f(x)在点(2,0)处的切线方程为y=x-2.(2)证明:由题意得f′(x)=3(x-a)(x-23a b),由于a<b且a,b∈R,故a<23a b +,所以f(x)的两个极值点为x=a,x=23a b +.不妨设x1=a,x2=23a b +,因为x3≠x1,x3≠x2, 且x3是f(x)的零点, 故x3=b.又因为23a b+-a=2(b-23a b+),x4=12(a+23a b+)=23a b+,此时a,23a b+,23a b+,b依次成等差数列,所以存在实数x4满足题意,且x4=23a b+.考点二间接证明1.(2010年某某卷,文22)正实数数列{an}中,a1=1,a2=5,且{2na}成等差数列.(1)证明:数列{an}中有无穷多项为无理数;(2)当n为何值时,an为整数?并求出使an<200的所有整数项的和.(1)证明:由已知有:2na=1+24(n-1),从而取n-1=242k-1,则(k∈N*).用反证法证明这些an都是无理数.假设为有理数,则an必为正整数,且an>24k,故an-24k≥1,an+24k>1,与(an-24k)(an+24k)=1矛盾,所以(k∈N*)都是无理数,即数列{an}中有无穷多项为无理数.(2)解:要使an为整数,由(an-1)(an+1)=24(n-1)可知:an-1,an+1同为偶数,且其中一个必为3的倍数,所以有an-1=6m或an+1=6m.当an=6m+1时,有2na=36m2+12m+1=1+12m(3m+1)(m∈N).又m(3m+1)必为偶数,所以an=6m+1(m∈N)满足2na=1+24(n-1),即n=()312m m++1(m∈N)时,an为整数;同理an=6m-1(m∈N*)时,有2na=36m2-12m+1=1+12m(3m-1)(m∈N*)也满足2na=1+24(n-1),即n=()312m m-+1(m∈N*)时,an为整数;显然an=6m-1(m∈N*)和an=6m+1(m∈N)是数列中的不同项,所以当n=()312m m++1(m∈N)和n=()312m m-+1(m∈N*)时,an为整数.由an=6m+1<200(m∈N)有0≤m≤33,由an=6m-1<200(m∈N*)有1≤m≤33.设an中满足an<200的所有整数项的和为S,则S=(1+7+13+…+199)+(5+11+…+197)=11992+×34+51972+×33=6733.2.如图所示,已知两个正方形ABCD和DCEF不在同一平面内,M,N分别为AB,DF的中点.(1)若CD=2,平面ABCD⊥平面DCEF,求MN的长;(2)用反证法证明:直线ME与BN是两条异面直线.(1)解:取CD的中点G,连结MG,NG.因为四边形ABCD,DCEF为正方形,且边长为2,所以MG⊥2.因为平面ABCD⊥平面DCEF,所以MG⊥平面DCEF.可得MG⊥NG.所以.(2)证明:假设直线ME与BN共面,则AB⊂平面MBEN,且平面MBEN与平面DCEF交于EN.由题意知两正方形不共面,故AB⊄平面DCEF.又AB∥CD,所以AB∥平面DCEF,而EN为平面MBEN与平面DCEF的交线,所以AB∥EN.又AB∥CD∥EF,所以EN∥EF,这与EN∩EF=E矛盾,故假设不成立.所以ME与BN不共面,它们是异面直线.直接证明1.函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是( )(A)f(2.5)<f(1)<f(3.5)(B)f(2.5)>f(1)>f(3.5)(C)f(3.5)>f(2.5)>f(1)(D)f(1)>f(3.5)>f(2.5)解析:因为函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,所以直线x=2是对称轴,在(2,4)上为减函数,则f(2.5)>f(1)>f(3.5).故选B.答案:B2.若(a≥0),则P、Q的大小关系是( )(A)P>Q (B)P=Q(C)P<Q (D)由a的取值确定解析:要证P<Q,只需证P2<Q2,即证,只需证a2+7a<a2+7a+12,只需证0<12成立,∵0<12成立,∴P<Q成立.故选C.答案:C3.设a、b∈R,若a-|b|>0,则下列不等式中正确的是( )(A)b-a>0 (B)a3+b3<0(C)a2-b2<0 (D)b+a>0解析:∵a-|b|>0,∴|b|<a,∴a>0,∴-a<b<a,∴b+a>0.答案:D间接证明1.如果△A1B1C1的三个内角的余弦值分别等于△A2B2C2的三个内角的正弦值,那么( )(A)△A1B1C1和△A2B2C2都是锐角三角形(B)△A1B1C1和△A2B2C2都是钝角三角形(C)△A1B1C1是钝角三角形,△A2B2C2是锐角三角形(D)△A1B1C1是锐角三角形,△A2B2C2是钝角三角形解析:由条件知,△A1B1C1的三个内角的余弦值均大于0,则△A1B1C1是锐角三角形,假设△A2B2C2是锐角三角形,由211211211πsin cos sin,2πsin cos sin,2πsin cos sin2A A AB B BC C C ⎧⎛⎫==-⎪⎪⎝⎭⎪⎪⎛⎫==-⎨ ⎪⎝⎭⎪⎪⎛⎫==-⎪ ⎪⎝⎭⎩得212121π2π,2π,2A AB BC C⎧=-⎪⎪⎪=-⎨⎪⎪=-⎪⎩则A2+B2+C2=π2,这与三角形内角和为180°相矛盾,所以假设不成立,所以△A2B2C2是钝角三角形或直角三角形.假设△A2B2C2是直角三角形,则直角的正弦值为1,则△A1B1C1某角余弦值为1,这与三角形余弦值不可能为1矛盾,所以△A2B2C2不可能是直角三角形,即△A2B2C2是钝角三角形.故选D.答案:D2.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是( )(A)假设三个内角都不大于60度(B)假设三个内角都大于60度(C)假设三个内角至多有一个大于60度(D)假设三个内角有两个大于60度解析:根据反证法的步骤,假设是对原命题结论的否定,对“三角形的内角中至少有一个不大于60度”的否定,即“三个内角都大于60度”.答案:B综合检测1.设a,b,c,d∈(0,+∞),若a+d=b+c且|a-d|<|b-c|,则有( )(A)ad=bc (B)ad<bc(C)ad>bc (D)ad≤bc解析:∵|a-d|<|b-c|,∴(a-d)2<(b-c)2,即a2+d2-2ad<b2+c2-2bc, 又∵a+d=b+c,a,b,c,d>0, ∴(a+d)2=(b+c)2,即a2+d2+2ad=b2+c2+2bc, ∴-4ad<-4bc,∴ad>bc.答案:C2.设x>0,y>0,a=x+y,b=2cosxθ·2sinyθ,则a与b的大小关系是.解析:当sin θ=0时,cos2θ=1,∴b=x<x+y=a即b<a,当cos θ=0时,sin2θ=1,b=y<x+y=a,即b<a, 当sin θ≠0且cos θ≠0时,∵x>0,y>0,∴x<x+y,y<x+y,∴2cosxθ<()2cosx yθ+,2sinyθ<()2sinx yθ+,∴b=2cosxθ·2sinyθ<()2cosx yθ+·()2sinx yθ+=()22sin cosx yθθ++=x+y=a.综上b<a.答案:b<a3.命题:“若空间两条直线a,b分别垂直平面α,则a∥b”,学生小夏这样证明:设a,b与平面α分别相交于A,B,连接AB,∵a⊥α,b⊥α,AB⊂α,①∴a⊥AB,b⊥AB,②∴a∥b.③这里的证明有两个推理,即:①⇒②和②⇒③,老师认为小夏的推理证明不正确,这两个推理中不正确的是.解析:在空间中,垂直于同一条直线的两条直线不一定相互平行,故②⇒③错误.答案:②⇒③4.凸函数的性质定理:如果函数f(x)在区间D上是凸函数,则对于区间D内的任意x1,x2,…,xn,有()()()12nf x f x f xn+++≤f12nx x xn+++⎛⎫⎪⎝⎭,已知函数y=sin x在区间(0,π)上是凸函数,则在△ABC中,sin A+sin B+sin C的最大值为. 解析:∵f(x)=sin x在区间(0,π)上是凸函数,且A,B,C∈(0,π),∴()()()3f A f B f C++≤f3A B C++⎛⎫⎪⎝⎭=fπ3⎛⎫⎪⎝⎭,即sin A+sin B+sin C≤3sin π3∴sin A+sin B+sin C答案。
第五节直接证明与间接证明1.直接证明——综合法、分析法内容综合法分析法定义利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立从要证明的结论出发,逐步寻求使它成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止思维过程由因导果(顺推证法)执果索因(逆推证法)框图表示P表示已知条件、已有的数学定义、公理、定理、性质等,Q表示所要证明的结论P⇒Q1→Q1⇒Q2→…→Q n⇒QQ⇐P1→P1⇐P2→…→得到一个明显成立的条件文字语言因为……,所以……,或由……得……,或“⇒”要证(欲证)……,只需证……,即证……2.间接证明——反证法要证明某一结论Q是正确的,但不直接证明,而是先去假设Q不成立(即Q的反面非Q 是正确的),经过正确的推理,最后得出矛盾,因此说明非Q是错误的,从而断定结论Q是正确的,这种证明方法叫做反证法.,(1)分析法的特点①当命题不知从何入手时,可以运用分析法来解决,特别是对于条件简单而结论复杂的题目,往往更是行之有效.②分析法证明过程不一定“步步可逆”,也没有必要要求“步步可逆”,因为这时仅需寻找充分条件,而不是充要条件.(2)应用反证法证题注意事项应用反证法证题时,必须先否定结论,把结论的反面作为条件,且必须根据这一条件进行推理,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法.(3)一些常见词语的否定一、判断题(对的打“√”,错的打“×”) (1)综合法是直接证明,分析法是间接证明.( )(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( ) (3)用反证法证明结论“a >b ”时,应假设“a ≤b ”.( ) (4)反证法是指将结论和条件同时否定,推出矛盾.( ) 答案:(1)× (2)× (3)√ (4)× 二、选填题1.命题“对任意角θ,cos 4θ-sin 4θ=cos 2θ”的证明:“cos 4θ-sin 4θ=(cos 2θ-sin 2θ)(cos 2θ+sin 2θ)=cos 2θ-sin 2θ=cos 2θ”过程应用了( )A .分析法B .综合法C .综合法、分析法综合使用D .间接证明法解析:选B 因为证明过程是“从左往右”,即由条件⇒结论,故选B. 2.要证a 2+b 2-1-a 2b 2≤0,只要证明( ) A .2ab -1-a 2b 2≤0B .a 2+b 2-1-a 4+b 42≤0 C.(a +b )22-1-a 2b 2≤0D .(a 2-1)(b 2-1)≥0解析:选D a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0.3.用反证法证明命题:“三角形的内角中至少有一个不大于60°”,假设正确的是( ) A .假设三个内角都不大于60° B .假设三个内角都大于60°C .假设三个内角至多有一个大于60°D .假设三个内角至多有两个大于60°解析:选B 根据反证法的定义,假设是对原命题结论的否定,故假设三个内角都大于60°.故选B.4.若2,3,x 成等比数列,则log 2x =________.解析:由题意得(3)2=2·x , 所以x =32,所以x =92.设log2x =y ,即⎝⎛⎭⎫32y =92=⎝⎛⎭⎫322, 所以y =2,即log 2x =2.答案:25.6-22与5-7的大小关系是________. 解析:假设6-22>5-7,由分析法可得, 要证 6-22>5-7,只需证 6+7>5+22, 即证13+242>13+410,即42>210. 因为42>40,所以6-22>5-7成立. 答案:6-22>5-7考点一综合法的应用[师生共研过关][典例精析]数列{a n }满足a n +1=a n2a n +1,a 1=1. (1)证明:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列;(2)求数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和S n ,并证明1S 1+1S 2+…+1S n>n n +1.[解] (1)证明:∵a n +1=a n2a n +1, ∴1a n +1=2a n +1a n ,化简得1a n +1=2+1a n , 即1a n +1-1a n=2, 故数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,2为公差的等差数列.(2)由(1)知1a n=2n -1,∴S n =n (1+2n -1)2=n 2.法一:1S 1+1S 2+…+1S n=112+122+…+1n 2>11×2+12×3+…+1n (n +1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1=1-1n +1=n n +1.法二:1S 1+1S 2+…+1S n =112+122+…+1n 2>1,又∵1>n n +1,∴1S 1+1S 2+…+1S n>n n +1.[解题技法]掌握综合法证明问题的思路[过关训练]已知a ,b ,c 都为正实数,a +b +c =1.求证: (1)a +b +c ≤3; (2)13a +1+13b +1+13c +1≥32. 证明:(1)∵(a +b +c )2=(a +b +c )+2ab +2bc +2ca ≤(a +b +c )+(a +b )+(b +c )+(c +a )=3,∴a +b +c ≤3,当且仅当a =b =c =13时,等号成立.(2)∵a >0,∴3a +1>0, ∴43a +1+(3a +1)≥2 43a +1(3a +1)=4, 当且仅当43a +1=3a +1,即a =13时取“=”.∴43a +1≥3-3a ,同理得43b +1≥3-3b ,43c +1≥3-3c , 以上三式相加得4⎝⎛⎭⎫13a +1+13b +1+13c +1≥9-3(a +b +c )=6,∴13a +1+13b +1+13c +1≥32,当且仅当a=b=c=13时取“=”.考点二分析法的应用[师生共研过关][典例精析]若△ABC的三个内角A,B,C成等差数列,A,B,C的对边分别为a,b,c.求证:1a+b+1b+c=3a+b+c.[证明]要证1a+b+1b+c=3a+b+c,即证a+b+ca+b+a+b+cb+c=3,也就是证ca+b+ab+c=1,只需证c(b+c)+a(a+b)=(a+b)(b+c),需证c2+a2=ac+b2,又△ABC三内角A,B,C成等差数列,故B=60°,由余弦定理,得b2=c2+a2-2ac cos 60°,即b2=c2+a2-ac,故c2+a2=ac+b2成立.于是原等式成立.[解题技法]1.利用分析法证明问题的思路先从结论入手,由此逐步推出保证此结论成立的充分条件,而当这些判断恰恰都是已证的命题(定义、公理、定理、法则、公式等)或要证命题的已知条件时命题得证.2.分析法证明问题的适用范围当已知条件与结论之间的联系不够明显、直接,或证明过程中所需用的知识不太明确、具体时,往往采用分析法,特别是含有根号、绝对值的等式或不等式,常考虑用分析法.[过关训练]1.已知a≥b>0,求证:2a3-b3≥2ab2-a2b.证明:要证明2a3-b3≥2ab2-a2b,只需证2a3-b3-2ab2+a2b≥0,即证2a(a2-b2)+b(a2-b2)≥0,即证(a+b)(a-b)(2a+b)≥0.∵a≥b>0,∴a-b≥0,a+b>0,2a+b>0,从而(a+b)(a-b)(2a+b)≥0成立,∴2a3-b3≥2ab2-a2b.2.已知a>0,求证:a2+1a2-2≥a+1a-2.证明:要证 a 2+1a2-2≥a +1a -2,只要证a 2+1a2+2≥a +1a + 2.因为a >0,故只要证⎝⎛⎭⎫a 2+1a 2+22≥⎝⎛⎭⎫a +1a+22,即证a 2+1a 2+4 a 2+1a2+4≥a 2+2+1a2+22⎝⎛⎭⎫a +1a +2, 从而只要证2a 2+1a2≥ 2⎝⎛⎭⎫a +1a , 只要证4⎝⎛⎭⎫a 2+1a 2≥2⎝⎛⎭⎫a 2+2+1a 2,即a 2+1a 2≥2, 而上述不等式显然成立,故原不等式成立. 考点三反证法的应用[师生共研过关][典例精析]已知数列{a n }的前n 项和为S n ,且满足a n +S n =2. (1)求数列{a n }的通项公式;(2)求证:数列{a n }中不存在三项按原来顺序成等差数列. [解] (1)当n =1时,a 1+S 1=2a 1=2,则a 1=1.又a n +S n =2,所以a n +1+S n +1=2,两式相减得a n +1=12a n ,所以{a n }是首项为1,公比为12的等比数列,所以a n =12n -1.(2)证明:假设存在三项按原来顺序成等差数列,记为a p +1,a q +1,a r +1(p <q <r ,且p ,q ,r ∈N *),则2·12q =12p +12r ,所以2·2r -q =2r -p +1.(*) 又因为p <q <r , 所以r -q ∈N *,r -p ∈N *.所以(*)式左边是偶数,右边是奇数,等式不等立. 所以假设不成立,原命题得证.[解题技法]用反证法证明数学命题需把握的3点 (1)必须先否定结论,即肯定结论的反面;(2)必须从否定结论进行推理,即应把结论的反面作为条件,且必须依据这一条件进行推证;(3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与已知事实矛盾等,但是推导出的矛盾必须是明显的.[过关训练]1.已知a1+a2+a3+a4>100,求证:a1,a2,a3,a4中至少有一个数大于25.证明:假设a1,a2,a3,a4均不大于25,即a1≤25,a2≤25,a3≤25,a4≤25,则a1+a2+a3+a4≤25+25+25+25=100,这与已知a1+a2+a3+a4>100矛盾,故假设错误.所以a1,a2,a3,a4中至少有一个数大于25.2.已知f(x)=ln(1+e x)-mx(x∈R),对于给定区间(a,b),存在x0∈(a,b),使得f(b)-f(a) b-a=f′(x0)成立,求证:x0唯一.证明:假设存在x0′∈(a,b),x0∈(a,b),且x0′≠x0,使得f(b)-f(a)b-a=f′(x0′),f(b)-f(a)b-a=f′(x0)成立,即f′(x0)=f′(x0′).因为f′(x)=e x1+e x-m,记g(x)=f′(x),所以g′(x)=e x(1+e x)2>0,f′(x)是(a,b)上的单调递增函数.所以x0=x0′,这与x0′≠x0矛盾,所以x0是唯一的.。
教
学
过
程
1.分析法的特点:从未知看需知,逐步靠拢已知.
2.综合法的特点:从已知看可知,逐步推出未知.
3.分析法和综合法各有优缺点.分析法思考起来比较自然,容易
寻找到解题的思路和方法,缺点是思路逆行,叙述较繁;综合法从
条件推出结论,较简捷地解决问题,但不便于思考.实际证题时常
常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来.
4.利用反证法证明数学问题时,要假设结论错误,并用假设的命
题进行推理,没有用假设命题推理而推出矛盾结果,其推理过程是
错误的.
基础巩固题组
(建议用时:40分钟)
一、填空题
1.(2014·安阳模拟)若a<b<0,则下列不等式中成立的是________.
①1
a<
1
b;②a+
1
b>b+
1
a;③b+
1
a>a+
1
b;④
b
a<
b+1
a+1
.
2.用反证法证明命题:“已知a,b∈N,若ab可被5整除,则a,b中至少有一个能被5整除”时,应反设________成立.
3.(2014·上海模拟)“a=1
4”是“对任意正数x,均有x+
a
x≥1”的
________条件.教学效果分析。