飞思卡尔智能车摄像头基础知识准备
- 格式:doc
- 大小:28.00 KB
- 文档页数:5
Freescale Semiconductor, Inc.Document Number: 用户指南 Rev. 0, 09/2014Confidentiality statement, as appropriate to document/part status.___________________________________________________________________飞思卡尔单片机快速上手指南作者:飞思卡尔半导体IMM FAE 团队飞思卡尔半导体是全球领先的单片机供应商,其单片机产品包含多种内核,有数百个系列。
为支持用户使用这些产品,飞思卡尔提供了丰富的网站资源、文档及软硬件工具,另外,我们还有众多的第三方合作伙伴及公共平台的支持。
对于不熟悉飞思卡尔产品和网站的初学者来说,了解和使用这些资源这无疑是一个令人望而生畏的浩瀚工程。
本指南的目的,就是给初学者提供一个指导,让他们不被这些海量信息淹没;用户根据本指导提供的操作步骤,能迅速找到所需的资源,了解如何使用相关的工具。
在本指南中,我们以飞思卡尔的新一代Kinetis 单片机K22系列为例,介绍了如何获取与之相关的资源,如何对其进行软硬件设计和开发。
实际上,这些方法也适用于其它的单片机系列。
当然,对于其它有较多不同之处的产品,我们也会继续推出相应的文档,供广大用户参考。
目录1 如何获取技术资料与支持 ..........................................................2 2 如何选择产品、申请样片及购买少量芯片和开发工具 ........... 93 飞思卡尔单片机的开发环境、开发工具和生态系统 ............. 224 如何阅读飞思卡尔的技术文档 ................................................ 45 5 飞思卡尔单片机硬件设计指南 ................................................ 55 6飞思卡尔单片机软件开发指南 (67)飞思卡尔单片机快速上手指南, Rev. 1, 09/20142Freescale Semiconductor, Inc.1 如何获取技术资料与支持1.1 概述当用户使用飞思卡尔单片机芯片时,如何获取芯片的数据手册(Datasheet )、参考设计(Reference Manual )和官方例程等资源呢?另外当用户遇到了技术问题该如何获得帮助和解答呢?这里以Kinetis 的K22系列芯片为例为大家介绍如何解决这些问题。
飞思卡尔智能车光电组技术报告一、智能车光电组概述智能车光电组是指智能车中的关键性能元件——光电传感器集合体。
它能对车辆运动状态、线路、红绿灯等信息进行感知,实现智能驾驶的基础。
智能车光电组主要包括红外线传感器、光耦传感器、光电限位传感器等。
这些传感器通过感知周围环境中的光电信息,将其转化为电信号,再与控制电路进行通信,完成车辆的控制和判断。
二、红外线传感器红外线传感器是智能车光电组中最常用的传感器之一,其主要作用是对赛道上各种异物或者障碍进行探测,从而实现自主避障。
红外线传感器有两种,一种是红外线避障传感器,主要检测前方是否有障碍物。
另一种是寻迹传感器,主要检测车辆行进轨迹及车轮边界。
这两种传感器都通过发射一束红外线,然后检测红外线反射信号的强弱,来判断当前道路状态。
智能车中多数采用两种红外线传感器的组合,一个用于永久性突出物体的检测和避障功能,一个用于寻迹,检测当前赛道行驶的状态。
这种组合方案在实际使用中既能够减小了智能车的体积,同时也能够同时满足避障和寻迹两种功能的需求。
三、光耦传感器光耦传感器主要是测量霍尔电压,电容电压,电阻电压等物理量,全局范围内掌握智能车行驶的状态,构成智能车控制系统的重要部分。
通过对各种物理量的感应,对智能车进行动态实时控制。
如针对车速问题,可以采用霍尔电压测量方法,对车辆运动状态进行简单的判断。
智能车中采用光电传感器和电路配合的方法,还可以实现车辆行驶过程中的速度随时控制和加速度调整。
四、光电限位传感器光电限位传感器是一种可以控制智能车极限运动状态的传感器。
传感器通过实时控制智能车运动状态,避免车辆因超出极限而出现事故。
光电限位传感器一般分为三种,分别是机械限位传感器、磁性限位传感器和光电限位传感器。
传感器固定在车架上,在车辆行驶过程中限定车辆的行驶限度,从而确保车辆的安全性。
五、结论智能车光电传感器组是智能车控制系统中的重要组成部分。
它通过对周围环境的感知和探测来确保车辆的安全和自主导航。
飞思卡尔智能车摄像头组新⼿指南(5)--让车跑起来篇舵机、电机控制策略让车跑起来彭岸辉控制器设置了快速的控制周期,在每个运算周期内,控制器即时地得到智能车车速以及传感器采样来的道路信号,经过控制算法的计算后,控制单元输出相应的前轮控制转⾓以及电机占空⽐的值,其输出值再经过函数映射关系转换为 PWM 脉宽信号传⾄前轮舵机以及驱动电机,从⽽实现⼀个周期的控制。
由于摄像头的信号是具有周期性的,可以直接采⽤摄像头采集⼀幅图像的周期作为控制周期。
舵机控制采⽤ PD 控制,控制跟随性较好,P可以及时对赛道的变化作出反应,当然舵机的 P 项值也是跟随赛道情况变化的,直道和较⼩的弯道时控制较弱,90 度弯道或 270 度⼤弯道控制量较强,D有预测道路类型的作⽤,也就是能使舵机提前打⾓。
电机控制采⽤ PID 控制,可以减⼩动态误差并且跟随性能较好。
当然也可以使⽤其他控制,很多⼈舵机采⽤P控制,电机采⽤PD或PI控制。
对⽐他们的优缺点⾃⼰选择适合⾃⼰⼩车的PID。
这⾥不进⾏深⼊讲解。
前⾯的⼯作完成后懂得基本的图像处理算法就差不多可以使⼩车跑起来了!要使⼩车跑起来其实不难的,很多初学者最希望的就是看⾃⼰的车跑起来,因为当初我也是这样的,很理解师弟师妹们此刻的想法!最基本的图像处理算法就是:图像中间往两边搜索⿊线注意:初学者在初学时不知道偏差是怎样计算的。
这⾥就提⼀下:偏差就是计算出的中线即图中赛道中的⿊线与摄像头所看到的中线即图中赛道中的竖直红线(例如采集到的图像是100列的,那么摄像头看到的中线就是50)做差得到的值就是偏差。
它表⽰车当前位置与期望位置的偏离程度。
再看个图吧:⽤两⾏来说明,其他的⼀样。
第⼀⾏左边坐标(0,1)右边坐标(0,99),得出的中线就是(0,50),那么50所在的那⼀列就是摄像头所看到的中线(就是图中竖直的红线)。
这⾥再提⼀下,很多⼈提出中线后发现上位机上或LCD上没显⽰出中线,其实显⽰出中线很简单的:根据RGB,⼀个像素点的像素值为255时显⽰出来的是⽩⾊,像素值为0时显⽰出来的是⿊⾊。
TECHNOLOGY WIND[摘要]在我们摄像头组硬软件的互相配合中,我们对未来机车实现无人驾驶有了很多想法。
智能车以freescale16位的单片机XS128作为核心控制处理器,相当于人脑;CCD 摄像头识别黑白俩色图像进行赛道边沿采集图像智能循迹,相当于人眼;采用PID 控制策略实现对采集回的图像类型即黑线的走势来判断从而调整舵机的打向和电机的转速,以实现智能车快速而平稳的寻线行驶,相当于人脑对于真实路径的方向处理和速度调整产生的策略;摄像头识别终止线并立刻做出停止反应,相当于真实机车通行时遇到必要的停止信号如红绿灯或行人等障碍物做出的即时反应。
[关键词]智能车;PID 算法;CCD 摄像头;XS128;无人驾驶飞思卡尔摄像头智能车及无人驾驶车辆设想付辉韩国宏赵皓(西南科技大学信息工程学院,四川绵阳621000)1布局架构1.1布局关键点如下摄像头置于车模后方,采用强度高质量轻的支架,并将摄像头置于距离车模底板30厘米左右处,与水平线的倾角约为47.57度,尽量减少赛车前方盲区,使舵机架高并直立安装,延长力臂以提高舵机的灵敏度,将主板,电池,电机置于同一平面放于车模,降低车底板的重心。
1.2车体构造原则在硬件安装上本着降低中心为基本原则,在摄像头和传感器的安装上本着视野范围宽而车体的距离短。
在一些小的机械细节上可以产生失之毫厘谬以千里的影响,如我们对车轮螺丝的松紧程度做了一定的调整,电机高速运转是产生的噪音就没有之前的强烈。
2硬件系统2.1摄像头摄像头作为智能车单片机、电机、舵机、电源、轮胎并驾齐驱的五宝之一,它的存在就是车子的灵魂可谓神来之笔。
车体的控制方法都基于摄像头对于赛道黑线的提取,而摄像头正是图像信息的唯一入口,对采集到的道路信息进行分析处理,利用PID 算法实现对小车行进的控制。
本队采用CCD 摄像头,灵敏度和动态图像显示较CMOS 数字摄像头更为理想,但功耗大,工作电压电流高。
第十届“飞思卡尔”杯全国大学生智能汽车竞赛技术报告摘要本文设计的智能车系统以K60微控制器为核心控制单元,基于CCD摄像头的图像采样获取赛道图像信息,提取赛道中心线,计算出小车与黑线间的位置偏差,采用PD方式对舵机转向进行反馈控制。
使用PID控制算法调节驱动电机的转速,结合特定算法分析出前方赛道信息实现对模型车运动速度的闭环控制。
为了提高模型车的速度和稳定性,我们用C++开发了仿真平台、蓝牙串口模块、SD卡模块、键盘液晶模块等调试工具,通过一系列的调试,证明该系统设计方案是确实可行的。
关键词:K60,CCD摄像头,二值化,PID控制,C++仿真,SD卡AbstractIn this paper, we will design a intelligent vehicle system based on MC56F8366 as the micro-controller unit. using the CCD image sensor sampling to the track image information to extract the track line center, to calculate the positional deviation between the car with the black line, the use of PD on the rudder. The machine turned to the feedback control. We use PID control algorithm to adjust the speed of the drive motor, combined with specific algorithms to achieve closed-loop control of the movement speed of the model car in front of the track. In order to improve the speed and stability of the model car, we use the C++ to develop a simulation platform, Bluetooth serial module, SD card module, keyboard, LCD modules, debugging tools. Through a series of debugging, the system design is feasible.Key words: K60,CCD_camera, binaryzation, PID control, C++ simulation, SD card目录第1章引言................................................................................... - 1 - 第2章系统总体设计................................................................ - 2 - 2.1 系统分析..................................................................................... - 2 - 2.2 车模整体布局............................................................................. - 3 - 2.3 本章小结....................................................................................... - 4 - 第3章系统机械设计及实现................................................... - 5 - 3.1 前轮定位的调整......................................................................... - 5 -3.1.1主销内倾..............................................................................- 6 -3.1.2 后倾角.................................................................................- 6 -3.1.3 内倾角.................................................................................- 7 - 3.2 舵机安装....................................................................................... - 8 -3.2.1 左右不对称问题的发现与解决........................................- 10 - 3.3 编码器的安装............................................................................ - 10 - 3.4 摄像头安装.................................................................................- 11 -3.4.1 偏振镜的使用......................................................................- 12 -3.4.2 摄像头的标定......................................................................- 12 - 3.5 摄像头的选用.............................................................................- 13 - 3.6 红外接收装置.............................................................................- 14 -3.7 防止静电复位.............................................................................- 15 - 3.8 本章小结.......................................................................................- 15 - 第4章硬件电路系统设计及实现 ...................................... - 16 -4.1 硬件设计方案............................................................................- 16 - 4.2 电源稳压......................................................................................- 17 - 4.3 电机驱动......................................................................................- 18 - 4.4 图像处理部分............................................................................- 19 -4.4.1 摄像头升压电路.............................................................- 19 -4.4.2 视频分离电路.................................................................- 19 -4.4.3 硬件二值化.....................................................................- 19 - 4.5 灯塔电路......................................................................................- 21 - 4.6 本章小结......................................................................................- 21 -第5章系统软件设计.............................................................. - 22 -5.1 软件流程图...............................................................................- 22 - 5.2 算法新思路...............................................................................- 23 -5.2.1中心线提取.......................................................................- 23 -5.2.2 直角检测........................................................................... - 24 -5.2.3 单线检测......................................................................... - 24 - 5.3 舵机控制.....................................................................................- 25 - 5.4 速度控制.....................................................................................- 26 - 5.5 PID算法....................................................................................- 26 - 5.6 路径优化.....................................................................................- 31 -第6章系统联调...................................................................... - 33 - 6.1 开发工具.................................................................................... - 33 - 6.2 无线调试蓝牙模块及蓝牙上位机..........................................- 33 - 6.3 键盘加液晶调试......................................................................- 34 - 6.4 TF卡调试模块.........................................................................- 34 -6.4.1 TF卡.............................................................................- 34-6.4.2 SDCH卡 .........................................................................- 35 -6.4.3 软件实现.......................................................................- 36 - 6.5 C++上位机设计........................................................................- 36 - 6.6 电源放电模块...........................................................................- 38-6.6.1 镍镉电池记忆效应…………………………………….. - 39-6.6.2 放电及电池性能检测设备…………………………….. - 39- 6.7 本章小结....................................................................................- 40 - 第7章模型车技术参数........................................................ - 41 - 第8章总结............................................................................... - 42 - 参考文献...................................................................................... - 44 -第1章引言在半导体技术日渐发展的今天,电子技术在汽车中的应用越来广泛,汽车智能化已成为行业发展的必然趋势。
飞思卡尔智能车电磁组分区算法介绍写在之前的话:1、⽬前我是⼀名在校学⽣,这也是我第⼀次写博客,不周之处,请多谅解;2、此算法并⾮原创,借鉴⾃⼭东德州学院第⼋届⽩杨队(PS:个⼈看法,对于⼀些⼈把别⼈的开源东西改头换⾯⼀下就说是⾃⼰的原创⾏为⼗分鄙视);3、对于此算法的理解和说明并⾮纸上谈兵,算法已经被我运⽤到了⼩车⽐赛中并取得好的成绩(具体就不多说了,⽐赛时车莫名其妙坏了,⽐赛前调试的速度绝对能进国赛,⽐较遗憾),总之这算法是我尝试过的最好的算法;4、这⼀次所介绍的只是路径算法和⼀些知识普及,后⾯有时间会介绍其余部分算法及许多好的思路(舵机电机控制思路(不只是简单的PID),双车策略);5、希望对于这⽅⾯有涉及的⼈能与我联系并交流或指出不⾜之处。
---------------------------------------------------------------分割线-----------------------------------------------------------------------------⼀、没有这⽅⾯了解的可以看看 飞思卡尔智能车分为三组:摄像头、光电、电磁,我做的是电磁车,三种车队区别在于传感器的不同,所以获得路径信息的⽅法也不⼀样,摄像头和光电识别的是赛道上的⿊线(⽩底赛道),⽽电磁车则是检测埋在赛道下的通⼊100mh电流的漆包线,摄像头和光电采⽤的是摄像头和ccd作为传感器,电磁则是⽤电感放在漆包线周围,则电感上就会产⽣感应电动势,且感应电动势的⼤⼩于通过线圈回路的磁通量成正⽐,⼜因为漆包线周围的磁感应强度不同,因此不同位置的电感的感应电动势就不同,因此就可以去确定电感位置;因此在车⼦前⾯设置了50cm的前瞻,电感布局如下(怎么发不了图⽚):分为两排,前排3个,编号0,1,2(前期还加了两个竖直电感⽤来帮助过直⾓弯,后来改为了⼋字电感);后排2个,编号3,4;现在车⼦获得了不同位置的感应电动势的⼤⼩了,但这些值是不能处理的:1、感应电动势太微弱;2、是模拟信号,信号太微弱就放⼤它;这就涉及到模拟电路的知识了,就不多说了(因为要把这讲完到PCB绘制的篇幅就⾜够写另开⼀号专门写这些⽅⾯来(PS:题外话(我的题外话⽐较多)):放⼤部分外围你设计的再好也抵不过⼀个更好的芯⽚,有两个例⼦,⼀个是我⾃⼰的:之前⽤的是NE5532,但是效果不理想,加了好多什么滤波,补偿,都⽤上,没⽤,软件⾥处理后⾯再说,后来⼀狠⼼换了AD620,感觉像是春天来了,因为它是仪⽤放⼤器,还有就是贵。
飞思卡尔智能车原理飞思卡尔智能车是一种基于嵌入式系统和人工智能技术的智能交通工具。
它通过搭载各种传感器、控制器和算法,在无人驾驶、自动泊车等场景下发挥重要作用。
本文将介绍飞思卡尔智能车的原理,并分析其在实际应用中的优势和挑战。
一、飞思卡尔智能车的硬件组成飞思卡尔智能车的硬件组成主要包括以下几个方面:1. 主控单元:主控单元是飞思卡尔智能车的核心组件,通常采用高性能的嵌入式处理器。
它负责接收来自各种传感器的信息,并根据预设的算法进行数据处理和决策。
2. 传感器:飞思卡尔智能车搭载多种传感器,如摄像头、激光雷达、超声波传感器等。
这些传感器可以实时感知周围环境的信息,包括道路状况、障碍物位置等,为智能车提供必要的数据支持。
3. 电机与驱动系统:飞思卡尔智能车搭载电机和对应的驱动系统,用于控制车辆的行驶和转向。
这些系统通常采用先进的电子控制技术,能够实现精确的转向和速度控制。
4. 通信模块:飞思卡尔智能车通过通信模块与其他车辆、交通基础设施等进行信息交互。
这种通信方式可以实现车辆之间的协同工作,提高交通系统的整体效率。
二、飞思卡尔智能车的工作原理飞思卡尔智能车的工作原理可以归结为以下几个关键步骤:1. 环境感知:飞思卡尔智能车通过搭载的传感器对周围环境进行感知。
摄像头可以捕捉到道路状况、交通标志和其他车辆的信息;激光雷达可以检测到障碍物的位置和距离;超声波传感器可以测量车辆与前方障碍物的距离等。
通过这些传感器获取到的数据,智能车可以对周围环境做出准确判断。
2. 数据处理与决策:主控单元接收传感器传来的数据,并根据预设的算法进行数据处理和决策。
它会将传感器的信息与事先建立的模型进行比对,进而判断车辆应该采取何种动作,如加速、刹车、转向等。
3. 控制指令生成:基于数据处理与决策的结果,主控单元生成相应的控制指令,通过驱动系统控制车辆的行驶和转向。
这些控制指令可以通过电机和驱动系统精确地控制车辆的运动。
4. 数据通信与协同:飞思卡尔智能车通过通信模块与其他车辆以及交通基础设施进行信息交互。
智能车制作F R E E S C A L E学院:信息工程学院班级:电气工程及其自动化132 学号:6101113078姓名:李瑞欣目录:1. 整体概述2.单片机介绍3.C语言4.智能车队的三个组5.我对这门课的建议一、整体概述智能车的制作过程包括理论设计、实际制作、整车调试、现场比赛等环节,要求学生组成团队,协同工作。
内容涵盖自动控制、模式识别、传感技术、电子、电气、计算机、机械与汽车等多学科多专业。
下面是一个智能车的模块分布:总的来说智能车有六大模块:信号输入模块、控制输出模块、数据处理模块、信息显示模块、信息发送模块、异常处理模块。
1、信号输入模块:智能车通过传感器获知赛道上的路况信息(直道,弯道,山坡,障碍物等),同时也通过传感器获取智能车自身的信息(车速,电磁电量等)。
这些数据构成了智能车软件系统(大脑)的信息来源,软件系统依靠这些数据,改变智能车的运行状态,保证其在最短的时间内按照规定跑完整个赛道。
2、控制输出模块:智能车在赛道上依靠转向机构(舵机)和动力机构(电机)来控制运行状态,这也是智能车最主要的模块,这个模块的好坏直接决定了你的比赛成绩。
电机和舵机都是通过PWM控制的,因此我们的软件系统需要根据已有的信息进行分析计算得到一个合适的输出数据(占空比)来控制电机和舵机。
3数据处理模块:主要是对电感、编码器、干簧管的数据处理。
信号输入模块得到的数据非常原始,有杂波。
基本上是不能直接用来计算的。
因此需要有信号处理模块对采集的数据进行处理,得到可用的数据。
4信息显示模块:智能车调试过程中,用显示器来显示智能车的部分信息,判断智能车是否正常运行。
正式比赛过程中可关闭。
主流的显示器有:Nokia 5110 ,OLED模块等,需要进行驱动移植。
5信息发送模块智能车的调试过程中,我们需要观察智能车的实时状态(采集的信号是否正常,输出是否正常),这个时候就需要用到信息发送模块,将智能车运行时的数据发送到电脑上就行分析处理。
第十届"飞思卡尔"杯全国大学生智能汽车竞赛技术报告第十届“飞思卡尔”杯全国大学生智能汽车竞赛技术报告学校:电子科技大学摘要本文设计的智能车系统以MK60DN512ZVLQ10微控制器为核心控制单元,通过CMOS摄像头检测赛道信息,使用模拟比较器对图像进行硬件二值化,提取黑色引导线,用于赛道识别;通过编码器检测模型车的实时速度,使用PID控制算法调节驱动电机的转速和转向舵机的角度,实现了对模型车运动速度和运动方向的闭环控制。
关键字:MK60DN512ZVLQ10,CMOS,PIDAbstractIn this paper we will design a smart car system based on MK60DN512ZVLQ10as the micro-controller unit. We use a CMOS image sensor to obtain lane image information. Then convert the original image into the binary image by the analog comparator circuit in order to extract black guide line for track identification. An inferred sensor is used to measure the car`s moving speed. We use PID control method to adjust the rotate speed of driving electromotor and direction of steering electromotor, to achieve the closed-loop control for the speed and direction.Keywords: MK60DN512ZVLQ10,CMOS,PID目录摘要 (II)Abstract (III)目录............................................................................................................................ I V 引言.. (1)第一章系统总体设计 (2)1.1系统概述 (2)1.2整车布局 (3)第二章机械系统设计及实现 (4)2.1智能车机械参数调节 (4)2.1.1 前轮调整 (4)2.1.2其他部分调整 (6)2.2底盘高度的调整 (7)2.3编码器的安装 (7)2.4舵机转向结构的调整 (8)2.5摄像头的安装 (9)第三章硬件系统设计及实现 (11)3.1 MK60DN512ZVLL10主控模块 (12)3.2电源管理模块 (12)3.3 摄像头模块 (14)3.4电机驱动模块 (15)3.5测速模块 (16)3.6陀螺仪模块 (16)3.7灯塔检测模块 (16)3.8辅助调试模块 (17)第四章软件系统设计及实现 (19)4.1赛道中心线提取及优化处理 (19)4.1.1原始图像的特点 (19)4.1.2赛道边沿提取 (20)4.1.3推算中心 (21)4.1.4路径选择 (23)4.2 PID 控制算法介绍 (23)4.2.1位置式PID (24)4.2.2增量式PID (25)4.2.3 PID参数整定 (25)4.3转向舵机的PID控制算法 (25)4.4驱动电机的PID控制算法 (26)第五章系统开发及调试工具 (27)5.1开发工具 (27)5.2上位机图像调试 (27)5.3SD卡模块 (27)5.3.1SD卡介绍 (27)5.3.2 SPI总线介绍 (28)5.3.3软件实现 (28)第六章模型车的主要技术参数 (30)结论 (31)参考文献 (I)附录A:电原理图 (II)附录B:程序源代码................................................................................................... I V引言随着科学技术的不断发展进步,智能控制的应用越来越广泛,几乎渗透到所有领域。
飞思卡尔智能车各模块原理及元器件在准备比赛的过程中,我们小组成员经过分析讨论,对智能车各模块的元器件使用方面做如下说明:1、传感器模块:路径识别模块是智能车系统的关键模块之一,目前能够用于智能车辆路径识别的传感器主要有光电传感器和CCD/CMOS传感器。
光电传感器寻迹方案的优点是电路简单、信号处理速度快,但是其前瞻距离有限;CCD 摄像头寻迹方案的优点则是可以更远更早地感知赛道的变化,但是信号处理却比较复杂,如何对摄像头记录的图像进行处理和识别,加快处理速度是摄像头方案的难点之一。
在比较了两种传感器优劣之后,考虑到CCD传感器图像处理的困难后,决定选用应用广泛的光电传感器,相信通过选用大前瞻的光电传感器,加之精简的程序控制和较快的信息处理速度,光电传感器还是可以极好的控制效果的,我们使用11个TK-20型号的光电传感器。
2、驱动模块:驱动电路的性能很大程度上影响整个系统的工作性能。
电机驱动电路可以用MC33886驱动芯片或者用MOS管搭建H桥驱动电路。
MC33886体积小巧,使用简单,但由于是贴片的封装,散热面积比较小,长时间大电流工作时,温升较高,如果长时间工作必须外加散热器,而且MC33886的工作内阻比较大,又有高温保护回路,使用不方便。
采用MOS管构成的H桥电路,控制直流电机紧急制动。
用单片机控制MOS管使之工作在占空比可调的开关状态,精确调整电动机转速。
这种电路由于MOS管工作在饱和截止状态,而且还可以选择内阻很小的MOS管,所以效率可以非常高,并且H桥电路可以快速实现转速和方向控制。
MOS管开关速度高,所以非常适合采用PWM调制技术。
所以我们选择了用MOS管搭建H桥驱动电路。
3、电源模块:比赛使用智能车竞赛统一配发的标准车模用7.2V 供电,而单片机系统、路径识别的光电传感器、光电码编码器等均需要5V电源,伺服电机工作电压范围4V到6V(为提高伺服电机响应速度,采用7.2V 供电),直流电机可以使用7.2V 蓄电池直接供电,我们采用的电源有串联型线性稳压电源(LM2940、7805等)和开关型稳压电源(LM2596)两大类。
飞思卡尔智能车摄像头组入门指南摄像头摄像头的组成主要分为三部分:镜头、含传感器的处理芯片、外围电路板。
镜头主要就是一个凸透镜,透镜焦距越小越广角,同时桶形失真越严重;焦距越大,视角越窄,透镜越接近理想的“薄透镜”则可忽略桶形失真。
处理芯片将传感器上的电压信号按照已定义的协议输出。
外围电路主要提供电源、稳压、时钟等功能。
摄像头按照信号类型可分为模拟摄像头、数字摄像头两种。
由于单片机普通IO口只能读取数字信号,故对于模拟摄像头要设计模数转换(ATD)。
数字摄像头数据可以直接进单片机。
用模拟摄像头的缺点是要自己设计模数转换电路,同步信号分离电路。
优点是可以自行加入硬件二值化电路,即对某一个像素点只用1、0来表示黑、白。
摄像头按照传感器,可分为CCD、CMOS。
CCD成像质量好,贵。
CMOS 成像质量略差,便宜。
摄像头的选取从尽快实现,缩短开发时间的方面考虑,应购买数字摄像头。
典型的型号是OV7620(该型号是指处理芯片的型号)。
OV7620是CMOS数字摄像头,采用PAL制式,默认隔行扫描,默认YUV颜色空间输出(详见后文)。
长远考虑,应选取CCD模拟摄像头。
一来可以避免高速状态下的运动模糊,二来可以自行设计硬件二值化电路,FIFO电路等,大大降低CPU 运算压力。
摄像头信号协议介绍每秒超过24帧的连续图片即可形成动态的视频。
考虑到我国采用50Hz交流电,为了实现方便,摄像头被设计为每秒25帧,每帧耗时两个周期。
还是为了实现方便,每一帧图片被分为两半,每半帧耗时一个周期。
半帧的划分方式为:奇数行和偶数行各组成半帧。
即通常的电视机,每20ms奇数行的信息刷新一次,接下来20ms偶数行刷新一次,再20ms奇数行刷新一次……。
欧美采用60Hz交流电,摄像头每16.6ms刷新一次,被称为PAL制式。
摄像头拍摄的一帧画面被称为“一场”(field),一场又分为“奇场”和“偶场”,各称“半场”,合称“全场”。
像这样分奇偶场分别刷新的扫描方式被称作“隔行扫描”(interlace),某些摄像头支持“逐行扫描”(progressive),其意自见。
EN-FSROB飞思卡尔智能车各模块调试指南1、下载Motor文件夹下面的程序,测试电机驱动模块,系统控制底板:蜂鸣器、按键、OLED 接口及XS128最小系统;步骤:(1)连线:系统底板P11插针P7、P5、P3、P1/2接电机驱动模块的排针7、5、3、1/2;(2)连接电机,调节4、3按键,可发现电机转速及转向发生变化;(3)分别按下1、2按键,可关闭、打开蜂鸣器,并可观察OLED液晶显示数据是否正常;2、下载A_CarTest文件夹下面的程序,测试XS128核心板串口排针及系统控制底板舵机控制电路:步骤:(1)上电,调节电位器,万用表测试P10舵机插接排针的6V、GND引脚电压调整至6V;(2)XS128核心板UART排针通过杜邦线插上蓝牙模块,注意插线顺序;(3)手机安装蓝牙串口测试工具,并打开,通过摇动手机左右晃动可发现舵机旋转;3、CC2500模块测试:1)将T103模块插入电脑,打开《CC2500无线串口数据传输下载软件》文件夹下的下载软件;给T103模块下载程序2)给XS128下载CC2500测试程序;3)插上CC2500模块到底板,把另外一块CC2500模块通过转接座插入到T103模块,并打开串口调试助手,并按照下图进行配置:4)此时,通过串口调试助手发送数据可在底板OLED模块的R_Buff区显示出来发送的数据,然后按下地板上的四个按键中的其中一个,可在OLED模块的S_Buff区显示所按下的按键号并通过CC2500模块传送到串口调试助手;4、CCD测试;1)下载CCD测试程序;2)连接CCD传感器到智能车底板的P3或P4接口;3)电脑安装PL2303驱动,插入USB-TTL小板,并且用杜邦线将USB-TTL小板与XS128核心板连接;4)打开智能车调试助手,按如下方法配置,配置好打开串口可发现数据上传到调试助手上面;5、摄像头测试;1)下载OV7620测试程序;2)正确连接摄像头到底板上的P7OV7620转接接口;3)电脑安装PL2303驱动,插入USB-TTL小板,并且用杜邦线将USB-TTL小板与XS128核心板连接;4)打开智能车调试助手,按如下方法配置,配置好打开串口可发现摄像头所拍照片上传到调试助手上面;6、编码器测试;编码器改装,褐色——VCC;蓝色——GND;白色——IN;。
灌水]飞思卡尔智能车摄像头基础知识准备摄像头, 飞思卡尔, 基础知识飞思卡尔智能车摄像头基础知识准备今年的车体硬件计划基本大体方案都已经有了,唯独没有很好的摄像头,摄像头要求动态响应很高的,参考上海大学与武汉大学的FIFO方案打算采用技术已经非常成熟的安防摄像头,考虑使用sony的专业摄像头处理DSP,下面是找到的一些资料CCD:CCD就相当与人的眼睛,它的主要工作就是把光影像转成电子信号。
CCD上有感光点,每一点就像一颗太阳能电池,被光照到后会产生电能,依照光的照度不同,会产生不同的电能。
V-Driver:CCD里头每一点被光照到产生电能,那如何取出来?就是靠这颗V-DRIVER,它会产生不同的脉波,把CCD每点的讯号“打”出来。
我们通常说是CCD的驱动。
CDS/AGC:CCD出来的讯号,在这颗晶片内做处理后,送进DSP(数字信号处理器)。
DSP:DSP是DigitalSignalProcessor的缩写,也就是数字信号处理器,主要针对算法运算而产生的一种MCU,不只是在摄像机设计中用到DSP,现在好多行业都用到DSP,特别是在算法方面,DSP的应用是相当广的,是比较流行的MCU。
从DS/AGC出来的模拟信号传送到DSP进行处理,顺便说一下,DSP是数字信号处理器,怎么能处理模拟信号呢?因为DSP内部有一个A/DConverter(模数转换器)把模拟转换成数字后再进行运算,在摄像机中主要是进行颜色,亮度,白平衡等运算。
运算后又把信号转换成模拟信号输出,也就是视频输出了。
T.G:控制整个处理过程快慢用的,一般都包含在DSP里的,就不多说了。
以上部分再加上镜头,就是整个摄像机了。
了解了摄像机结构后,现在来讲讲摄像机的方案,方案主要是针对DSP来说的,把DSP和CCD搭配起来就是我们所说的方案了,目前摄像机市场上应用比较多,占主流地位的是SONY和SHARP生产的DSP。
SONY主要有以下几种方案:(1)SS-1;CXD2163BRSONY公司推出这颗DSP之前已推出了CXD2163,当初把CXD2163这个方案叫做SS-1,用CXD2163做出来的机子一直有问题,所以不久就推出CXD2163BR,用来代替CXD2163,方案人们也一直叫做SS-1。
SS-1可接高解CCD(ICX408AK/超低照度ICX258AK(NTSC)和ICX409AK/超低照度ICX259AK(PAL)),还可以接低解CCD(ICX404AK(NTSC)和ICX405AK(PAL))(注意:以上CCD尺寸是1/3,还有好多型号的CCD没有列出,可参考有关方面的书籍)这颗DSP能够做到电源同步(电源同步——也称之为线性锁定或行锁定,是利用摄像机的交流电源来完成垂直推动同步,即摄像机和电源零线同步)。
所以现在好多厂家都在用来做高解的机子。
(2)SS-11;CXD3141或CXD3142。
这颗DSP是1999年推出的,这款DSP只能接低解的CCD,3142比3141多了镜像功能,如果SS-11也做到电源同步,就会产生很大的噪讯。
所以目前还没做成电源同步,SONY目前420线的机子几乎就是这个方案。
(值得提及的是根据图片资料猜测上海大学采用的应该就是CXD3142摄像头,淘宝链接如下/auction/i ... dc30b37df5cad.jhtml)(3)SS-HQ1;CXD3172AR这颗DSP是SONY2004年推出的,就是520线机子用的DSP,3172目前的技术还不是特别成熟,存在许多问题,其中发热太大,发热量比其他DSP大好多,致使一些工程师并不喜欢用。
SS-HQ1能接高低解的CCD,而且电源也能做到同步,总体上还是比SS-1好,就是发热问题还没解决。
(4)SS-11X;CXD4103R这颗DSP是2005年推出的,是SONY目前最新的DSP,它解决了SS-HQ1的发热问题,但是电源同步时噪讯大。
可接高低解的CCD。
(这个是非常值得考虑采用的方案,各种方面都比较好,只是价格上略高,但尚能接受)CCD信号处理和辨别方法。
介绍CCD信号处理和怎么去辨别CCD之前,我们简单介绍CCD,CCD(ChargeCoupledDevices)电荷耦合器件。
CCD是20世纪70年代初发展起来的新型半导体集成光电器件。
由于CCD器件具有诸多优点:灵敏度高、光谱响应宽、动态范围大、空间自扫描,抗震动、抗磁场、体积小、无残影等,CCD能够将光线变为电荷并可将电荷储存及转移,也可将储存之电荷取出使电压发生变化,因此是理想的摄像元件,是代替摄像管传感器的新型器件。
近30年来,CCD从当时的20万像素发展到目前的500—800万像素,CCD 器件及其应用技术的研究取得了惊人的进展,特别是近几年来,在消费领域,图像传感和非接触测量领域中的应用发展速度更快。
目前,CCD应用技术已成为集光学、电子学、精密机械及微计算机为一体的综合性技术,在现代光子学、光电检测技术和现代测量技术中成果累累。
随着CCD技术的迅猛发展,针对CCD信号的采集及采集之后的信号如何与计算机进行信息通信就成为CCD应用的一个重要问题,而能够针对CCD每一个像素进行高速采集并实时地传输给计算机处理,将会大大的提高采集到的CCD信号的精度并解决实时处理的问题,这在CCD信号采集和处理领域都将有非常广阔的前景。
目前我们就用DSP作为MCU对CCD的信号进行采集和处理。
DSP内置高速的AD转换器,用于采集CCD的信号,DSP有先进先出的存储器(FIFO)作为数据高速缓冲区,用于存储AD转换后的数据,把采集的数据进行运算(这里主要是颜色,亮度,白平衡),运算后把信号转换成模拟再输出,其中摄物体的图像经过镜头聚焦至CCD芯片上,CCD根据光的强弱积累相应比例的电荷,经周期性放电,产生表示一幅幅画面的电信号,各个像素积累的电荷在视频时序的控制下,逐点外移,经滤波、放大处理后,形成视频信号输出。
视频信号连接到监视器或电视机的视频输入端便可以看到与原始图像相同的视频图像。
这个标准的视频信号同家用的录像机、VCD机、家用摄像机的视频输出是一样的,所以也可以录像或接到电视机上观看。
另外CCD部分需要个驱动,为CCD工作提供”能量”,视频信号要经过放大再输出,经过DSP的软件和硬件相结合对整个系统控制扫描制式。
根据各国供电所采用的频率不同,有PAL制和NTSC制之分。
欧洲和我国都采用P制,日本等国采用NTSC制式。
50hz:PAL制,隔行扫描(PAL)制式(黑白为CCIR),标准为625行,50场。
60hz:NTSC制式,525行,60场(黑白为EIR)。
.同步方式对单台摄像机而言,主要的同步方式有下列三种:内同步——利用摄像机内部的晶体振荡电路产生同步信号来完成操作。
外同步——利用一个外同步信号发生器产生的同步信号送到摄像机的外同步输入端来实现同步。
电源同步——也称之为线性锁定或行锁定,是利用摄像机的交流电源来完成垂直推动同步,即摄像机和电源零线同步。
关于背光补偿,电子快门,自动增益控制,白平衡等介绍参照摄像机参数知识,这里略去在选择摄像机要注意以下几个重要的技术指标:(1)清晰度清晰度是一个摄像机的最重要指标,在监控系统中对图像的清晰度有很高的要求,如在交通监控中,对车辆要能看清车牌号码,对行人要能看清脸部特征,如果这些都看不清楚,那么监控将失去意义。
线数的多少决定着清晰度,线数越高看到的图像也就越清晰,与CCD芯片及尺寸也是有一定关系的。
高速球型摄像机一定要达到480线清晰度才能满足要求。
在普通的商场,酒店,学校等一般用420线的清晰度就能达到要求。
(2)最低照度摄像机的最低照度是指当被拍摄物体的光亮度降低到一定程度时,摄像机输出的视频信号仍能清晰可见。
如果是在户外,需要24小时监控,在夜晚光线很暗,通常要求摄像机的最低照度要达到0.01LUX。
比如在交通监控中。
目前解决摄像机低照度问题,主要是采用超感度CCD(即EXviewHADCCD),这种超感度CCD要比普通CCD接收到更多的光线,从而使物体在很暗的光线下仍能清晰成像。
(3)宽动态功能在光线的变化很大,前景和背景及其光线反差也很大的情况下(如交通监控),为了能拍摄到高质量的画面,就需要摄像机具备宽动态功能。
在前景物体暗,背景亮的情况下,拍下的物体图像就非常黑而看不清楚,目前市场上的摄像机解决方法是采用背光补偿(BLC),但是因为背光补偿是采用中央光线补偿的技术来处理图像,所以采用背光补偿技术处理的图像前景物体因光线补偿可以看清楚,但是背景因光线补偿太亮而看不清楚。
如果需要同时看清前景物体和背景,这时候就要用到具有宽动态功能的摄像机。
宽动态技术是图像经过两次曝光,通过内部处理电路,合成一幅前景物体和背景都清晰明亮的图像。
一般宽动态摄像机的动态范围能达到80倍。
目前高速球型摄像机已具有此功能。
(4)安装调试及维护的方便性选用结构设计的简便性,方便的安装调试及维护的摄像机,对工程安装公司和用户来说也是比较重要的,在安装调试阶段,可以节约大量的时间和精力,方便工程公司的安装;对用户来说,简单及时产品维护,无疑是监控系统正常运作的保障。
以上指标中,清晰度和最低照度是首要考虑的,宽动态功能目前并不是所有摄像机都有,只是少部分有。
我们在监控系统工程中还有一个距离问题,监控距离与镜头的焦距有关,镜头越大焦距越大,看的距离就越远,但是看到的范围就会小,比如只要求看10米,那用3.6mm的镜头就可以满足,3.6mm属于广角镜头,看的范围要广一些。
如果要求看100米,那3.6m的镜头明显的不能满足要求,应该用25mm的镜头。
看的范围就要小些。
当然选择多大焦距的镜头还得看要监控的距离来定了。
焦距大一些,相应看到的图像范围就要比焦距小的看到的范围小一些了。