2017-2018年安徽省宿州市埇桥区八年级上学期期末数学 试卷带答案word版
- 格式:doc
- 大小:355.02 KB
- 文档页数:23
安徽省宿州市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)如图,至少要将正方形ABCD中多少个空白的小正方形涂黑后,才可以使着色后的图形关于对角线BD对称()A . 2B . 3C . 4D . 52. (2分) (2017八上·莒县期中) 下列运算正确的是()A . x2+x2=x4B . (a﹣b)2=a2﹣b2C . (﹣a2)3=﹣a6D . 3a2•2a3=6a63. (2分)计算÷ 的结果是().A .B . x2+yC .D .4. (2分) (2019八上·鸡东期末) 若x2+kx+9是完全平方式,则k的值是()A . 6B . ﹣6C . 9D . 6或﹣65. (2分)(2017·南山模拟) 如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C的度数为()A . 50°B . 40°C . 30°D . 20°6. (2分) (2019八下·长兴期末) 如图,点A,B在反比例函数y= (x<0)的图象上,连结OA,AB,以OA,AB为边作□OABC,若点C恰好落在反比例函数y= (x>0)的图象上,此时□OABC的面积是()A . 3B .C .D . 67. (2分)在△ABC和△DEF中,∠A=50°,∠B=70°,AB=3cm,∠D=50°,∠E=70°,EF=3cm.则△ABC与△DEF()A . 一定全等B . 不一定全等C . 一定不全等D . 不确定8. (2分)(2019·金华) 将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕,若正方形EFGH与五边形MCNGF的面积相等,则的值是()A .B . -1C .D .二、填空题 (共7题;共7分)9. (1分)(﹣2)2+(﹣2)﹣2=________ .10. (1分)(2017·渭滨模拟) 分解因式:2m2﹣2=________.11. (1分)点M(2,﹣3)关于y轴对称的对称点N的坐标是________12. (1分) (2017七下·天水期末) 已知八边形的各个内角相等,则每一个内角都等于________.13. (1分) (2017九下·睢宁期中) 如图,在△ABC中,AB=AC=6,∠BAC=120°,点D是AB边上的点,= ,点P为底边BC上的一动点,则△PDA周长的最小值为________.14. (1分) (2017八下·钦北期末) 如图,梯形ABCD中,AB∥CD,AD=BC,AC⊥BC,且AC平分∠DAB,∠B=60°,梯形的周长为40cm,则AC=________.15. (1分)(2017·金乡模拟) 如图,将边长为6cm的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C落在Q处,EQ与BC交于点G,则△EBG的周长是________ cm.三、解答题 (共8题;共72分)16. (5分)解分式方程:﹣1= .17. (10分)计算:(1)÷ · ÷(-2a2b)3;(2)÷(x+y)· .18. (12分)如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)三角形ABC的面积为________;(3)以AC为边作与△ABC全等的三角形,则可作出________个三角形与△ABC全等;(4)在直线l上找一点P,使PB+PC的长最短.19. (10分) (2019九上·西城期中) 如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.(1)求证:∠AEB=∠ADC;(2)连接DE,若∠ADC=105°,求∠BED的度数.20. (5分) (2018八上·泸西期末) 马小虎的家距离学校2000米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的教学课本忘记拿了,立即带上课本去追他,在距离学校400米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.21. (10分) (2017八上·江都期末) 如图,在△ABC中, AB的垂直平分线EF交BC于点E,交AB于点F,D为线段CE的中点, BE=AC.(1)求证:(2)若,求∠B的度数.22. (10分)在△ABC中,AB=AC,BC=12,∠B=30°,AB的垂直平分线DE交BC边于点E,AC的垂直平分线MN交BC于点N。
2017-2018学年安徽省宿州市埇桥区八年级(上)期末数学试卷一、选择题(每小题2分,共20分)1.(2分)下列实数中是无理数的是()A.0.38 B.C.﹣D.π2.(2分)下列句子中不是命题的有()A.玫瑰花是动物B.美丽的天空C.相等的角是对顶角D.负数都小于零3.(2分)将直角三角形三边扩大同样的倍数,得到的新的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形4.(2分)将△ABC的三个顶点的横坐标乘以﹣1,纵坐标不变,则所得图形()A.与原图形关于y轴对称B.与原图形关于x轴对称C.与原图形关于原点对称D.向x轴的负方向平移了一个单位5.(2分)如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°6.(2分)下列运算正确的是()A.=+B.2+=2C.•=4 D.=27.(2分)某校将举办一场“中国汉字听写大赛”,要求各班推选一名同学参加比赛,为此,初三(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是0.2,乙的成绩的方差是0.8.根据以上数据,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定8.(2分)在平面直角坐标系中,已知一次函数y=kx+b的图象大致如图所示,则下列结论正确的是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<09.(2分)如果(x+y﹣4)2+=0,那么2x﹣y的值为()A.﹣3 B.3 C.﹣1 D.110.(2分)如果一个角的两边平行于另一个角的两边,那么这两个角()A.相等B.互补C.互余D.相等或互补二、填空题(每小题3分,共30分)11.(3分)﹣27的立方根是.12.(3分)一个三角形的最大角不会小于度.13.(3分)小明从家出发向正北方向走了150米,接着向正东方向走到离家250米远的地方,小明向正东方向走了米.14.(3分)写出一个解的二元一次方程组.15.(3分)设n为正整数,且n<<n+1,则n的值为.16.(3分)把命题“任意两个直角都相等”改写成“如果…,那么…”的形式是.17.(3分)如果某公司一销售人员的个人月收入y与其每月的销售量x成一次函数(如图所示),那么此销售人员的销售量在4千件时的月收入是元.18.(3分)有一个数的平方等于它本身,这个数是.平方根等于本身的数是.绝对值等于本身的数是.19.(3分)一个正方体,它的体积是棱长为3cm的正方体体积的8倍,这个正方体的棱长是.20.(3分)在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为.三、解答题(21题8分,22题8分,23题7分)21.(8分)计算:(1);(2).22.(8分)解方程组:(1)(2).23.(7分)某校八年级全体320名学生在电脑培训前后各参加了一次水平相同的考试,考分都以同一标准划分成“不合格”、“合格”、“优秀”三个等级.为了了解电脑培训的效果,用抽签方式得到其中32名学生的两次考试考分等级,所绘制的统计图如图所示.试结合图示信息回答下列问题:(1)这32名学生培训前考分的中位数所在的等级是,培训后考分的中位数所在的等级是.(2)这32名学生经过培训,考分等级“不合格”的百分比由下降到.(3)估计该校整个八年级中,培训后考分等级为“合格”与“优秀”的学生共有名.(4)你认为上述估计合理吗:理由是什么?答:,理由:.四、(24题6分,25题5分)24.(6分)在平面直角坐标系中(如图每格一个单位),描出下列各点A(﹣2,﹣1),B(2,﹣1),C(2,2),D(3,2),E(0,3),F(﹣3,2),G(﹣2,2),A(﹣2,﹣1)并依次将各点连接起来,观察所描出的图形,它像什么?根据图形回答下列问题:(1)图形中哪些点在坐标轴上,它们的坐标有什么特点?(2)线段FD和x轴有什么位置关系?点F和点D的坐标有什么特点?25.(5分)观察下列各式:1=12﹣02,3=22﹣12,5=32﹣22,7=42﹣32……你能否得到结论:所有奇数都可以表示为两个自然数的平方差?所有偶数也能表示为两个自然数的平方差吗?说明理由.五、(本题5分)列方程组解应用题26.(5分)《孙子算经》是我国古代一部较为普及的算书,许多问题浅显易懂,如“鸡兔同笼”问题,鸡兔同笼上有三十九头,下有一百条腿,鸡兔各几何.六、(本题5分)27.(5分)已知:如图,在△ABC中,∠B=∠C,AD平分外角∠EAC.求证:AD∥BC.七、(本题6分)28.(6分)一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动,快车离乙地的路程y1(km)与行驶的时间x(h)之间的函数关系,如图中线段AB所示,慢车离乙地的路程y2(km)与行驶的时间x(h)之间的函数关系,如图中线段OC所示,根据图象进行以下探究.(1)甲、乙两地之间的距离为km;(2)线段AB的解析式为;线段OC的解析式为.(3)设快、慢车之间的距离为y(km),请直接写出y与行驶时间x(h)的函数关系式.2017-2018学年安徽省宿州市埇桥区八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题2分,共20分)1.(2分)下列实数中是无理数的是()A.0.38 B.C.﹣D.π【解答】解:A、0.38是有理数,故A错误;B、=2是有理数,故B错误;C、﹣是有理数,故C错误;D、π是无理数,故D正确.故选:D.2.(2分)下列句子中不是命题的有()A.玫瑰花是动物B.美丽的天空C.相等的角是对顶角D.负数都小于零【解答】解:A.玫瑰花是动物对事件进行判断,是命题,错误;B.美丽的天空没有对事件进行判断,不是命题,正确;C.相等的角是对顶角对事件进行判断,是命题,错误;D.负数都小于零对事件进行判断,是命题,错误;故选:B.3.(2分)将直角三角形三边扩大同样的倍数,得到的新的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形【解答】解:因为角的度数和它的两边的长短无关,所以得到的新三角形应该是直角三角形,故选B.4.(2分)将△ABC的三个顶点的横坐标乘以﹣1,纵坐标不变,则所得图形()A.与原图形关于y轴对称B.与原图形关于x轴对称C.与原图形关于原点对称D.向x轴的负方向平移了一个单位【解答】解:根据轴对称的性质,知将△ABC的三个顶点的横坐标乘以﹣1,就是把横坐标变成相反数,纵坐标不变,因而是把三角形的三个顶点以y轴为对称轴进行轴对称变换.所得图形与原图形关于y轴对称.故选:A.5.(2分)如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°【解答】解:∵AB∥CD,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故选:A.6.(2分)下列运算正确的是()A.=+B.2+=2C.•=4 D.=2【解答】解:A、==3,故选项错误;B、2+为最简结果,故选项错误;C、•===4,故选项正确;D、==,故选项错误.故选:C.7.(2分)某校将举办一场“中国汉字听写大赛”,要求各班推选一名同学参加比赛,为此,初三(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是0.2,乙的成绩的方差是0.8.根据以上数据,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定【解答】解:∵甲的成绩的方差是0.2,乙的成绩的方差是0.8,0.2<0.8,∴甲的成绩比乙的成绩稳定,故选:A.8.(2分)在平面直角坐标系中,已知一次函数y=kx+b的图象大致如图所示,则下列结论正确的是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【解答】解:∵一次函数y=kx+b的图象经过二、三、四象限,∴k<0,b<0.故选:D.9.(2分)如果(x+y﹣4)2+=0,那么2x﹣y的值为()A.﹣3 B.3 C.﹣1 D.1【解答】解:根据题意得,,由②得,y=3x③,把③代入①得,x+3x﹣4=0,解得x=1,把x=1代入③得,y=3,所以方程组的解是,所以2x﹣y=2×1﹣3=﹣1.故选:C.10.(2分)如果一个角的两边平行于另一个角的两边,那么这两个角()A.相等B.互补C.互余D.相等或互补【解答】解:如图:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∴∠B=∠ADC,∵∠CDE+∠ADC=180°,∴∠CDE+∠B=180°.∴如果一个角的两边平行于另一个角的两边,那么这两个角相等或互补.故选:D.二、填空题(每小题3分,共30分)11.(3分)﹣27的立方根是﹣3.【解答】解:∵(﹣3)3=﹣27,∴=﹣3故答案为:﹣3.12.(3分)一个三角形的最大角不会小于60度.【解答】解:由分析可知:如果三角形的最大角小于60°,那么此三角形的内角和小于180度,与三角形的内角和是180度矛盾.所以三角形的最大角不小于60度;故答案为:60.13.(3分)小明从家出发向正北方向走了150米,接着向正东方向走到离家250米远的地方,小明向正东方向走了200米.【解答】解:由勾股定理可得,小明向正东方向走了=200(米).故答案为:200.14.(3分)写出一个解的二元一次方程组.【解答】解:根据题意,只要保证方程组中的每个方程都满足即可,∴(答案不唯一)将代入验证,符合要求.故答案为:(答案不唯一).15.(3分)设n为正整数,且n<<n+1,则n的值为8.【解答】解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故答案为:8.16.(3分)把命题“任意两个直角都相等”改写成“如果…,那么…”的形式是如果两个角都是直角,那么这两个角相等.【解答】解:把命题“任意两个直角都相等”改写成“如果…,那么…”的形式是:如果两个角都是直角,那么这两个角相等,故答案为:如果两个角都是直角,那么这两个角相等.17.(3分)如果某公司一销售人员的个人月收入y与其每月的销售量x成一次函数(如图所示),那么此销售人员的销售量在4千件时的月收入是1100元.【解答】解:设直线的解析式为y=kx+b.∵直线过点(1,500),(2,700),∴,解之得,∴解析式为y=200x+300,当x=4时,y=200×4+300=1100(元).故答案为1100.18.(3分)有一个数的平方等于它本身,这个数是0,1.平方根等于本身的数是0.绝对值等于本身的数是非负数.【解答】解:有一个数的平方等于它本身,这个数是0,1.平方根等于本身的数是0.绝对值等于本身的数是非负数,故答案为:1,0;0;非负数.19.(3分)一个正方体,它的体积是棱长为3cm的正方体体积的8倍,这个正方体的棱长是6cm.【解答】解:根据题意得:=6(cm),故答案为:6cm20.(3分)在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为42或32.【解答】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5,∴BC=9﹣5=4.∴△ABC的周长为:15+13+4=32故答案是:42或32.三、解答题(21题8分,22题8分,23题7分)21.(8分)计算:(1);(2).【解答】解:(1)原式=()2﹣()2=2﹣3=﹣1;(2)原式=0.5﹣2++1=1.22.(8分)解方程组:(1)(2).【解答】解:(1),②代入①得x+2x+1=4,解得x=1,把x=1代入②得y=3.故方程组的解为;(2),①+②得18x=18,解得x=1,把x=1代入②得y=.故方程组的解为.23.(7分)某校八年级全体320名学生在电脑培训前后各参加了一次水平相同的考试,考分都以同一标准划分成“不合格”、“合格”、“优秀”三个等级.为了了解电脑培训的效果,用抽签方式得到其中32名学生的两次考试考分等级,所绘制的统计图如图所示.试结合图示信息回答下列问题:(1)这32名学生培训前考分的中位数所在的等级是不合格,培训后考分的中位数所在的等级是合格.(2)这32名学生经过培训,考分等级“不合格”的百分比由75%下降到25%.(3)估计该校整个八年级中,培训后考分等级为“合格”与“优秀”的学生共有240名.(4)你认为上述估计合理吗:理由是什么?答:不合理,理由:因为该估计不能准确反映320名学生的成绩.【解答】解:(1)这32名学生培训前考分的中位数所在的等级是不合格,培训后考分的中位数所在的等级是合格.故答案是:不合格,合格;(2)培训前等级“不合格”的百分比是:×100%=75%,培训后不合格的百分比是:×100%=25%;故答案是75%、25%;(3)320×=240(名),故答案是:240;(4)不合理,因为该估计不能准确反映320名学生的成绩.四、(24题6分,25题5分)24.(6分)在平面直角坐标系中(如图每格一个单位),描出下列各点A(﹣2,﹣1),B(2,﹣1),C(2,2),D(3,2),E(0,3),F(﹣3,2),G(﹣2,2),A(﹣2,﹣1)并依次将各点连接起来,观察所描出的图形,它像什么?根据图形回答下列问题:(1)图形中哪些点在坐标轴上,它们的坐标有什么特点?(2)线段FD和x轴有什么位置关系?点F和点D的坐标有什么特点?【解答】解:(1)如图所示,图形像一个房子的图案,由图可知点E(0,3)在y轴上,横坐标等于0;(2)线段FD平行于x轴,点F和点D的纵坐标相同,横坐标互为相反数.25.(5分)观察下列各式:1=12﹣02,3=22﹣12,5=32﹣22,7=42﹣32……你能否得到结论:所有奇数都可以表示为两个自然数的平方差?所有偶数也能表示为两个自然数的平方差吗?说明理由.【解答】解:所有奇数都可以表示为两个自然数的平方差,依题意知:当n为正整数时,第n个式子可以表示为2n﹣1=n2﹣(n﹣1)2,因为等式右边=n2﹣(n2﹣2n+1)=n2﹣n2+2n﹣1=2n﹣1=左边,所以所有奇数都可以表示为两个自然数的平方差,对于偶数,则不一定能表示成两个自然数的平方差,如10就不能写成两个自然数的平方差.五、(本题5分)列方程组解应用题26.(5分)《孙子算经》是我国古代一部较为普及的算书,许多问题浅显易懂,如“鸡兔同笼”问题,鸡兔同笼上有三十九头,下有一百条腿,鸡兔各几何.【解答】解:设笼中鸡有x只,兔有y只,由题意得:,解得.答:笼中鸡有28只,兔有11只.六、(本题5分)27.(5分)已知:如图,在△ABC中,∠B=∠C,AD平分外角∠EAC.求证:AD∥BC.【解答】证明:由三角形的外角性质得,∠EAC=∠B+∠C,∵∠B=∠C,∴∠EAC=2∠B,∵AD平分外角∠EA C,∴∠EAC=2∠EAD,∴∠B=∠EAD,∴AD∥BC.七、(本题6分)28.(6分)一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动,快车离乙地的路程y1(km)与行驶的时间x(h)之间的函数关系,如图中线段AB所示,慢车离乙地的路程y2(km)与行驶的时间x(h)之间的函数关系,如图中线段OC所示,根据图象进行以下探究.(1)甲、乙两地之间的距离为450km;(2)线段AB的解析式为y1=﹣150x+450(0≤x≤3);线段OC的解析式为y2=75x(0≤x≤6).(3)设快、慢车之间的距离为y(km),请直接写出y与行驶时间x(h)的函数关系式.【解答】解:(1)∵当x=0时,y1=450,∴甲、乙两地之间的距离为450km.故答案为:450.(2)设线段AB的解析式为y1=kx+b,线段OC的解析式为y2=mx,将点A(0,450)、B(3,0)代入y1=kx+b,,解得:,∴线段A B的解析式为y1=﹣150x+450(0≤x≤3).将点C(6,450)代入y2=mx,6m=450,解得:m=75,∴线段OC的解析式为y2=75x(0≤x≤6).故答案为:y1=﹣150x+450(0≤x≤3);y2=75x(0≤x≤6).(3)令y1=y2,则﹣150x+450=75x,解得:x=2.当0≤x<2时,y=y1﹣y2=﹣150x+450﹣75x=﹣225x+450;当2≤x≤3时,y=y2﹣y1=75x﹣(﹣150x+450)=225x﹣450;当3<x≤6时,y=y2=75x.∴快、慢车之间的距离y(km)与行驶时间x(h)的函数关系式为y=.。
安徽省宿州市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·宜兴模拟) 下列语句正确的是()A . 对角线互相垂直的四边形是菱形B . 有两边及一角对应相等的两个三角形全等C . 矩形的对角线相等D . 平行四边形是轴对称图形2. (2分) (2017七上·娄星期末) 下列各组式子中,为同类项的是()A . 5x2y 与﹣2xy2B . 4x与4x2C . ﹣3xy与 yxD . 6x3y4与﹣6x3z43. (2分)关于分式有意义的正确说法是()A . x、y不都为0B . x、y都不为0C . x、y都为0D . x=-y4. (2分) (2019八上·南县期中) 把0.00025用科学记数法表示出来,正确的是()A .B .C .D .5. (2分) (2018八上·台州期中) 已知点关于y轴的对称点的坐标是,则的值为()A . 10B . 25C . -3D . 326. (2分) (2015八上·重庆期中) 下列因式分解中,正确的是()A . ax2﹣ax=x(ax﹣a)B . x2﹣y2=(x﹣y)2C . a2b2+ab2c+b2=b2(a2+ac+1)D . x2﹣5x﹣6=(x﹣2)(x﹣3)7. (2分)分式方程的解为()A . x=1B . x=2C . x=3D . x=48. (2分) (2019九上·邯郸月考) 如图,在△ABC中,∠C=67°,将△ABC绕点A顺时针旋转后,得到△AB′C′,且点C′在BC上,则∠B′C′B的度数为()A . 56°B . 50°C . 46°D . 40°9. (2分) (2020八上·永嘉期中) 下列命题是真命题的是()A . 内错角相等B . 直角三角形的两个锐角互补C . 三角形三个内角的和等于180°D . 有一个角是60°的三角形是等边三角形10. (2分)如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△A′B'C′,连接BB',若AC′∥BB',则∠C′AB ′的度数为()A . 45°B . 30°C . 20°D . 15°二、填空题 (共8题;共8分)11. (1分) (2018八上·淮南期末) 如图,在△ABC中,AC=3,中线AD=5,则边AB的取值范围是________.12. (1分)(2016·宿迁) 计算: =________.13. (1分) (2019七下·邓州期末) 如图,将长方形ABCD绕点A逆时针旋转,得到长方形AB1C1D1 , B1C1交CD于点M,则________.14. (1分)若a+b=7,ab=12,则a2+b2的值为________15. (1分) (2019九上·宝安期中) 已知:(x、y、z均不为零),则 =________.16. (1分) (2016八上·东宝期中) 已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是________.17. (1分) (2017七下·敦煌期中) 如图,已知B、C、E在同一直线上,且CD∥AB,若∠A=65°,∠B=40°,则∠ACE为________.18. (1分)(2017·东城模拟) 下面是“以已知线段为直径作圆”的尺规作图过程.已知:如图1,线段AB.求作:以AB为直径的⊙O.作法:如图2,(i)分别以A,B为圆心,大于 AB的长为半径作弧,两弧相交于点C,D;(ii)作直线CD交AB于点O;(iii)以O为圆心,OA长为半径作圆.则⊙O即为所求作的.请回答:该作图的依据是________.三、解答题 (共8题;共68分)19. (10分) (2019八上·黔南期末) 计算:(1) -7m(-4m2p)2÷7m2(2) (m-n)(m+n)+(m+n)2-2m220. (10分)(2020·宁波模拟) 解答下列各题:(1)计算: ;(2)先化简,再取一个合适的整数x,使得分式的值为整数,并求此时分式的值.21. (10分) (2020八上·社旗月考) 因式分解(1) a2-4ab+4b2-4;(2) a2(x-y)+4b2(y-x).22. (5分)(2018·柳州) 解方程:.23. (8分) (2018七下·嘉定期末) 如图,在直角坐标平面内,已知点的坐标是,点的坐标是(1)图中点的坐标是________.(2)点关于轴对称的点的坐标是________.(3)如果将点沿着与轴平行的方向向右平移2个单位得到点,那么、两点之间的距离是__.(4)图中的面积是________.24. (10分) (2019七下·楚雄期末) 如图,△ABC和△CDE均为等腰三角形,AC=BC,CD=CE,∠ACB=∠DCE,点D在线段AB上(与A,B不重合),连接BE(1)证明:△ACD≌△BCE(2)若BD=2,BE=5,求AB的长25. (5分) (2019八上·丹江口期末) 为加快交通建设,促进经济发展,国家发改委于2015年批准武汉至十堰高铁孝感至十堰段建设,该工程于2015年开工,预计2019年完成并开通运营. 原来武汉至十堰动车铁路全长约490km,建成后的高铁路段全长约460km,预测届时从武汉至十堰高铁比动车平均每小时快倍,高铁比动车少用1.5小时,问该段高铁平均每小时多少km?26. (10分) (2019九上·无锡月考) 如图,在Rt△ABC中,∠BAC=90º,sinC= ,AC=8,BD平分∠ABC 交边AC于点D.(1)求边AB的长;(2)tan∠ABD的值.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共8题;共8分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共8题;共68分)答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、考点:答案:23-1、答案:23-2、答案:23-3、答案:23-4、考点:解析:答案:24-1、答案:24-2、考点:答案:25-1、考点:解析:答案:26-1、答案:26-2、考点:解析:。
A B C D 2017--2018学年度八年级 (上)数学期末测试一、选择题(每小题3分,共36分)1.下列平面图形中,不是轴对称图形的是 ( )2.下列运算中,正确的是( )A 、 (x 2)3=x 5B 、3x 2÷2x=xC 、 x 3·x 3=x 6D 、(x+y 2)2=x 2+y 43.已知:在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =32,且BD :DC =9:7,则D 到AB 边的距离为 ( )A .18B .16C .14D .124.下列各式由左边到右边的变形中,是分解因式的为( )A 、a (x + y) =a x + a yB 、x 2-4x+4=x(x -4)+4C 、10x 2-5x=5x(2x -1)D 、x 2-16+3x=(x -4)(x+4)+3x 5.如图,C F BE ,,,四点在一条直线上,,,D A CF EB ∠=∠=再添一个条件仍不能证明⊿ABC≌⊿DEF的是( )A .AB=DEB ..DF ∥AC C .∠E=∠ABCD .AB ∥DE 6.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( )A .1、2、3B .2、3、4C .3、4、5D .4、5、6 7.已知m 6x =,3n x =,则2m n x-的值为( ) A 、9 B 、 12 C 、 43 D 、34 8.已知:如图,△ABC 与△DEF 是全等三角形,则图中相等的线段的组数是 ( )A .3B . 4C .5D .6(第8题) (第9题) (第10题)9.如图,在∠AOB 的两边上截取AO=BO ,CO=DO ,连接AD ,BC 交于点P ,那么在结论①△AOD ≌△BOC ;②△APC ≌△BPD ;③点P 在∠AOB 的平分线上.其中正确的是 ( )A .只有①B . 只有②C . 只有①②D . ①②③ABE CF D O D C A B P A B D CE α γ β A BF E C D10.如图,D ,E 分别是△ABC 的边BC ,AC ,上的点,若AB=AC ,AD=AE ,则 ( )A .当∠B 为定值时,∠CDE 为定值 B .当∠α为定值时,∠CDE 为定值C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值11.已知等腰三角形一边长为4,一边的长为10,则等腰三角形的周长为( )A 、14B 、18C 、24D 、18或2412.若分式方程xa x a x +-=+-321有增根,则a 的值是( ) A .1 B .0 C .—1 D .—2二、填空题(每小题3分,共24分)13.用科学记数法表示—0.000 000 0314= .14.如图,△ABC ≌△ADE ,∠EAC =25°,则∠BAD = °15.如图,D ,E 是边BC 上的两点,AD =AE ,请你再添加一个条件: 使△ABE ≌△ACD 16.计算(-3a 3)·(-2a 2)=________________17.已知,2,522-=+=+b ab ab a 那么=-22b a . 18.等腰三角形一腰上的高与另一腰的夹角为40°,则它的顶角的度数为 °.19.如图,△ABC 中,DE 是AC 的垂直平分线,AE =3cm ,△ABD 的周长为13cm ,则△ABC 的周长为__________cm .20.如图,在△ABC 中,∠ACB =90°,BE 平分∠ABC ,CF 平分∠ACB ,CF ,BE 交于点P ,AC =4cm ,BC =3cm ,AB =5cm ,则△CPB 的面积为 2cm三、解答题(本大题共60分)21.①(5分) 因式分解:33ab b a -B AC D E A C B F E P (第20题) A D B E C B D E C A (第14题) (第15题) (第19题)② (5分)化简求值:[]{})24(32522222b a ab ab b a b a ----其中5.0,3=-=b a22.(5分)如图,A 、B 、C 三点表示3个村庄,为了解决村民子女就近入学问题,计划新建一所小学,要使学校到3个村庄的距离相等,请你在图中有尺规确定学校的位置.(保留作图痕迹,不写画法)23.(7分)一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?24.(8分)如图,BD 平分∠MBN ,A ,C 分别为BM ,BN 上的点,且BC >BA ,E 为BD 上的一点,AE =CE ,求证 ∠BAE +∠BCE =180°C A B · · · B C NDE MAA D BE FC 25.(8分) 如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD ,求△ABC 各角的度数.26.(10分)如图,已知AC ⊥CB ,DB ⊥CB ,AB ⊥DE ,AB =DE ,E 是BC 的中点.(1)观察并猜想BD 和BC 有何数量关系?并证明你猜想的结论.(2)若BD =6cm ,求AC 的长.27.(12分)如图,在△ABC 中,∠ACB =90°,CE ⊥AB 于点E ,AD=AC ,AF 平分∠CAB •交CE 于点F ,DF 的延长线交AC 于点G ,求证:(1)DF ∥BC ;(2)FG =FE .A D C B2017--2018学年度八年级 (上)数学期末测试3参考答案一、选择题(每小题3分,共36分)ACACACBBDACD二、填空题(每小题3分,共24分)13.-3.14×610-14.25°15.∠B=∠C16.65a17.918.5019.19cm20.1.5三、解答题(本大题共60分) 21.①(5分) 因式分解: 33ab b a -=ab(2a -2b )=ab(a+b)(a-b)② (5分)化简求值:[]{})24(32522222b a ab ab b a b a ----其中5.0,3=-=b a 解:原式=[]{})24(32522222b a ab ab b a b a ----=ab(5a-b)=138.522.答案略23.设江水的流速为x 千米/时,则可列方程xx -=+306030100 解得:x=7.5答:江水的流速为7.5千米/时.24.提示(过E 点分别BA 与BC 的垂线,即可证明)25.∠A=36°,∠ABC=∠C=72°26.解(1)BD 和BC 相等。
宿州市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)下列图形绕某点旋转后,不能与原来图形重合的是(旋转度数不超过180°)()A . XB . VC . ZD . H2. (2分) (2017七下·寮步期中) 在平面直角坐标系中,点(-2,3)一定在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分)和数轴上的点一一对应的数是()A . 整数B . 有理数C . 无理数D . 实数4. (2分) (2018八上·西湖期末) 以a,b,c为边的三角形是直角三角形的是()A . a=2,b=3,c=4B . a=1,b= ,c=2C . a=4,b=5,c=6D . a=2,b=2,c=5. (2分)如图是一次函数y=kx+b的图象,当y<﹣2时,x的取值范围是()A . x<3B . x>3C . x<﹣1D . x>﹣16. (2分) (2017八上·李沧期末) 已知函数y=kx+b的图象如图所示,则函数y=﹣bx+k的图象大致是()A .B .C .D .7. (2分)如图,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,那么∠ADC的度数为()A . 120°B . 30°C . 60°D . 80°8. (2分)如图,在△ABC中,已知∠B和∠C的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E,若BD+CE=9,则线段DE的长为().A . 9B . 8C . 7D . 6二、填空题 (共8题;共9分)9. (1分) (2016八上·芦溪期中) ﹣的相反数是________,倒数是________,绝对值是________.10. (1分) (2018八上·海淀期末) 点M 关于y轴的对称点的坐标为________.11. (1分)(2017·青岛模拟) 如图,点A、B、C、D都在⊙O上,∠ABC=90°,AD=2,CD=1,则⊙O的直径的长是________.12. (1分) (2019九上·苏州开学考) 如果A(﹣1,2),B(2,﹣1),C(m,m)三点在同一条直线上,则m的值等于________.13. (1分)(2018·福清模拟) 将直线y= x向下平移3个单位,得到直线________.14. (1分)如图,点P为△ABC三条角平分线的交点,PD⊥AB,PE⊥BC,PF⊥AC,则PD________PE________PF.15. (2分) (2019八上·玄武期末) 在平面直角坐标系xOy中,一次函数y=k1x+b(k1 , b均为常数)与正比例函数y=k2x(k2为常数)的图象如图所示,则关于x的不等式k2x<k1x+b的解集为________.16. (1分)(2018·东莞模拟) 如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为________.三、解答题 (共11题;共75分)17. (10分)(2013·柳州) 计算:(﹣2)2﹣()0 .18. (10分) (2017八上·高安期中) 作图题:(不写作法,但要保留痕迹)在图中找出点A,使它到M,N两点的距离相等,并且到OH,OF的距离相等.19. (2分)(2017·昌平模拟) 如图,在等边△ABC中,点D为边BC的中点,以AD为边作等边△ADE,连接BE.求证:BE=BD.20. (5分) (2017八上·揭阳月考) 已知:如图,在△ABC 中,∠C=90°,D 是 BC 的中点,AB=10,AC=6.求AD 的长度.21. (11分) (2020八上·张店期末) △ABC三顶点A(﹣5,0)、B(﹣2,4)、C(﹣1,﹣2),△A'B'C'与△ABC关于y轴对称.(1)直接写出A'、B'、C'的坐标;(2)画出△A'B'C';(3)求△ABC的面积.22. (5分) (2017八下·临洮期中) 如图,在数轴上画出表示的点(不写作法,但要保留画图痕迹).23. (2分) (2016九上·新疆期中) 如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.24. (10分) (2017八下·君山期末) 已知点A(2,0)在函数y=kx+3的图象上,(1)求该函数的表达式;(2)求该函数图象与坐标轴围成的三角形的面积.25. (2分)已知两个变量x,y之间的关系如图所示.(1)求当x分别取0,,3时函数y的值;(2)求当y分别取0,,3时自变量x的值.26. (6分) (2016八上·赫章期中) 某种拖拉机的油箱可储油40L,加满油并开始工作后,油箱中的余油量y(L)与工作时间x(h)之间为一次函数关系,如图所示.(1) y与x的函数解析式为________;(2)一箱油可供拖拉机工作________小时.27. (12分) (2017八上·义乌期中) 如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD于点E.(1)如图1,猜想∠QEP=________°;(2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明;(3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共9分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共11题;共75分)17-1、18-1、19-1、20-1、21-1、21-2、21-3、22-1、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、27-1、27-2、27-3、。
一、选择题1.题目文件丢失!2.题目文件丢失!3.题目文件丢失!4.题目文件丢失!5.题目文件丢失!6.题目文件丢失!7.题目文件丢失!8.题目文件丢失!9.题目文件丢失!10.题目文件丢失!11.题目文件丢失!12.题目文件丢失!13.题目文件丢失!14.题目文件丢失!15.题目文件丢失!二、填空题16.题目文件丢失!17.题目文件丢失!18.题目文件丢失!19.题目文件丢失!20.题目文件丢失!21.题目文件丢失!22.题目文件丢失!23.题目文件丢失!24.题目文件丢失!25.题目文件丢失!三、解答题26.题目文件丢失!27.题目文件丢失!28.题目文件丢失!29.题目文件丢失!30.题目文件丢失!【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.D3.B4.D5.D6.A7.C8.A9.A10.A11.C12.C13.B14.C15.C二、填空题16.30【解析】【分析】根据角平分线的定义可得∠PBC=20°∠PCM=50°根据三角形外角性质即可求出∠P的度数【详解】∵BP是∠ABC的平分线CP是∠ACM的平分线∠ABP=20°∠ACP=50°∴17.-1【解析】【分析】【详解】试题分析:因为当时分式的值为零解得且所以x=-1考点:分式的值为零的条件18.100°【解析】【分析】先根据三角形的内角和定理可出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°再利用三角形的内角和定理以及外角性质得∠3+19.2(x-2)2【解析】【分析】先运用提公因式法再运用完全平方公式【详解】:2x2-8x+8=故答案为2(x-2)2【点睛】本题考核知识点:因式分解解题关键点:熟练掌握分解因式的基本方法20.2【解析】【分析】根据分式的值为零的条件得到x-2=0且x≠0易得x=2【详解】∵分式的值为0∴x−2=0且x≠0∴x=2故答案为2【点睛】本题考查了分式的值为零的条件解题的关键是熟练的掌握分式的值21.3x(x+2)(x﹣2)【解析】【分析】先提公因式3x然后利用平方差公式进行分解即可【详解】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2)故答案为3x(x+2)(x﹣2)【点睛】本题考查22.65°【解析】【分析】根据已知条件中的作图步骤知AG是∠CAB的平分线根据角平分线的性质解答即可【详解】根据已知条件中的作图步骤知AG是∠CAB的平分线∵∠CAB=50°∴∠CAD=25°;在△AD23.130°或90°【解析】分析:根据题意可以求得∠B和∠C的度数然后根据分类讨论的数学思想即可求得∠ADC的度数详解:∵在△ABC中AB=AC∠BAC=100°∴∠B=∠C=40°∵点D在BC边上△A24.【解析】【分析】将a+b=5ab=3代入原式=计算可得【详解】当a+b=5ab=3时原式====故答案为【点睛】本题主要考查分式的加减法解题的关键是熟练掌握分式的加减运算法则和完全平方公式25.2(m+4)(m﹣4)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(m2﹣16)=2(m+4)(m﹣4)故答案为2(m+4)(m﹣4)【点睛】本题考查了提公因式法与公式法的综合三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:解析丢失2.D解析:解析丢失3.B解析:解析丢失4.D5.D解析:解析丢失6.A解析:解析丢失7.C解析:解析丢失8.A解析:解析丢失9.A解析:解析丢失10.A解析:解析丢失11.C解析:解析丢失12.C解析:解析丢失13.B解析:解析丢失14.C解析:解析丢失15.C解析:解析丢失二、填空题16.30【解析】【分析】根据角平分线的定义可得∠PBC=20°∠PCM=50°根据三角形外角性质即可求出∠P的度数【详解】∵BP是∠ABC的平分线CP是∠ACM的平分线∠ABP=20°∠ACP=50°∴解析:解析丢失17.-1【解析】【分析】【详解】试题分析:因为当时分式的值为零解得且所以x=-1考点:分式的值为零的条件解析:解析丢失18.100°【解析】【分析】先根据三角形的内角和定理可出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°再利用三角形的内角和定理以及外角性质得∠3+19.2(x-2)2【解析】【分析】先运用提公因式法再运用完全平方公式【详解】:2x2-8x+8=故答案为2(x-2)2【点睛】本题考核知识点:因式分解解题关键点:熟练掌握分解因式的基本方法解析:解析丢失20.2【解析】【分析】根据分式的值为零的条件得到x-2=0且x≠0易得x=2【详解】∵分式的值为0∴x−2=0且x≠0∴x=2故答案为2【点睛】本题考查了分式的值为零的条件解题的关键是熟练的掌握分式的值解析:解析丢失21.3x(x+2)(x﹣2)【解析】【分析】先提公因式3x然后利用平方差公式进行分解即可【详解】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2)故答案为3x (x+2)(x﹣2)【点睛】本题考查解析:解析丢失22.65°【解析】【分析】根据已知条件中的作图步骤知AG是∠CAB的平分线根据角平分线的性质解答即可【详解】根据已知条件中的作图步骤知AG是∠CAB的平分线∵∠CAB=50°∴∠CAD=25°;在△AD解析:解析丢失23.130°或90°【解析】分析:根据题意可以求得∠B和∠C的度数然后根据分类讨论的数学思想即可求得∠ADC的度数详解:∵在△ABC中AB=AC∠BAC=100°∴∠B=∠C=40°∵点D在BC边上△A解析:解析丢失24.【解析】【分析】将a+b=5ab=3代入原式=计算可得【详解】当a+b=5ab=3时原式====故答案为【点睛】本题主要考查分式的加减法解题的关键是熟练掌握分式的加减运算法则和完全平方公式解析:解析丢失25.2(m+4)(m﹣4)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(m2﹣16)=2(m+4)(m﹣4)故答案为2(m+4)(m﹣4)【点睛】本题考查了提公因式法与公式法的综合解析:解析丢失三、解答题26.解析丢失27.解析丢失28.解析丢失29.解析丢失30.解析丢失。
2017-2018学年安徽省宿州市埇桥区八年级(上)期末数学试卷(B卷)一、选择题(每小题4分,共40分)1.(4分)如图,数轴上点P表示的数可能是()A.B.C.D.2.(4分)点A在x轴上,且到坐标原点的距离是2,则点A的坐标为()A.(﹣2,0)B.(2,0)C.(0,﹣2)或(0,2)D.(﹣2,0)或(2,0)3.(4分)函数y=中,自变量x的取值范围是()A.x≥﹣1B.x>﹣1C.x≠﹣1D.x>14.(4分)对于命题“若|a|=|b|,则a=b”,下面四组关于a、b的值中,能说明这个命题是假命题的是()A.a=2,b=2B.a=﹣2,b=﹣2C.a=﹣2,b=2D.a=2,b=5 5.(4分)如图,AB∥CD,∠D=∠E=35°,则∠B的度数为()A.60°B.65°C.70°D.75°6.(4分)如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.3B.4C.5D.67.(4分)已知是二元一次方程组的解,则m﹣n的值是()A.1B.2C.3D.48.(4分)已知:一次函数y=kx+b(k≠0)的图象经过第二、三、四象限,则一次函数y=﹣bx+kb的图象可能是()A.B.C.D.9.(4分)甲、乙两人参加射击比赛,每人射击五次,命中的环数如下表:根据以上数据,判断甲、乙两人命中环数的稳定性()A.甲的稳定性大B.乙的稳定性大C.甲、乙稳定性一样大D.无法比较10.(4分)在A、B两地之间有汽车站C(C在直线AB上),甲车由A地驶往C,乙车由B地驶往A地,两车同时出发,匀速行驶.甲、乙两车离C站的路程y1,y2(千米)与行驶时间x(小时)之间的函数图象如图所示,则下列结论中:①A、B两地相距440千米;②甲车的平均速度是60千米/小时;③乙车行驶11小时后到达A地;④两车行驶4.4小时后相遇,正确的结论有()A.1个B.2个C.3个D.4个二、填空题(每小题5分,共20分)11.(5分)在平面直角坐标系中,点P(﹣2,﹣5)关于x轴的对称点P′的坐标是.12.(5分)若数据a1、a2、a3的平均数是3,则数据2a1、2a2、2a3的平均数是.13.(5分)同一温度的华氏度数y(℉)与摄氏度x(℃)之间满足一次函数关系,下表列出了同一温度的华氏度数y(℉)与摄氏度x(℃)一些对应值,则根据表中数据确定的y与x的函数表达式是.14.(5分)如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=.三、解答题(每小题8分,共个16分)15.(8分)已知:点A(m﹣1,4m+6)在第二象限.(1)求m的取值范围;(2)我们把横、纵坐标均为整数的点称为“整数点”,请写出符合条件的“整数点A”.16.(8分)解方程组:17.(8分)推理填空:如图AB∥CD,∠1=∠2,∠3=∠4,试说明AD∥BE.解:∵AB∥CD(已知)∴∠4=∠1+ ()∵∠3=∠4(已知)∴∠3=∠1+ ()∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF()即∠=∠∴∠3=∠()∴AD∥BE().18.(8分)已知:如图,平面直角坐标系中,△OAB是等腰三角形,底边OA 在x轴上,点A坐标为(2,0),顶点B的坐标为(1,3),我们把△OAB的底边上的点A的横坐标每扩大2倍,而顶点B的纵坐标不变,称为一次“图形变换”,据此回答下列问题:(1)①△OAB经过一次“图形变换”后,点A的对应点A1的坐标为,点B 的对应点B1的坐标为.②△OAB经过两次“图形变换”后,点A的对应点A2的坐标为,点B的对应点B2的坐标为.(2)根据这个规律猜想:△OAB经过n次“图形变换”后,点A的对应点A n的坐标为,点B的对应点B n的坐标为(用含n的式子表示).19.(10分)先填写表,通过观察后再回答问题:(1)表格中x=,y=;(2)从表格中探究a与数位的规律,并利用这个规律解决下面两个问题:①已知≈3.16,则≈;②已知=8.973,若=897.3,用含m的代数式表示b,则b=;(3)试比较与a的大小.20.(10分)如图所示,折叠长方形一边AD,使点D落在BC边的点F处,折痕为AE,这时AD=AF,DE=FE.已知BC=5厘米,AB=4厘米.(1)求BF与FC的长.(2)求EC的长.21.(12分)已知:如图一次函数y1=﹣x﹣2与y2=x﹣4的图象相交于点A.(1)求点A的坐标;(2)若一次函数y1=﹣x﹣2与y2=x﹣4的图象与x轴分别相交于点B、C,求△ABC的面积.(3)结合图象,直接写出y1≥y2时x的取值范围.22.(12分)某校要求200名学生进行社会调查,每人必须完成3﹣6份报告,调查结束后随机抽查了20名学生每人完成报告的份数,并分为四类,A:3份;B:4份;C:5份;D:6份.将各类的人数绘制成扇形图(如图1)和尚未完整的条形图(如图2),回答下列问题:(1)请将条形统计图2补充完整;(2)写出这20名学生每天完成报告份数的众数份和中位数份;(3)在求出20名学生每人完成报告份数的平均数时,小明是这样分析的:第一步:求平均数的公式是=;第二步:在该问题中,n=4,x1=3,x2=4,x3=5,x4=6;第三步:==4.5(份)小明的分析对不对?如果对,请说明理由,如果不对,请你帮助改正,并估算着200名学生共完成多少分报告?23.(14分)某超市对A、B两种商品开展“2018•元旦”促销活动,活动方案有如下两种(同一种商品不可同时参与两种活动):若某单位购买A商品x件(x为正整数),购买B商品的件数比A商品件数的2倍还多2件,方案一付款金额为w1,方案二付款金额为w2.(1)请写出w1、w2与x之间的函数表达式;(2)该单位该如何选择活动方案,才能获得最大优惠?请说明理由.(3)该单位购买A商品50件,B商品多少件?此时按最大优惠的付款金额为多少元?2017-2018学年安徽省宿州市埇桥区八年级(上)期末数学试卷(B卷)参考答案与试题解析一、选择题(每小题4分,共40分)1.(4分)如图,数轴上点P表示的数可能是()A.B.C.D.【解答】解:∵9<11<16,∴3<<4.故选:C.2.(4分)点A在x轴上,且到坐标原点的距离是2,则点A的坐标为()A.(﹣2,0)B.(2,0)C.(0,﹣2)或(0,2)D.(﹣2,0)或(2,0)【解答】解:∵点A在x轴上,且到坐标原点的距离是2,∴点A的坐标为:(﹣2,0)或(2,0).故选:D.3.(4分)函数y=中,自变量x的取值范围是()A.x≥﹣1B.x>﹣1C.x≠﹣1D.x>1【解答】解:由题意得,x+1>0,解得x>﹣1故选:B.4.(4分)对于命题“若|a|=|b|,则a=b”,下面四组关于a、b的值中,能说明这个命题是假命题的是()A.a=2,b=2B.a=﹣2,b=﹣2C.a=﹣2,b=2D.a=2,b=5【解答】解:当a=2,b=2时,|a|=|b|,而a=b成立,故A选项不符合题意;当a=﹣2,b=﹣2时,|a|=|b|,而a=b成立,故B选项不符合题意;当a=2,b=﹣2时,|a|=|b|,但a=b不成立,故C选项符合题意;当a=2,b=5时,|a|=|b|不成立,故D选项不符合题意;故选:C.5.(4分)如图,AB∥CD,∠D=∠E=35°,则∠B的度数为()A.60°B.65°C.70°D.75°【解答】解:∵∠D=∠E=35°,∴∠1=∠D+∠E=35°+35°=70°,∵AB∥CD,∴∠B=∠1=70°.故选:C.6.(4分)如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.3B.4C.5D.6【解答】解:△DAB的面积=×DA×BC,∴×5×BC=10,解得,BC=4,由勾股定理得,CD==3,故选:A.7.(4分)已知是二元一次方程组的解,则m﹣n的值是()A.1B.2C.3D.4【解答】解:由题意,得,解得,m﹣n=1﹣(﹣3)=4,故选:D.8.(4分)已知:一次函数y=kx+b(k≠0)的图象经过第二、三、四象限,则一次函数y=﹣bx+kb的图象可能是()A.B.C.D.【解答】解:∵一次函数y=kx+b经过第二,三,四象限,∴k<0,b<0,∴﹣b>0,kb>0,所以一次函数y=﹣bx+kb的图象经过一、二、三象限,故选:A.9.(4分)甲、乙两人参加射击比赛,每人射击五次,命中的环数如下表:根据以上数据,判断甲、乙两人命中环数的稳定性()A.甲的稳定性大B.乙的稳定性大C.甲、乙稳定性一样大D.无法比较【解答】解:甲的方差==2;乙的方差==,因为,所以甲的稳定性大,故选:A.10.(4分)在A、B两地之间有汽车站C(C在直线AB上),甲车由A地驶往C,乙车由B地驶往A地,两车同时出发,匀速行驶.甲、乙两车离C站的路程y1,y2(千米)与行驶时间x(小时)之间的函数图象如图所示,则下列结论中:①A、B两地相距440千米;②甲车的平均速度是60千米/小时;③乙车行驶11小时后到达A地;④两车行驶4.4小时后相遇,正确的结论有()A.1个B.2个C.3个D.4个【解答】解:A、B两地相距=360+80=440(千米),故①正确,甲车的平均速度==60(千米/小时),故②正确,乙车的平均速度==40千米/小时,440÷40=11(小时),∴乙车行驶11小时后到达A地,故③正确,设t小时相遇,则有:(60+40)t=440,t=4.4(小时),∴两车行驶4.4小时后相遇,故④正确,故选:D.二、填空题(每小题5分,共20分)11.(5分)在平面直角坐标系中,点P(﹣2,﹣5)关于x轴的对称点P′的坐标是(﹣2,5).【解答】解:根据两点关于x轴对称,横坐标不变,纵坐标互为相反数,则点P(﹣2,﹣5)关于x轴的对称点P′的坐标是(﹣2,5).故答案为:(﹣2,5).12.(5分)若数据a1、a2、a3的平均数是3,则数据2a1、2a2、2a3的平均数是6.【解答】解:∵数据a1、a2、a3的平均数是3,∴a1+a2+a3=9,∴(2a1+2a2+2a3)÷3=18÷3=6,故答案为:6.13.(5分)同一温度的华氏度数y(℉)与摄氏度x(℃)之间满足一次函数关系,下表列出了同一温度的华氏度数y(℉)与摄氏度x(℃)一些对应值,则根据表中数据确定的y与x的函数表达式是y=x+32.【解答】解:设y=kx+b,由题意可知当x=﹣10时y=14,当x=0时,y=32,∴,解得,∴y=x+32,故答案为:y=x+32.14.(5分)如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=30°.【解答】解:如图,∵∠1+∠3=125°,∠2+∠4=85°,∴∠1+∠3+∠2+∠4=210°,∵l1∥l2,∴∠3+∠4=180°,∴∠1+∠2=210°﹣180°=30°.故答案为30°.三、解答题(每小题8分,共个16分)15.(8分)已知:点A(m﹣1,4m+6)在第二象限.(1)求m的取值范围;(2)我们把横、纵坐标均为整数的点称为“整数点”,请写出符合条件的“整数点A”.【解答】解:(1)由题意得,,解不等式①得,m<1,解不等式②得,m>﹣,所以,m的取值范围是﹣<m<1;(2)∵m是整数,∴m取﹣1,0,所以,符合条件的“整数点A”有(﹣2,2),(﹣1,6).16.(8分)解方程组:【解答】解:由①得﹣x+7y=6 ③,由②得2x+y=3 ④,③×2+④,得:14y+y=15,解得:y=1,把y=1代入④,得:﹣x+7=6,解得:x=1,所以方程组的解为.17.(8分)推理填空:如图AB∥CD,∠1=∠2,∠3=∠4,试说明AD∥BE.解:∵AB∥CD(已知)∴∠4=∠1+ ∠CAF(两直线平行,同位角相等)∵∠3=∠4(已知)∴∠3=∠1+ ∠CAF(等量代换)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等量代换)即∠4=∠DAC∴∠3=∠∠DAC(等量代换)∴AD∥BE(内错角相等,两直线平行).【解答】解:∵AB∥CD(已知),∴∠4=∠1+∠CAF(两直线平行,同位角相等);∵∠3=∠4(已知),∴∠3=∠1+∠CAF(等量代换);∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF(等量代换),即∠4=∠DAC,∴∠3=∠DAC(等量代换),∴AD∥BE(内错角相等,两直线平行).18.(8分)已知:如图,平面直角坐标系中,△OAB是等腰三角形,底边OA 在x轴上,点A坐标为(2,0),顶点B的坐标为(1,3),我们把△OAB的底边上的点A的横坐标每扩大2倍,而顶点B的纵坐标不变,称为一次“图形变换”,据此回答下列问题:(1)①△OAB经过一次“图形变换”后,点A的对应点A1的坐标为(4,0),点B的对应点B1的坐标为(2,3).②△OAB经过两次“图形变换”后,点A的对应点A2的坐标为(8,0),点B的对应点B2的坐标为(4,3).(2)根据这个规律猜想:△OAB经过n次“图形变换”后,点A的对应点A n的坐标为(2n+1,0),点B的对应点B n的坐标为(2n,3)(用含n的式子表示).【解答】解:(1)①∵A坐标为(2,0),顶点B的坐标为(1,3),由一次“图形变换”得,A1(4,0),B1(2,3),故答案为(4,0),(2,3);②∵A1(4,0),B1(2,3),由一次“图形变换”得,A2(8,0),B2(4,3),故答案为:(8,0),(4,3);(2)由一次“图形变换”知,△OAB经过一次“图形变换”后,A1的横坐标为4=2×2=22,B1点的横坐标为21,△OAB经过两次“图形变换”后,A2的横坐标为8=2×2×2=23,B2点的横坐标为2×2=22,△OAB经过两次“图形变换”后,A3的横坐标为24,B3点的横坐标为23,…△OAB经过n次“图形变换”后,A n的横坐标为2n+1,B n点的横坐标为2n;故答案为:(2n+1,0),(2n,3).19.(10分)先填写表,通过观察后再回答问题:(1)表格中x=0.1,y=10;(2)从表格中探究a与数位的规律,并利用这个规律解决下面两个问题:①已知≈3.16,则≈31.6;②已知=8.973,若=897.3,用含m的代数式表示b,则b=10000m;(3)试比较与a的大小.【解答】解:(1)x=0.1,y=10;(2)①根据题意得:≈31.6;②根据题意得:b=10000m;(3)当a=0或1时,=a;当0<a<1时,>a;当a>1时,<a,故答案为:(1)0.1;10;(2)①31.6;②10000m20.(10分)如图所示,折叠长方形一边AD,使点D落在BC边的点F处,折痕为AE,这时AD=AF,DE=FE.已知BC=5厘米,AB=4厘米.(1)求BF与FC的长.(2)求EC的长.【解答】解:(1)∵AD=AF,∴AF=AD=BC,在Rt△ABF中,由勾股定理得BF2=AF2﹣AB2=52﹣42=9,BF=3,∴FC=5﹣3=2;(2)设EC=2cm,则DE=(4﹣x)cm,•∴EF=4﹣x,在Rt△ECF中,由勾股定理得x2+22=(4﹣x)2,即x=15,∴EC=1.5厘米21.(12分)已知:如图一次函数y1=﹣x﹣2与y2=x﹣4的图象相交于点A.(1)求点A的坐标;(2)若一次函数y1=﹣x﹣2与y2=x﹣4的图象与x轴分别相交于点B、C,求△ABC的面积.(3)结合图象,直接写出y1≥y2时x的取值范围.【解答】解:(1)解方程组,得,所以点A坐标为(1,﹣3);(2)当y1=0时,﹣x﹣2=0,x=﹣2,则B点坐标为(﹣2,0);当y2=时,x﹣4=0,x=4,则C点坐标为(4,0);∴BC=4﹣(﹣2)=6,∴△ABC的面积=×6×3=9;(3)根据图象可知,y1≥y2时x的取值范围是x≤1.22.(12分)某校要求200名学生进行社会调查,每人必须完成3﹣6份报告,调查结束后随机抽查了20名学生每人完成报告的份数,并分为四类,A:3份;B:4份;C:5份;D:6份.将各类的人数绘制成扇形图(如图1)和尚未完整的条形图(如图2),回答下列问题:(1)请将条形统计图2补充完整;(2)写出这20名学生每天完成报告份数的众数5份和中位数5份;(3)在求出20名学生每人完成报告份数的平均数时,小明是这样分析的:第一步:求平均数的公式是=;第二步:在该问题中,n=4,x1=3,x2=4,x3=5,x4=6;第三步:==4.5(份)小明的分析对不对?如果对,请说明理由,如果不对,请你帮助改正,并估算着200名学生共完成多少分报告?【解答】解:(1)B中的人数为:20﹣2﹣8﹣4=6人,如图,(2)这20名学生每天完成报告份数的众数5份和中位数5份;故答案为:5,5.(3)不对,==4.7份.200×4.7=940份.23.(14分)某超市对A、B两种商品开展“2018•元旦”促销活动,活动方案有如下两种(同一种商品不可同时参与两种活动):若某单位购买A商品x件(x为正整数),购买B商品的件数比A商品件数的2倍还多2件,方案一付款金额为w1,方案二付款金额为w2.(1)请写出w1、w2与x之间的函数表达式;(2)该单位该如何选择活动方案,才能获得最大优惠?请说明理由.(3)该单位购买A商品50件,B商品多少件?此时按最大优惠的付款金额为多少元?【解答】解:(1)w1=100(1﹣30%)x+110(1﹣15%)(2x+2)=257x+187;w2=[100x+110(2x+2)](1﹣20%)=256x+176;(2)由题意x+2x+2=101,解得x=33,①当总件数不足101,即x<33时,只能选择方案一比较优惠;②当总件数大于等于101,即x>33时,w1﹣w2=(257x+187)﹣(256x+176)=x+11>0,∴选择方案二比较优惠.(3)当x=50时,2x+2=102(件),选择方案二比较优惠,此时w2=256×50+176=12976(元),答:购买B商品102件时,此时按最大优惠的付款金额为12976元.。
2017-2018学年安徽省宿州市埇桥区八年级(上)期末数学试卷一、选择题(每小题2分,共20分)1.(2分)下列实数中是无理数的是()A.0.38 B.C.﹣D.π2.(2分)下列句子中不是命题的有()A.玫瑰花是动物B.美丽的天空C.相等的角是对顶角D.负数都小于零3.(2分)将直角三角形三边扩大同样的倍数,得到的新的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形4.(2分)将△ABC的三个顶点的横坐标乘以﹣1,纵坐标不变,则所得图形()A.与原图形关于y轴对称B.与原图形关于轴对称C.与原图形关于原点对称D.向轴的负方向平移了一个单位5.(2分)如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70° B.60°C.55°D.50°6.(2分)下列运算正确的是()A.=+B.2+=2C.•=4 D.=27.(2分)某校将举办一场“中国汉字听写大赛”,要求各班推选一名同学参加比赛,为此,初三(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是0.2,乙的成绩的方差是0.8.根据以上数据,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定8.(2分)在平面直角坐标系中,已知一次函数y=+b的图象大致如图所示,则下列结论正确A.>0,b>0 B.>0,b<0 C.<0,b>0 D.<0,b<09.(2分)如果(+y﹣4)2+=0,那么2﹣y的值为()A.﹣3 B.3 C.﹣1 D.110.(2分)如果一个角的两边平行于另一个角的两边,那么这两个角()A.相等B.互补C.互余D.相等或互补二、填空题(每小题3分,共30分)11.(3分)﹣27的立方根是.12.(3分)一个三角形的最大角不会小于度.13.(3分)小明从家出发向正北方向走了150米,接着向正东方向走到离家250米远的地方,小明向正东方向走了米.14.(3分)写出一个解的二元一次方程组.15.(3分)设n为正整数,且n<<n+1,则n的值为.16.(3分)把命题“任意两个直角都相等”改写成“如果…,那么…”的形式是.17.(3分)如果某公司一销售人员的个人月收入y与其每月的销售量成一次函数(如图所示),那么此销售人员的销售量在4千件时的月收入是元.18.(3分)有一个数的平方等于它本身,这个数是.平方根等于本身的数是.绝对值等于本身的数是.19.(3分)一个正方体,它的体积是棱长为3cm的正方体体积的8倍,这个正方体的棱长20.(3分)在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为.三、解答题(21题8分,22题8分,23题7分)21.(8分)计算:(1);(2).22.(8分)解方程组:(1)(2).23.(7分)某校八年级全体320名学生在电脑培训前后各参加了一次水平相同的考试,考分都以同一标准划分成“不合格”、“合格”、“优秀”三个等级.为了了解电脑培训的效果,用抽签方式得到其中32名学生的两次考试考分等级,所绘制的统计图如图所示.试结合图示信息回答下列问题:(1)这32名学生培训前考分的中位数所在的等级是,培训后考分的中位数所在的等级是.(2)这32名学生经过培训,考分等级“不合格”的百分比由下降到.(3)估计该校整个八年级中,培训后考分等级为“合格”与“优秀”的学生共有名.(4)你认为上述估计合理吗:理由是什么?答:,理由:.四、(24题6分,25题5分)24.(6分)在平面直角坐标系中(如图每格一个单位),描出下列各点A(﹣2,﹣1),B(2,﹣1),C(2,2),D(3,2),E(0,3),F(﹣3,2),G(﹣2,2),A(﹣2,﹣1)并依次将各点连接起,观察所描出的图形,它像什么?根据图形回答下列问题:(1)图形中哪些点在坐标轴上,它们的坐标有什么特点?(2)线段FD和轴有什么位置关系?点F和点D的坐标有什么特点?25.(5分)观察下列各式:1=12﹣02,3=22﹣12,5=32﹣22,7=42﹣32……你能否得到结论:所有奇数都可以表示为两个自然数的平方差?所有偶数也能表示为两个自然数的平方差吗?说明理由.五、(本题5分)列方程组解应用题26.(5分)《孙子算经》是我国古代一部较为普及的算书,许多问题浅显易懂,如“鸡兔同笼”问题,鸡兔同笼上有三十九头,下有一百条腿,鸡兔各几何.六、(本题5分)27.(5分)已知:如图,在△ABC中,∠B=∠C,AD平分外角∠EAC.求证:AD∥BC.七、(本题6分)28.(6分)一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动,快车离乙地的路程y1(m)与行驶的时间(h)之间的函数关系,如图中线段AB所示,慢车离乙地的路程y2(m)与行驶的时间(h)之间的函数关系,如图中线段OC所示,根据图象进行以下探究.(1)甲、乙两地之间的距离为m;(2)线段AB的解析式为;线段OC的解析式为.(3)设快、慢车之间的距离为y(m),请直接写出y与行驶时间(h)的函数关系式.2017-2018学年安徽省宿州市埇桥区八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题2分,共20分)1.(2分)下列实数中是无理数的是()A.0.38 B.C.﹣D.π【解答】解:A、0.38是有理数,故A错误;B、=2是有理数,故B错误;C、﹣是有理数,故C错误;D、π是无理数,故D正确.故选:D.2.(2分)下列句子中不是命题的有()A.玫瑰花是动物B.美丽的天空C.相等的角是对顶角D.负数都小于零【解答】解:A.玫瑰花是动物对事件进行判断,是命题,错误;B.美丽的天空没有对事件进行判断,不是命题,正确;C.相等的角是对顶角对事件进行判断,是命题,错误;D.负数都小于零对事件进行判断,是命题,错误;故选:B.3.(2分)将直角三角形三边扩大同样的倍数,得到的新的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形【解答】解:因为角的度数和它的两边的长短无关,所以得到的新三角形应该是直角三角形,故选B.4.(2分)将△ABC的三个顶点的横坐标乘以﹣1,纵坐标不变,则所得图形()A.与原图形关于y轴对称B.与原图形关于轴对称C.与原图形关于原点对称D.向轴的负方向平移了一个单位【解答】解:根据轴对称的性质,知将△ABC的三个顶点的横坐标乘以﹣1,就是把横坐标变成相反数,纵坐标不变,因而是把三角形的三个顶点以y轴为对称轴进行轴对称变换.所得图形与原图形关于y轴对称.故选:A.5.(2分)如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70° B.60°C.55°D.50°【解答】解:∵AB∥CD,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故选:A.6.(2分)下列运算正确的是()A.=+B.2+=2C.•=4 D.=2【解答】解:A、==3,故选项错误;B、2+为最简结果,故选项错误;C、•===4,故选项正确;D、==,故选项错误.故选:C.7.(2分)某校将举办一场“中国汉字听写大赛”,要求各班推选一名同学参加比赛,为此,初三(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是0.2,乙的成绩的方差是0.8.根据以上数据,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定【解答】解:∵甲的成绩的方差是0.2,乙的成绩的方差是0.8,0.2<0.8,∴甲的成绩比乙的成绩稳定,故选:A.8.(2分)在平面直角坐标系中,已知一次函数y=+b的图象大致如图所示,则下列结论正确的是()A.>0,b>0 B.>0,b<0 C.<0,b>0 D.<0,b<0【解答】解:∵一次函数y=+b的图象经过二、三、四象限,∴<0,b<0.故选:D.9.(2分)如果(+y﹣4)2+=0,那么2﹣y的值为()A.﹣3 B.3 C.﹣1 D.1【解答】解:根据题意得,,由②得,y=3③,把③代入①得,+3﹣4=0,解得=1,把=1代入③得,y=3,所以方程组的解是,所以2﹣y=2×1﹣3=﹣1.故选:C.10.(2分)如果一个角的两边平行于另一个角的两边,那么这两个角()A.相等B.互补C.互余D.相等或互补【解答】解:如图:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∴∠B=∠ADC,∵∠CDE+∠ADC=180°,∴∠CDE+∠B=180°.∴如果一个角的两边平行于另一个角的两边,那么这两个角相等或互补.故选:D.二、填空题(每小题3分,共30分)11.(3分)﹣27的立方根是﹣3.【解答】解:∵(﹣3)3=﹣27,∴=﹣3故答案为:﹣3.12.(3分)一个三角形的最大角不会小于60度.【解答】解:由分析可知:如果三角形的最大角小于60°,那么此三角形的内角和小于180度,与三角形的内角和是180度矛盾.所以三角形的最大角不小于60度;故答案为:60.13.(3分)小明从家出发向正北方向走了150米,接着向正东方向走到离家250米远的地方,小明向正东方向走了200米.【解答】解:由勾股定理可得,小明向正东方向走了=200(米).故答案为:200.14.(3分)写出一个解的二元一次方程组.【解答】解:根据题意,只要保证方程组中的每个方程都满足即可,∴(答案不唯一)将代入验证,符合要求.故答案为:(答案不唯一).15.(3分)设n为正整数,且n<<n+1,则n的值为8.【解答】解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故答案为:8.16.(3分)把命题“任意两个直角都相等”改写成“如果…,那么…”的形式是如果两个角都是直角,那么这两个角相等.【解答】解:把命题“任意两个直角都相等”改写成“如果…,那么…”的形式是:如果两个角都是直角,那么这两个角相等,故答案为:如果两个角都是直角,那么这两个角相等.17.(3分)如果某公司一销售人员的个人月收入y与其每月的销售量成一次函数(如图所示),那么此销售人员的销售量在4千件时的月收入是1100元.【解答】解:设直线的解析式为y=+b.∵直线过点(1,500),(2,700),∴,解之得,∴解析式为y=200+300,当=4时,y=200×4+300=1100(元).故答案为1100.18.(3分)有一个数的平方等于它本身,这个数是 0,1 .平方根等于本身的数是 0 .绝对值等于本身的数是 非负数 .【解答】解:有一个数的平方等于它本身,这个数是 0,1.平方根等于本身的数是 0.绝对值等于本身的数是 非负数,故答案为:1,0;0;非负数.19.(3分)一个正方体,它的体积是棱长为3cm 的正方体体积的8倍,这个正方体的棱长是 6cm .【解答】解:根据题意得:=6(cm ),故答案为:6cm20.(3分)在△ABC 中,AB=15,AC=13,高AD=12,则△ABC 的周长为 42或32 .【解答】解:此题应分两种情况说明:(1)当△ABC 为锐角三角形时,在Rt △ABD 中,BD===9, 在Rt △ACD 中,CD===5∴BC=5+9=14∴△ABC 的周长为:15+13+14=42;(2)当△ABC 为钝角三角形时,在Rt △ABD 中,BD===9,在Rt △ACD 中,CD===5,∴BC=9﹣5=4.∴△ABC 的周长为:15+13+4=32故答案是:42或32.三、解答题(21题8分,22题8分,23题7分)21.(8分)计算:(1);(2).【解答】解:(1)原式=()2﹣()2=2﹣3=﹣1;(2)原式=0.5﹣2++1=1.22.(8分)解方程组:(1)(2).【解答】解:(1),②代入①得+2+1=4,解得=1,把=1代入②得y=3.故方程组的解为;(2),①+②得18=18,解得=1,把=1代入②得y=.故方程组的解为.23.(7分)某校八年级全体320名学生在电脑培训前后各参加了一次水平相同的考试,考分都以同一标准划分成“不合格”、“合格”、“优秀”三个等级.为了了解电脑培训的效果,用抽签方式得到其中32名学生的两次考试考分等级,所绘制的统计图如图所示.试结合图示信息回答下列问题:(1)这32名学生培训前考分的中位数所在的等级是不合格,培训后考分的中位数所在的等级是合格.(2)这32名学生经过培训,考分等级“不合格”的百分比由75%下降到25%.(3)估计该校整个八年级中,培训后考分等级为“合格”与“优秀”的学生共有240名.(4)你认为上述估计合理吗:理由是什么?答:不合理,理由:因为该估计不能准确反映320名学生的成绩.【解答】解:(1)这32名学生培训前考分的中位数所在的等级是不合格,培训后考分的中位数所在的等级是合格.故答案是:不合格,合格;(2)培训前等级“不合格”的百分比是:×100%=75%,培训后不合格的百分比是:×100%=25%;故答案是75%、25%;(3)320×=240(名),故答案是:240;(4)不合理,因为该估计不能准确反映320名学生的成绩.四、(24题6分,25题5分)24.(6分)在平面直角坐标系中(如图每格一个单位),描出下列各点A(﹣2,﹣1),B(2,﹣1),C(2,2),D(3,2),E(0,3),F(﹣3,2),G(﹣2,2),A(﹣2,﹣1)并依次将各点连接起,观察所描出的图形,它像什么?根据图形回答下列问题:(1)图形中哪些点在坐标轴上,它们的坐标有什么特点?(2)线段FD和轴有什么位置关系?点F和点D的坐标有什么特点?【解答】解:(1)如图所示,图形像一个房子的图案,由图可知点E(0,3)在y轴上,横坐标等于0;(2)线段FD平行于轴,点F和点D的纵坐标相同,横坐标互为相反数.25.(5分)观察下列各式:1=12﹣02,3=22﹣12,5=32﹣22,7=42﹣32……你能否得到结论:所有奇数都可以表示为两个自然数的平方差?所有偶数也能表示为两个自然数的平方差吗?说明理由.【解答】解:所有奇数都可以表示为两个自然数的平方差,依题意知:当n为正整数时,第n个式子可以表示为2n﹣1=n2﹣(n﹣1)2,因为等式右边=n2﹣(n2﹣2n+1)=n2﹣n2+2n﹣1=2n﹣1=左边,所以所有奇数都可以表示为两个自然数的平方差,对于偶数,则不一定能表示成两个自然数的平方差,如10就不能写成两个自然数的平方差.五、(本题5分)列方程组解应用题26.(5分)《孙子算经》是我国古代一部较为普及的算书,许多问题浅显易懂,如“鸡兔同笼”问题,鸡兔同笼上有三十九头,下有一百条腿,鸡兔各几何.【解答】解:设笼中鸡有只,兔有y只,由题意得:,解得.答:笼中鸡有28只,兔有11只.六、(本题5分)27.(5分)已知:如图,在△ABC中,∠B=∠C,AD平分外角∠EAC.求证:AD∥BC.【解答】证明:由三角形的外角性质得,∠EAC=∠B+∠C,∵∠B=∠C,∴∠EAC=2∠B,∵AD平分外角∠EAC,∴∠EAC=2∠EAD,∴∠B=∠EAD,∴AD∥BC.七、(本题6分)28.(6分)一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动,快车离乙地的路程y1(m)与行驶的时间(h)之间的函数关系,如图中线段AB所示,慢车离乙地的路程y2(m)与行驶的时间(h)之间的函数关系,如图中线段OC所示,根据图象进行以下探究.(1)甲、乙两地之间的距离为450m;(2)线段AB的解析式为y1=﹣150+450(0≤≤3);线段OC的解析式为y2=75(0≤≤6).(3)设快、慢车之间的距离为y(m),请直接写出y与行驶时间(h)的函数关系式.【解答】解:(1)∵当=0时,y1=450,∴甲、乙两地之间的距离为450m.故答案为:450.(2)设线段AB的解析式为y1=+b,线段OC的解析式为y2=m,将点A(0,450)、B(3,0)代入y1=+b,,解得:,∴线段AB的解析式为y1=﹣150+450(0≤≤3).将点C(6,450)代入y2=m,6m=450,解得:m=75,∴线段OC的解析式为y2=75(0≤≤6).故答案为:y1=﹣150+450(0≤≤3);y2=75(0≤≤6).(3)令y1=y2,则﹣150+450=75,解得:=2.当0≤<2时,y=y1﹣y2=﹣150+450﹣75=﹣225+450;当2≤≤3时,y=y2﹣y1=75﹣(﹣150+450)=225﹣450;当3<≤6时,y=y2=75.∴快、慢车之间的距离y(m)与行驶时间(h)的函数关系式为y=.。
2017-2018学年安徽省宿州市埇桥区八年级(上)期末数学试卷(B卷)一、选择题(每小题4分,共40分)1.(4分)如图,数轴上点P表示的数可能是()A.B.C.D.2.(4分)点A在x轴上,且到坐标原点的距离是2,则点A的坐标为()A.(﹣2,0)B.(2,0)C.(0,﹣2)或(0,2)D.(﹣2,0)或(2,0)3.(4分)函数y=中,自变量x的取值范围是()A.x≥﹣1B.x>﹣1C.x≠﹣1D.x>14.(4分)对于命题“若|a|=|b|,则a=b”,下面四组关于a、b的值中,能说明这个命题是假命题的是()A.a=2,b=2B.a=﹣2,b=﹣2C.a=﹣2,b=2D.a=2,b=5 5.(4分)如图,AB∥CD,∠D=∠E=35°,则∠B的度数为()A.60°B.65°C.70°D.75°6.(4分)如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.3B.4C.5D.67.(4分)已知是二元一次方程组的解,则m﹣n的值是()A.1B.2C.3D.48.(4分)已知:一次函数y=kx+b(k≠0)的图象经过第二、三、四象限,则一次函数y=﹣bx+kb的图象可能是()A.B.C.D.9.(4分)甲、乙两人参加射击比赛,每人射击五次,命中的环数如下表:根据以上数据,判断甲、乙两人命中环数的稳定性()A.甲的稳定性大B.乙的稳定性大C.甲、乙稳定性一样大D.无法比较10.(4分)在A、B两地之间有汽车站C(C在直线AB上),甲车由A地驶往C,乙车由B地驶往A地,两车同时出发,匀速行驶.甲、乙两车离C站的路程y1,y2(千米)与行驶时间x(小时)之间的函数图象如图所示,则下列结论中:①A、B两地相距440千米;②甲车的平均速度是60千米/小时;③乙车行驶11小时后到达A地;④两车行驶4.4小时后相遇,正确的结论有()A.1个B.2个C.3个D.4个二、填空题(每小题5分,共20分)11.(5分)在平面直角坐标系中,点P(﹣2,﹣5)关于x轴的对称点P′的坐标是.12.(5分)若数据a1、a2、a3的平均数是3,则数据2a1、2a2、2a3的平均数是.13.(5分)同一温度的华氏度数y(℉)与摄氏度x(℃)之间满足一次函数关系,下表列出了同一温度的华氏度数y(℉)与摄氏度x(℃)一些对应值,则根据表中数据确定的y与x的函数表达式是.14.(5分)如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=.三、解答题(每小题8分,共个16分)15.(8分)已知:点A(m﹣1,4m+6)在第二象限.(1)求m的取值范围;(2)我们把横、纵坐标均为整数的点称为“整数点”,请写出符合条件的“整数点A”.16.(8分)解方程组:17.(8分)推理填空:如图AB∥CD,∠1=∠2,∠3=∠4,试说明AD∥BE.解:∵AB∥CD(已知)∴∠4=∠1+ ()∵∠3=∠4(已知)∴∠3=∠1+ ()∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF()即∠=∠∴∠3=∠()∴AD∥BE().18.(8分)已知:如图,平面直角坐标系中,△OAB是等腰三角形,底边OA 在x轴上,点A坐标为(2,0),顶点B的坐标为(1,3),我们把△OAB的底边上的点A的横坐标每扩大2倍,而顶点B的纵坐标不变,称为一次“图形变换”,据此回答下列问题:(1)①△OAB经过一次“图形变换”后,点A的对应点A1的坐标为,点B 的对应点B1的坐标为.②△OAB经过两次“图形变换”后,点A的对应点A2的坐标为,点B的对应点B2的坐标为.(2)根据这个规律猜想:△OAB经过n次“图形变换”后,点A的对应点A n的坐标为,点B的对应点B n的坐标为(用含n的式子表示).19.(10分)先填写表,通过观察后再回答问题:(1)表格中x=,y=;(2)从表格中探究a与数位的规律,并利用这个规律解决下面两个问题:①已知≈3.16,则≈;②已知=8.973,若=897.3,用含m的代数式表示b,则b=;(3)试比较与a的大小.20.(10分)如图所示,折叠长方形一边AD,使点D落在BC边的点F处,折痕为AE,这时AD=AF,DE=FE.已知BC=5厘米,AB=4厘米.(1)求BF与FC的长.(2)求EC的长.21.(12分)已知:如图一次函数y1=﹣x﹣2与y2=x﹣4的图象相交于点A.(1)求点A的坐标;(2)若一次函数y1=﹣x﹣2与y2=x﹣4的图象与x轴分别相交于点B、C,求△ABC的面积.(3)结合图象,直接写出y1≥y2时x的取值范围.22.(12分)某校要求200名学生进行社会调查,每人必须完成3﹣6份报告,调查结束后随机抽查了20名学生每人完成报告的份数,并分为四类,A:3份;B:4份;C:5份;D:6份.将各类的人数绘制成扇形图(如图1)和尚未完整的条形图(如图2),回答下列问题:(1)请将条形统计图2补充完整;(2)写出这20名学生每天完成报告份数的众数份和中位数份;(3)在求出20名学生每人完成报告份数的平均数时,小明是这样分析的:第一步:求平均数的公式是=;第二步:在该问题中,n=4,x1=3,x2=4,x3=5,x4=6;第三步:==4.5(份)小明的分析对不对?如果对,请说明理由,如果不对,请你帮助改正,并估算着?200名学生共完成多少分报告23.(14分)某超市对A、B两种商品开展“2018•元旦”促销活动,活动方案有如下两种(同一种商品不可同时参与两种活动):若某单位购买A商品x件(x为正整数),购买B商品的件数比A商品件数的2倍还多2件,方案一付款金额为w1,方案二付款金额为w2.(1)请写出w1、w2与x之间的函数表达式;(2)该单位该如何选择活动方案,才能获得最大优惠?请说明理由.(3)该单位购买A商品50件,B商品多少件?此时按最大优惠的付款金额为多少元?2017-2018学年安徽省宿州市埇桥区八年级(上)期末数学试卷(B卷)参考答案与试题解析一、选择题(每小题4分,共40分)1.(4分)如图,数轴上点P表示的数可能是()A.B.C.D.【解答】解:∵9<11<16,∴3<<4.故选:C.2.(4分)点A在x轴上,且到坐标原点的距离是2,则点A的坐标为()A.(﹣2,0)B.(2,0)C.(0,﹣2)或(0,2)D.(﹣2,0)或(2,0)【解答】解:∵点A在x轴上,且到坐标原点的距离是2,∴点A的坐标为:(﹣2,0)或(2,0).故选:D.3.(4分)函数y=中,自变量x的取值范围是()A.x≥﹣1B.x>﹣1C.x≠﹣1D.x>1【解答】解:由题意得,x+1>0,解得x>﹣1故选:B.4.(4分)对于命题“若|a|=|b|,则a=b”,下面四组关于a、b的值中,能说明这个命题是假命题的是()A.a=2,b=2B.a=﹣2,b=﹣2C.a=﹣2,b=2D.a=2,b=5【解答】解:当a=2,b=2时,|a|=|b|,而a=b成立,故A选项不符合题意;当a=﹣2,b=﹣2时,|a|=|b|,而a=b成立,故B选项不符合题意;当a=2,b=﹣2时,|a|=|b|,但a=b不成立,故C选项符合题意;当a=2,b=5时,|a|=|b|不成立,故D选项不符合题意;故选:C.5.(4分)如图,AB∥CD,∠D=∠E=35°,则∠B的度数为()A.60°B.65°C.70°D.75°【解答】解:∵∠D=∠E=35°,∴∠1=∠D+∠E=35°+35°=70°,∵AB∥CD,∴∠B=∠1=70°.故选:C.6.(4分)如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.3B.4C.5D.6【解答】解:△DAB的面积=×DA×BC,∴×5×BC=10,解得,BC=4,由勾股定理得,CD==3,故选:A.7.(4分)已知是二元一次方程组的解,则m﹣n的值是()A.1B.2C.3D.4【解答】解:由题意,得,解得,m﹣n=1﹣(﹣3)=4,故选:D.8.(4分)已知:一次函数y=kx+b(k≠0)的图象经过第二、三、四象限,则一次函数y=﹣bx+kb的图象可能是()A.B.C.D.【解答】解:∵一次函数y=kx+b经过第二,三,四象限,∴k<0,b<0,∴﹣b>0,kb>0,所以一次函数y=﹣bx+kb的图象经过一、二、三象限,故选:A.9.(4分)甲、乙两人参加射击比赛,每人射击五次,命中的环数如下表:根据以上数据,判断甲、乙两人命中环数的稳定性()A.甲的稳定性大B.乙的稳定性大C.甲、乙稳定性一样大D.无法比较【解答】解:甲的方差==2;乙的方差==,因为,所以甲的稳定性大,故选:A.10.(4分)在A、B两地之间有汽车站C(C在直线AB上),甲车由A地驶往C,乙车由B地驶往A地,两车同时出发,匀速行驶.甲、乙两车离C站的路程y1,y2(千米)与行驶时间x(小时)之间的函数图象如图所示,则下列结论中:①A、B两地相距440千米;②甲车的平均速度是60千米/小时;③乙车行驶11小时后到达A地;④两车行驶4.4小时后相遇,正确的结论有()A.1个B.2个C.3个D.4个【解答】解:A、B两地相距=360+80=440(千米),故①正确,甲车的平均速度==60(千米/小时),故②正确,乙车的平均速度==40千米/小时,440÷40=11(小时),∴乙车行驶11小时后到达A地,故③正确,设t小时相遇,则有:(60+40)t=440,t=4.4(小时),∴两车行驶4.4小时后相遇,故④正确,故选:D.二、填空题(每小题5分,共20分)11.(5分)在平面直角坐标系中,点P(﹣2,﹣5)关于x轴的对称点P′的坐标是(﹣2,5).【解答】解:根据两点关于x轴对称,横坐标不变,纵坐标互为相反数,则点P(﹣2,﹣5)关于x轴的对称点P′的坐标是(﹣2,5).故答案为:(﹣2,5).12.(5分)若数据a1、a2、a3的平均数是3,则数据2a1、2a2、2a3的平均数是6.【解答】解:∵数据a1、a2、a3的平均数是3,∴a1+a2+a3=9,∴(2a1+2a2+2a3)÷3=18÷3=6,故答案为:6.13.(5分)同一温度的华氏度数y(℉)与摄氏度x(℃)之间满足一次函数关系,下表列出了同一温度的华氏度数y(℉)与摄氏度x(℃)一些对应值,则根据表中数据确定的y与x的函数表达式是y=x+32.【解答】解:设y=kx+b,由题意可知当x=﹣10时y=14,当x=0时,y=32,∴,解得,∴y=x+32,故答案为:y=x+32.14.(5分)如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=30°.【解答】解:如图,∵∠1+∠3=125°,∠2+∠4=85°,∴∠1+∠3+∠2+∠4=210°,∵l1∥l2,∴∠3+∠4=180°,∴∠1+∠2=210°﹣180°=30°.故答案为30°.三、解答题(每小题8分,共个16分)15.(8分)已知:点A(m﹣1,4m+6)在第二象限.(1)求m的取值范围;(2)我们把横、纵坐标均为整数的点称为“整数点”,请写出符合条件的“整数点A”.【解答】解:(1)由题意得,,解不等式①得,m<1,解不等式②得,m>﹣,所以,m的取值范围是﹣<m<1;(2)∵m是整数,∴m取﹣1,0,所以,符合条件的“整数点A”有(﹣2,2),(﹣1,6).16.(8分)解方程组:【解答】解:由①得﹣x+7y=6 ③,由②得2x+y=3 ④,③×2+④,得:14y+y=15,解得:y=1,把y=1代入④,得:﹣x+7=6,解得:x=1,所以方程组的解为.17.(8分)推理填空:如图AB∥CD,∠1=∠2,∠3=∠4,试说明AD∥BE.解:∵AB∥CD(已知)∴∠4=∠1+ ∠CAF(两直线平行,同位角相等)∵∠3=∠4(已知)∴∠3=∠1+ ∠CAF(等量代换)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等量代换)即∠4=∠DAC∴∠3=∠∠DAC(等量代换)∴AD∥BE(内错角相等,两直线平行).【解答】解:∵AB∥CD(已知),∴∠4=∠1+∠CAF(两直线平行,同位角相等);∵∠3=∠4(已知),∴∠3=∠1+∠CAF(等量代换);∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF(等量代换),即∠4=∠DAC,∴∠3=∠DAC(等量代换),∴AD∥BE(内错角相等,两直线平行).18.(8分)已知:如图,平面直角坐标系中,△OAB是等腰三角形,底边OA 在x轴上,点A坐标为(2,0),顶点B的坐标为(1,3),我们把△OAB的底边上的点A的横坐标每扩大2倍,而顶点B的纵坐标不变,称为一次“图形变换”,据此回答下列问题:(1)①△OAB经过一次“图形变换”后,点A的对应点A1的坐标为(4,0),点B的对应点B1的坐标为(2,3).②△OAB经过两次“图形变换”后,点A的对应点A2的坐标为(8,0),点B的对应点B2的坐标为(4,3).(2)根据这个规律猜想:△OAB经过n次“图形变换”后,点A的对应点A n的坐标为(2n+1,0),点B的对应点B n的坐标为(2n,3)(用含n的式子表示).【解答】解:(1)①∵A坐标为(2,0),顶点B的坐标为(1,3),由一次“图形变换”得,A1(4,0),B1(2,3),故答案为(4,0),(2,3);②∵A1(4,0),B1(2,3),由一次“图形变换”得,A2(8,0),B2(4,3),故答案为:(8,0),(4,3);(2)由一次“图形变换”知,△OAB经过一次“图形变换”后,A1的横坐标为4=2×2=22,B1点的横坐标为21,△OAB经过两次“图形变换”后,A2的横坐标为8=2×2×2=23,B2点的横坐标为2×2=22,△OAB经过两次“图形变换”后,A3的横坐标为24,B3点的横坐标为23,…△OAB经过n次“图形变换”后,A n的横坐标为2n+1,B n点的横坐标为2n;故答案为:(2n+1,0),(2n,3).19.(10分)先填写表,通过观察后再回答问题:(1)表格中x=0.1,y=10;(2)从表格中探究a与数位的规律,并利用这个规律解决下面两个问题:①已知≈3.16,则≈31.6;②已知=8.973,若=897.3,用含m的代数式表示b,则b=10000m;(3)试比较与a的大小.【解答】解:(1)x=0.1,y=10;(2)①根据题意得:≈31.6;②根据题意得:b=10000m;(3)当a=0或1时,=a;当0<a<1时,>a;当a>1时,<a,故答案为:(1)0.1;10;(2)①31.6;②10000m20.(10分)如图所示,折叠长方形一边AD,使点D落在BC边的点F处,折痕为AE,这时AD=AF,DE=FE.已知BC=5厘米,AB=4厘米.(1)求BF与FC的长.(2)求EC的长.【解答】解:(1)∵AD=AF,∴AF=AD=BC,在Rt△ABF中,由勾股定理得BF2=AF2﹣AB2=52﹣42=9,BF=3,∴FC=5﹣3=2;(2)设EC=2cm,则DE=(4﹣x)cm,•∴EF=4﹣x,在Rt△ECF中,由勾股定理得x2+22=(4﹣x)2,即x=15,∴EC=1.5厘米21.(12分)已知:如图一次函数y1=﹣x﹣2与y2=x﹣4的图象相交于点A.(1)求点A的坐标;(2)若一次函数y1=﹣x﹣2与y2=x﹣4的图象与x轴分别相交于点B、C,求△ABC的面积.(3)结合图象,直接写出y1≥y2时x的取值范围.【解答】解:(1)解方程组,得,所以点A坐标为(1,﹣3);(2)当y1=0时,﹣x﹣2=0,x=﹣2,则B点坐标为(﹣2,0);当y2=时,x﹣4=0,x=4,则C点坐标为(4,0);∴BC=4﹣(﹣2)=6,∴△ABC的面积=×6×3=9;(3)根据图象可知,y1≥y2时x的取值范围是x≤1.22.(12分)某校要求200名学生进行社会调查,每人必须完成3﹣6份报告,调查结束后随机抽查了20名学生每人完成报告的份数,并分为四类,A:3份;B:4份;C:5份;D:6份.将各类的人数绘制成扇形图(如图1)和尚未完整的条形图(如图2),回答下列问题:(1)请将条形统计图2补充完整;(2)写出这20名学生每天完成报告份数的众数5份和中位数5份;(3)在求出20名学生每人完成报告份数的平均数时,小明是这样分析的:第一步:求平均数的公式是=;第二步:在该问题中,n=4,x1=3,x2=4,x3=5,x4=6;第三步:==4.5(份)小明的分析对不对?如果对,请说明理由,如果不对,请你帮助改正,并估算着200名学生共完成多少分报告?【解答】解:(1)B中的人数为:20﹣2﹣8﹣4=6人,如图,(2)这20名学生每天完成报告份数的众数5份和中位数5份;故答案为:5,5.(3)不对,==4.7份.200×4.7=940份.23.(14分)某超市对A、B两种商品开展“2018•元旦”促销活动,活动方案有如下两种(同一种商品不可同时参与两种活动):若某单位购买A商品x件(x为正整数),购买B商品的件数比A商品件数的2倍还多2件,方案一付款金额为w1,方案二付款金额为w2.(1)请写出w1、w2与x之间的函数表达式;(2)该单位该如何选择活动方案,才能获得最大优惠?请说明理由.(3)该单位购买A 商品50件,B 商品多少件?此时按最大优惠的付款金额为多少元?【解答】解:(1)w 1=100(1﹣30%)x +110(1﹣15%)(2x +2)=257x +187; w 2=[100x +110(2x +2)](1﹣20%)=256x +176;(2)由题意x +2x +2=101,解得x=33,①当总件数不足101,即x <33时,只能选择方案一比较优惠;②当总件数大于等于101,即x >33时,w 1﹣w 2=(257x +187)﹣(256x +176)=x +11>0,∴选择方案二比较优惠.(3)当x=50时,2x +2=102(件),选择方案二比较优惠, 此时w 2=256×50+176=12976(元),答:购买B 商品102件时,此时按最大优惠的付款金额为12976元. 附赠数学基本知识点1知识点1:一元二次方程的基本概念1.一元二次方程3x 2+5x-2=0的常数项是-2.2.一元二次方程3x 2+4x-2=0的一次项系数为4,常数项是-2. 3.一元二次方程3x 2-5x-7=0的二次项系数为3,常数项是-7. 4.把方程3x(x-1)-2=-4x 化为一般式为3x 2-x-2=0.知识点2:直角坐标系与点的位置1.直角坐标系中,点A (3,0)在y 轴上。