第5章 蛋白质的翻译
- 格式:ppt
- 大小:8.14 MB
- 文档页数:63
蛋白质翻译的起始机制研究蛋白质是细胞中最重要的组成部分之一,也是细胞机能的基础。
在蛋白质的生物合成过程中,蛋白质翻译是其中的关键环节。
蛋白质的合成是从N端向C端进行的,而确定蛋白质翻译的起始点则是整个过程中最为关键的部分之一。
在真核细胞中,蛋白质的合成发生在核糖体上。
在翻译起始点之前,mRNA(信使RNA)需要先与核糖体的小亚单位预组装形成起始复合体(preinitiation complex),然后再与大亚单位组合形成完整的核糖体。
也就是说,翻译起始点的确立需要多个因素共同作用,其中最重要的是起始因子(eukaryotic initiation factors, eIFs)。
eIFs是在蛋白质合成过程中为数不多的RNA结合蛋白质,它们参与形成起始复合体以及其他与蛋白质翻译有关的过程。
与在细菌中相似,eIFs的作用主要包括寻找AUG密码子(蛋白质翻译的起始密码子)、将Met-tRNAiMet(甲硫氨酸tRNA)定位到AUG密码子上以及聚集细胞核糖体等。
然而,相较于细菌,eukaryotic initiation factors的作用更为复杂。
在真核转录中,mRNA的5'端通常会具有一个称为帽结构(capping structure)的物质,即m7GpppN(m为methyl,N为任意核苷酸),这个结构不仅涉及到mRNA的稳定性以及转录后修饰,还有利于核糖体识别mRNA,而eIFs正是寻找该结构的关键因子之一。
另一方面,eukaryotic initiation factors在进化过程中也发生了一些特殊的改变。
例如,在真核生物中,大部分蛋白质翻译的起始密码子不是AUG,而是CUG、GUG、AUU等非经典密码子,这意味着eIFs需要能识别不同的起始密码子。
同时,eukaryotic initiation factors还需要与许多其他蛋白质和核酸相互作用,形成一个复杂的调控网络,以实现蛋白质翻译的高效、准确、精细的调控。
蛋白质的生物合成⎯⎯翻译一切生命现象不能离开蛋白质,由于代谢更新,即使成人亦需不断合成蛋白质(约400g/日)。
蛋白质具有高度特异性。
不同生物,它们的蛋白质互不相同。
所以食物蛋白质不能为人体直接利用,需经消化、分解成氨基酸,吸收后方可用来合成人体蛋白质。
mRNA含有来自DNA的遗传信息,是合成蛋白质的“模板”,各种蛋白质就是以其相应的mRNA为“模板”,用各种氨基酸为原料合成的。
mRNA不同,所合成的蛋白质也就各异。
所以蛋白质生物合成的过程,贯穿了从DNA分子到蛋白质分子之间遗传信息的传递和体现的过程。
mRNA生成后,遗传信息由mRNA传递给新合成的蛋白质,即由核苷酸序列转换为蛋白质的氨基酸序列。
这一过程称为翻译(translation)。
翻译的基本原理见图14-1。
由图14-1可见,mRNA穿过核膜进入胞质后,多个核糖体(亦称核蛋白体,图中为四个)附着其上,形成多核糖体。
作为原料的各种氨基酸在其特异的搬运工具(tRNA)携带下,在多核糖体上以肽键互相结合,生成具有一定氨基酸序列的特定多肽链。
合成后从核糖体释下的多肽链,不一定具有生物学活性。
有的需经一定处理,有的需与其他成分(别的多肽链或糖、脂等)结合才能形成活性蛋白质。
第一节参与蛋白质生物合成的物质参与蛋白质合成的物质,除氨基酸外,还有mRNA(“模板”)、tRNA(“特异的搬运工具”)、核糖体(“装配机”)、有关的酶(氨基酰tRNA合成酶与某些蛋白质因子),以及ATP、GTP等供能物质与必要的无机离子等。
一、mRNA与遗传密码天然蛋白质有1010~1011种,组成蛋白质的氨基酸却只有20种。
这20种氨基1酸排列组合的不同,形成了形形色色的蛋白质。
蛋白质中氨基酸的序列如何决定?(一)三联体密码与密码的简并研究表明,密码子(codon)共有64个,每个密码子是由三个核苷酸(称为三联体,triplet)组成的。
有的氨基酸有多个密码子,这种现象称为简并(degenerate),如UUU和UUC都是苯丙氨酸的密码子,UCU、UCC、UCA、UCG、AGU和AGC都是丝氨酸的密码子,同一氨基酸的不同密码子称为同义词(synonyms)。
蛋白质的生物合成(翻译)Protein Biosynthesis,Translation概述蛋白质的生物合成,即翻译,就是将核酸中由4 种核苷酸序列编码的遗传信息,通过遗传密码破译的方式解读为蛋白质一级结构中20种氨基酸的排列顺序。
第一节蛋白质合成体系Protein Biosynthesis System参与蛋白质生物合成的物质包括:●三种RNA–mRNA(messenger RNA, 信使RNA)–rRNA(ribosomal RNA, 核蛋白体RNA)–tRNA(transfer RNA, 转移RNA)●20种氨基酸(AA)作为原料●酶及众多蛋白因子,如IF、eIF●ATP、GTP、无机离子一、翻译模板mRNA及遗传密码——mRNA是遗传信息的携带者•遗传学将编码一个多肽的遗传单位称为顺反子(cistron)。
•原核细胞中数个结构基因常串联为一个转录单位,转录生成的mRNA可编码几种功能相关的蛋白质,为多顺反子(polycistron) 。
•真核mRNA只编码一种蛋白质,为单顺反子(single cistron) 。
•遗传密码:mRNA分子上从5'至3'方向,由AUG开始,每3个核苷酸为一组,决定肽链上某一个氨基酸或蛋白质合成的起始、终止信号,称为三联体密码(triple t codon)。
起始密码(initiation codon): AUG ;终止密码(termination codon): UAA,UAG,UGA•从mRNA 5'端起始密码子AUG到3'端终止密码子之间的核苷酸序列,各个三联体密码连续排列编码一个蛋白质多肽链,称为开放阅读框架(open reading frame, ORF)。
•遗传密码的特点:• 1. 连续性(com maless):编码蛋白质氨基酸序列的各个三联体密码连续阅读,密码•间既无间断也无交叉。
• 2. 简并性(deg eneracy):遗传密码中,除色氨酸和甲硫氨酸仅有一个密码子外,其•余氨基酸有2、3、4个或多至6个三联体为其编码。
第五章蛋白质的生物合成(翻译)一、选择题1.仅有一个密码子的氨基酸是A.色氨酸、赖氨酸B.苏氨酸、甘氨酸C.甲硫氨酸、甘氨酸D.亮氨酸、丙氨酸E.色氨酸、甲硫氨酸2.密码与反密码配对时,不遵从碱基配对规律,称为A.密码的简并性B.密码的偏爱性C.密码的连续性D.密码的摆动性E.密码的通用性3.真核生物核蛋白体中没有的rRNA是A.18SB.23SC.5SD.28SE.5.8S4.反密码存在于A.DNAB.tRNAC.mRNAD.rRNAE.cDNA5.不符合密码的通用性的细胞器是A.细胞核B.微粒体C.线粒体D.内质网E.高尔基体6.氨基酰-tRNA合成酶的校正活性是A.水解酯键B.水解3’,5’磷酸二酯键C.水解磷酸酯键D.形成酸酐键E.形成磷酸酯键7.关于核蛋白体,错误的是A.由rRNA和多种蛋白质组成B.分为大小亚基C.是翻译的场所D.在细胞核内起作用E.一个mRNA上可附着多个核蛋白体8.能促使大小亚基解离的因子是A.IF1B.IF2C.IF3D.EF-TsE.IF1与IF39.EF-Tu的功能是A.协助氨基酰-tRNA进入A位B.促进核糖体亚基聚合C.促进核糖体解聚D.促进mRNA与核糖体分离E.促进肽酰-tRNA移位10.延长因子EFG具有哪种酶的活性A.转肽酶B.酯酶C.转位酶D.转甲酰酶E.转氨酶11.肽链延长过程的叙述,错误的是A.又称为核蛋白体循环B.每循环一次延长一个氨基酸C.分为进位,成肽和转位三步D.需要EFT、EFGE.需要ATP供能12. 翻译终止时激活转肽酶为酯酶活性的是A.RF-1B.RF-2C.RF-3D.RF-4E.RR13. 蛋白质合成中不消耗能量的阶段是A.氨基酸活化B.翻译起始C.进位D.成肽E.转位14. 关于多肽链一级结构的翻译后修饰,描述错误的是A.蛋白质合成过程中N端总是甲酰甲硫氨酸B.天然蛋白质N端多数不是甲酰甲硫氨酸C.脱甲酰基酶可除去N端甲酰基D.氨基肽酶可除去N端氨基酸E.翻译终止才能除去N端甲酰基15. 鸦片促黑皮质素原水解加工生成的是A.胰岛素B.糖蛋白C.脂蛋白D.ACTHE.TSH16. 可被信号肽酶裂解的部位是A.加工区B.疏水核心区C.碱性氨基末端区D.酸性羧基末端区E.亲水区17.关于信号肽识别粒子(SRP)的描述,错误的是A.由蛋白质与RNA组成的复合体B.能特异识别结合信号肽C.具有暂停蛋白质合成的作用D.可将正在合成蛋白质的核蛋白体带至膜外E.SRP需与对接蛋白结合18. 白喉毒素可共价修饰的因子是A.EF3B.eEF1C.EF1D.eEF2E.EF219. 干扰素通过何种方式使eIF2失活A.甲基化B.ADP核糖基化C.羧化D.磷酸化E.乙酰化20. 可辨认结合分泌蛋白新生肽链N端的是A.转肽酶B.信号肽识别颗粒C.GTP酶D.RNA酶E.对接蛋白二、名词解释1. 多聚核蛋白体(polyribosome)2. 信号肽(signal peptide)3.开放阅读框架(open reading frame, ORF)三、问答题1.三种RNA在蛋白质合成中各起何作用?2.原核与真核生物翻译起始阶段各有何异同?3.细胞核蛋白合成后如何靶向输送到细胞核?4.举例说明抗生素在翻译水平抑菌的作用机理。