量子力学试卷B(2007级)
- 格式:doc
- 大小:381.50 KB
- 文档页数:6
【关键字】试题量子力学自测题(1)一、简答与证明:(共25分)1、什么是德布罗意波?并写出德布罗意波的表达式。
(4分)2、什么样的状态是定态,其性质是什么?(6分)3、全同费米子的波函数有什么特点?并写出两个费米子组成的全同粒子体系的波函数。
(4分)4、证明是厄密算符(5分)5、简述测不准关系的主要内容,并写出坐标和动量之间的测不准关系。
(6分)2、(15分)已知厄密算符,满足,且,求1、在A表象中算符、的矩阵表示;2、在B表象中算符的本征值和本征函数;3、从A表象到B表象的幺正变换矩阵S。
三、(15分)设氢原子在时处于状态,求1、时氢原子的、和的取值几率和平均值;2、时体系的波函数,并给出此时体系的、和的取值几率和平均值。
四、(15分)考虑一个三维状态空间的问题,在取定的一组正交基下哈密顿算符由下面的矩阵给出这里,,是一个常数,,用微扰公式求能量至二级修正值,并与精确解相比较。
五、(10分)令,,分别求和作用于的本征态和的结果,并根据所得的结果说明和的重要性是什么?量子力学自测题(1)参考答案一、1、描写自由粒子的平面波称为德布罗意波;其表达式:2、定态:定态是能量取确定值的状态。
性质:定态之下不显含时间的力学量的取值几率和平均值不随时间改变。
3、全同费米子的波函数是反对称波函数。
两个费米子组成的全同粒子体系的波函数为:。
4、=,因为是厄密算符,所以是厄密算符。
5、设和的对易关系,是一个算符或普通的数。
以、和依次表示、和在态中的平均值,令,,则有,这个关系式称为测不准关系。
坐标和动量之间的测不准关系为:2、解1、由于,所以算符的本征值是,因为在A表象中,算符的矩阵是对角矩阵,所以,在A表象中算符的矩阵是:设在A 表象中算符的矩阵是,利用得:;由于,所以,;由于是厄密算符,, 令,其中为任意实常数,得在A 表象中的矩阵表示式为: 2、类似地,可求出在B 表象中算符的矩阵表示为:在B 表象中算符的本征方程为:,即 和不同时为零的条件是上述方程的系数行列式为零,即 对有:,对有:所以,在B 表象中算符的本征值是,本征函数为和 3、类似地,在A 表象中算符的本征值是,本征函数为和从A 表象到B 表象的幺正变换矩阵就是将算符在A 表象中的本征函数按列排成的矩阵,即 三、解: 已知氢原子的本征解为: ,将向氢原子的本征态展开, 1、=,不为零的展开系数只有三个,即,,,显然,题中所给的状态并未归一化,容易求出归一化常数为:,于是归一化的展开系数为: ,,(1)能量的取值几率,, 平均值为:(2)取值几率只有:,平均值 (3)的取值几率为: ,,平均值 2、时体系的波函数为:=由于、和皆为守恒量,所以它们的取值几率和平均值均不随时间改变,与时的结果是一样的。
曾谨言《量子力学》(卷I )第四版(科学出版社)2007年1月摘录第三版序言我认为一个好的高校教师,不应只满足于传授知识,而应着重培养学生如何思考问题、提出问题和解决问题。
这里涉及到科学上的继承和创新的关系。
“继往”中是一种手段,而目的只能是“开来”。
讲课虽不必要完全按照历史的发展线索讲,但有必要充分展开这种矛盾,让学生自己去思考,自己去设想一个解决矛盾的方案。
要真正贯彻启发式教学,教师有必要进行教学与科学研究。
而教学研究既有教学法的研究,便更实质性的是教学内容的研究。
从教学法来讲,教师讲述一个新概念和新原理时,应力求符合初学者的认识过程。
在教学内容上,至少对于像量子力学这样的现代物理课程来讲,我信为还有很多问题并未搞得很清楚,很值得研究。
量子力学涉及物质运动形式和规律的根本变革.20世纪前的经典物理学(经典力学、电动力学、热力学与统计物理学等),只适用于描述一般宏观从物质波的驻波条件自然得出角动量量子化的条件及自然理解为什么束缚态的能量是量子化的:P17~18;人类对光的认识的发展历史把原来人们长期把物质粒子看作经典粒子而没有发现错误的启发作用:P18;康普顿实验对玻尔电子轨道概念的否定及得出“无限精确地跟踪一个电子是不可能的”:P21;在矩阵力学的建立过程中,玻尔的对应原理思想起了重要的作用;波动力学严于德布罗意物质波的思想:P21;微观粒子波粒二象性的准确含义:P29;电子的双缝衍射实验对理解电子波为几率波的作用:P31在非相对论条件下(没有粒子的产生与湮灭),概率波正确地把物质粒子的波动性与粒子性联系起来,也是在此条件下,有波函数的归一化及归一化不随时间变化的结果:P32;经典波没有归一化的要领,这也是概率波与经典波的区别之一:P32;波函数归一化不影响概率分布:P32多粒子体系波函数的物理意义表明:物质粒子的波动性并不是在三维空间中某种实在的物理量的波动现象,而一般说来是多维的位形空间中的概率波。
量子力学期末试题及答案红色为我认为可能考的题目一、填空题:1、波函数的标准条件:单值、连续性、有限性。
2、|Ψ(r,t)|^2的物理意义:t时刻粒子出现在r处的概率密度。
3、一个量的本征值对应多个本征态,这样的态称为简并。
4、两个力学量对应的算符对易,它们具有共同的确定值。
二、简答题:1、简述力学量对应的算符必须是线性厄米的。
答:力学量的观测值应为实数,力学量在任何状态下的观测值就是在该状态下的平均值,量子力学中,可观测的力学量所对应的算符必须为厄米算符;量子力学中还必须满足态叠加原理,而要满足态叠加原理,算符必须是线性算符。
综上所述,在量子力学中,能和可观测的力学量相对应的算符必然是线性厄米算符。
2、一个量子态分为本征态和非本征态,这种说法确切吗?答:不确切。
针对某个特定的力学量,对应算符为A,它的本征态对另一个力学量(对应算符为B)就不是它的本征态,它们有各自的本征值,只有两个算符彼此对易,它们才有共同的本征态。
3、辐射谱线的位置和谱线的强度各决定于什么因素?答:某一单色光辐射的话可能吸收,也可能受激跃迁。
谱线的位置决定于跃迁的频率和跃迁的速度;谱线强度取决于始末态的能量差。
三、证明题。
2、证明概率流密度J不显含时间。
四、计算题。
1、第二题:如果类氢原子的核不是点电荷,而是半径为0r、电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。
解:这种分布只对0r r <的区域有影响,对0r r ≥的区域无影响。
据题意知)()(ˆ0r U r U H -=' 其中)(0r U 是不考虑这种效应的势能分布,即 2004ze U r rπε=-())(r U 为考虑这种效应后的势能分布,在0r r ≥区域,rZe r U 024)(πε-=在0r r <区域,)(r U 可由下式得出, ⎰∞-=r E d r e r U )(⎪⎪⎩⎪⎪⎨⎧≥≤=⋅⋅=)( 4 )( ,43441020********420r r r Ze r r r r Ze r r Ze r E πεπεπππε⎰⎰∞--=0)(r r rEdr e Edr e r U⎰⎰∞--=002023002144r r rdr r Ze rdr r Ze πεπε)3(84)(82203020022203002r r r Ze r Ze r r r Ze --=---=πεπεπε )( 0r r ≤ ⎪⎩⎪⎨⎧≥≤+--=-=')( 0 )( 4)3(8)()(ˆ000222030020r r r r r Ze r r r Ze r U r U H πεπε由于0r 很小,所以)(2ˆˆ022)0(r U H H +∇-=<<'μ,可视为一种微扰,由它引起一级修正为(基态03(0)1/210030()Zra Z e a ψπ-=) ⎰∞'=τψψd H E )0(1*)0(1)1(1ˆ ⎰-+--=0002202220302334]4)3(8[r r a Zdr r e r Ze r r r Ze a Z ππεπεπ ∵0a r <<,故102≈-r a Z e 。
量子力学期末考试试卷及答案集量子力学期末试题及答案(A)选择题(每题3分共36分)1.黑体辐射中的紫外灾难表明:CA. 黑体在紫外线部分辐射无限大的能量;B. 黑体在紫外线部分不辐射能量;C.经典电磁场理论不适用于黑体辐射公式;D.黑体辐射在紫外线部分才适用于经典电磁场理论. 2.关于波函数Ψ 的含义,正确的是:B A. Ψ 代表微观粒子的几率密度;B. Ψ归一化后,ψψ* 代表微观粒子出现的几率密度;C. Ψ一定是实数;D. Ψ一定不连续.3.对于偏振光通过偏振片,量子论的解释是:D A. 偏振光子的一部分通过偏振片;B.偏振光子先改变偏振方向,再通过偏振片;C.偏振光子通过偏振片的几率是不可知的;D.每个光子以一定的几率通过偏振片.4.对于一维的薛定谔方程,如果 Ψ是该方程的一个解,则:AA. *ψ 一定也是该方程的一个解;B. *ψ一定不是该方程的解;C. Ψ 与*ψ 一定等价;D.无任何结论.5.对于一维方势垒的穿透问题,关于粒子的运动,正确的是:C A. 粒子在势垒中有确定的轨迹; B.粒子在势垒中有负的动能; C.粒子以一定的几率穿过势垒; D 粒子不能穿过势垒.6.如果以∧l 表示角动量算符,则对易运算],[y x l l 为:BA. ih ∧zlB. ih∧z lC.i∧xl D.h∧xl7.如果算符∧A 、∧B 对易,且∧A ψ=Aψ,则:BA. ψ 一定不是∧B 的本征态;B. ψ一定是 ∧B 的本征态;C.*ψ一定是∧B 的本征态;D. ∣Ψ∣一定是∧B 的本征态.8.如果一个力学量 ∧A 与H∧对易,则意味着∧A :C A. 一定处于其本征态; B.一定不处于本征态; C.一定守恒;D.其本征值出现的几率会变化.9.与空间平移对称性相对应的是:B A. 能量守恒; B.动量守恒; C.角动量守恒; D.宇称守恒.10.如果已知氢原子的 n=2能级的能量值为-3.4ev ,则 n=5能级能量为:D A. -1.51ev; B.-0.85ev; C.-0.378ev; D. -0.544ev11.三维各向同性谐振子,其波函数可以写为nlm ψ,且 l=N-2n ,则在一确定的能量 (N+23)h ω下,简并度为:BA. )1(21+N N ; B. )2)(1(21++N N ;C.N(N+1);D.(N+1)(n+2)12.判断自旋波函数 )]1()2()2()1([21βαβαψ+=s 是什么性质:CA. 自旋单态;B.自旋反对称态;C.自旋三态;D. z σ本征值为1.二 填空题(每题4分共24分)1.如果已知氢原子的电子能量为eV n E n 26.13-= ,则电子由n=5 跃迁到n=4 能级时,发出的光子能量为:———————————,光的波长为———— ————————.2.如果已知初始三维波函数)0,(r →ψ ,不考虑波的归一化,则粒子的动量分布函数为 )(p ϕ =——————————————,任意时刻的波函数为),(t r →ψ————————————.3.在一维势阱(或势垒) 中,在x=x 0 点波函数ψ————————(连续或不连续),它的导数'ψ————————————(连续或不连续). 4.如果选用的函数空间基矢为n,则某波函数ψ处于n态的几率用 Dirac 符号表示为——————————,某算符∧A 在 ψ态中的平均值的表示为——————————.5.在量子力学中,波函数ψ 在算符∧Ω操作下具有对称性,含义是——————————————————————————,与 ∧Ω对应的守恒量 ∧F 一定是——————————算符.6.金属钠光谱的双线结构是————————————————————,产生的原因是————————————————————. 三计算题(40分)1.设粒子在一维无限深势阱中,该势阱为:V(x)=0,当0≤x ≤a ,V(x)=∞,当x<0或x>0, 求粒子的能量和波函数.(10分)2.设一维粒子的初态为)/()0,(0h x ip Exp x =ψ,求),(t x ψ.(10分)3.计算z σ表象变换到x σ表象的变换矩阵.(10分)4 .4个玻色子占据3个单态1ϕ ,2ϕ,3ϕ,把所有满足对称性要求的态写出来.(10分)B 卷一、(共25分)1、厄密算符的本征值和本征矢有什么特点?(4分)2、什么样的状态是束缚态、简并态和偶宇称态?(6分)3、全同玻色子的波函数有什么特点?并写出两个玻色子组成的全同粒子体系的波函数.(4分)4、在一维情况下,求宇称算符Pˆ和坐标x 的共同本征函数.(6分) 5、简述测不准关系的主要内容,并写出时间t 和能量E 的测不准关系.(5分) 二、(15分)已知厄密算符B A ˆ,ˆ,满足1ˆˆ22==B A,且0ˆˆˆˆ=+A B B A ,求 1、在A 表象中算符Aˆ、B ˆ的矩阵表示; 2、在A 表象中算符Bˆ的本征值和本征函数; 3、从A 表象到B 表象的幺正变换矩阵S. 三、(15分)线性谐振子在0=t时处于状态)21exp(3231)0,(22x x x ααπαψ-⎥⎦⎤⎢⎣⎡-=,其中ημωα=,求1、在0=t时体系能量的取值几率和平均值.2、0>t 时体系波函数和体系能量的取值几率及平均值四、(15分)当λ为一小量时,利用微扰论求矩阵⎪⎪⎪⎭⎫⎝⎛++λλλλλλ2330322021的本征值至λ的二次项,本征矢至λ的一次项. 五、(10分)一体系由三个全同的玻色子组成, 玻色子之间无相互作用. 玻色子只有两个可能的单粒子态. 问体系可能的状态有几个? 它们的波函数怎样用单粒子波函数构成?一、1、厄密算符的本征值是实数,本征矢是正交、归一和完备的.2、在无穷远处为零的状态为束缚态;简并态是指一个本征值对应一个以上本征函数的情况;将波函数中坐标变量改变符号,若得到的新函数与原来的波函数相同,则称该波函数具有偶宇称.3、全同玻色子的波函数是对称波函数.两个玻色子组成的全同粒子体系的波函数为:[])()()()(2112212211q q q q S ϕϕϕϕφ+=4、宇称算符P ˆ和坐标x 的对易关系是:P x x P ˆ2],ˆ[-=,将其代入测不准关系知,只有当0ˆ=P x 时的状态才可能使Pˆ和x 同时具有确定值,由)()(x x -=δδ知,波函数)(x δ满足上述要求,所以)(x δ是算符P ˆ和x 的共同本征函数. 5、设Fˆ和G ˆ的对易关系kˆi F ˆG ˆG ˆF ˆ=-,k 是一个算符或普通的数.以F 、G 和k 依次表示Fˆ、G ˆ和k 在态ψ中的平均值,令 F FˆFˆ-=∆,G G ˆG ˆ-=∆, 则有4222k )G ˆ()F ˆ(≥⋅∆∆,这个关系式称为测不准关系.时间t 和能量E 之间的测不准关系为:2η≥∆⋅∆E t二、1、由于1ˆ2=A,所以算符A ˆ的本征值是1±,因为在A 表象中,算符A ˆ的矩阵是对角矩阵,所以,在A 表象中算符Aˆ的矩阵是:⎪⎪⎭⎫ ⎝⎛-=1001)(ˆA A 设在A 表象中算符Bˆ的矩阵是⎪⎪⎭⎫ ⎝⎛=22211211)(ˆb b b b A B ,利用0ˆˆˆˆ=+A B B A 得:02211==b b ;由于1ˆ2=B ,所以⎪⎪⎭⎫ ⎝⎛002112b b ⎪⎪⎭⎫ ⎝⎛002112b b 10012212112=⎪⎪⎭⎫ ⎝⎛=b b b b ,21121b b =∴;由于B ˆ是厄密算符,B B ˆˆ=+,∴⎪⎪⎪⎭⎫⎝⎛0101212b b ⎪⎪⎪⎭⎫ ⎝⎛=010*12*12b b *12121b b =∴令δi e b =12,(δ为任意实常数)得B ˆ在A 表象中的矩阵表示式为:⎪⎪⎭⎫⎝⎛=-00)(ˆδδi i e e A B2、在A 表象中算符Bˆ的本征方程为:⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-βαλβαδδ00i i e e即⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-βαλαβδδi i e e ⇒ ⎩⎨⎧=-=+--00λβαβλαδδi i e e α和β不同时为零的条件是上述方程的系数行列式为零,即=---λλδδi i e e ⇒ 012=-λ 1±=∴λ对1=λ有:⎪⎪⎭⎫ ⎝⎛=+121δϕi Be ,对1-=λ有:⎪⎪⎭⎫ ⎝⎛-=-121δϕi B e所以,在A 表象中算符Bˆ的本征值是1±,本征函数为⎪⎪⎭⎫ ⎝⎛121δi e 和⎪⎪⎭⎫⎝⎛-121δi e3、从A 表象到B 表象的幺正变换矩阵就是将算符Bˆ在A 表象中的本征函数按列排成的矩阵,即⎪⎪⎭⎫⎝⎛-=-1121δδi i e e S三、解:1、0=t的情况:已知线谐振子的能量本征解为:ωη)21(+=n E n )2,1,0(Λ=n , )()exp(!2)(22x H x n x n nn ααπαϕ-=当1,0=n时有:)exp()(220x x απαϕ-=,)exp()(2)(221x x x ααπαϕ-=于是0=t 时的波函数可写成:)(32)(31)0,(10x x x ϕϕψ-=,容易验证它是归一化的波函数,于是0=t 时的能量取值几率为:31)0,21(0==ωηE W ,32)0,23(1==ωηE W ,能量取其他值的几率皆为零.能量的平均值为:ωη67323110=+=E E E2、 0>t 时体系波函数)23exp()(32)2exp()(31),(10t ix t i x t x ωϕωϕψ---=显然,哈密顿量为守恒量,它的取值几率和平均值不随时间改变,故0>t 时体系能量的取值几率和平均值与0=t 的结果完全相同.四、解:将矩阵改写成:='+=H H H ˆˆˆ0⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛λλλλλλ23032020300020001能量的零级近似为:1)0(1=E ,2)0(2=E ,3)0(3=E 能量的一级修正为:0)1(1=E ,λ=)1(2E ,λ2)1(3=E 能量的二级修正为:2)0(3)0(1213)0(2)0(1212)2(14λ-=-'+-'=EEH EEH E ,222)0(3)0(2223)0(1)0(2221)2(2594λλλ-=-=-'+-'=EEH EEH E ,2)0(2)0(3232)0(1)0(3231)2(39λ=-'+-'=EEH EEH E所以体系近似到二级的能量为:2141λ-≈E ,2252λλ-+≈E ,23923λλ++≈E先求出0ˆH 属于本征值1、2和3的本征函数分别为:⎪⎪⎪⎭⎫ ⎝⎛=001)0(1ϕ,⎪⎪⎪⎭⎫ ⎝⎛=010)0(2ϕ,⎪⎪⎪⎭⎫⎝⎛=100)0(3ϕ,利用波函数的一级修正公式)0()0()0()1(ii k ik ki k E E H ϕϕ-'=∑≠,可求出波函数的一级修正为:⎪⎪⎪⎭⎫ ⎝⎛-=0102)1(1λϕ,⎪⎪⎪⎭⎫ ⎝⎛-=302)1(2λϕ,⎪⎪⎪⎭⎫ ⎝⎛=0103)1(3λϕ近似到一级的波函数为:⎪⎪⎪⎭⎫⎝⎛-≈0211λϕ,⎪⎪⎪⎭⎫⎝⎛-≈λλϕ3122,⎪⎪⎪⎭⎫ ⎝⎛≈1303λϕ 五、解:由玻色子组成的全同粒子体系,体系的波函数应是对称函数.以i q 表示第i )3,2,1(=i 个粒子的坐标,根据题设,体系可能的状态有以下四个:(1))()()(312111)1(q q q s φφφϕ=;(2))()()(322212)2(q q q s φφφϕ= (3)[)()()()()()()()()(311221312211322111)3(q q q q q q q q q C s φφφφφφφφφϕ++=; (4)=)4(s ϕ])()()()()()()()()([113222322112312212q q q q q q q q q C φφφφφφφφφ++一、(20分)已知氢原子在0=t 时处于状态21310112(,,0)()()()010333x x x x ψϕϕ⎛⎫⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 其中,)(x nϕ为该氢原子的第n 个能量本征态.求能量及自旋z 分量的取值概率与平均值,写出0>t 时的波函数.解 已知氢原子的本征值为42212n e E n μ=-h ,Λ,3,2,1=n (1)将0=t时的波函数写成矩阵形式()()()23113(,0)23x x x x ϕψϕ⎛⎫ ⎪ ⎪= ⎪- ⎪⎝⎭ (2) 利用归一化条件()()()()()()232***23112211233d 3332312479999x x c x x x x x c cϕϕϕϕ∞-∞⎛⎫+ ⎪⎛⎫ ⎪+-⋅ ⎪ ⎪ ⎪⎝⎭- ⎪⎝⎭⎛⎫=++= ⎪⎝⎭⎰ (3)于是,归一化后的波函数为()()()()()()23231113(,0)23x x x x x x x ϕψϕ⎫⎫+⎪+⎪⎪⎪==⎪⎪- ⎪⎪⎝⎭⎝⎭ (4)能量的可能取值为123,,E E E ,相应的取值几率为()()()123412,0;,0;,0777W E W E W E ===(5) 能量平均值为()123442241207774111211612717479504E E E E e e μμ=++=⎡⎤-⨯+⨯+⨯=-⎢⎥⎣⎦h h (6)自旋z 分量的可能取值为,22-h h,相应的取值几率为1234,0;,0277727z z W s W s ⎛⎫⎛⎫==+==-=⎪ ⎪⎝⎭⎝⎭h h (7) 自旋z 分量的平均值为()340727214z s ⎛⎫=⨯+⨯-=-⎪⎝⎭h h h(8)0>t时的波函数()()()223311i i exp exp (,)i exp x E t x E t x t x E t ψ⎫⎡⎤⎡⎤-+-⎪⎢⎥⎢⎥⎣⎦⎣⎦⎪= ⎪⎡⎤ ⎪- ⎪⎢⎥⎣⎦⎝⎭h h h (9)二. (20分) 质量为m的粒子在如下一维势阱中运动()00>V()⎪⎩⎪⎨⎧>≤≤-<∞=a x ax V x x V ,00 ,0.0若已知该粒子在此势阱中有一个能量2V E -=的状态,试确定此势阱的宽度a .解 对于0<<-E V 的情况,三个区域中的波函数分别为()()()()()⎪⎩⎪⎨⎧-=+==x B x kx A x x αψδψψexp sin 0321 (1)其中,ηηE m V E m k 2 ;)(20=+=α (2)利用波函数再0=x处的连接条件知,πδn =,Λ,2,1,0=n .在a x=处,利用波函数及其一阶导数连续的条件()()()()a a a a '3'232ψψψψ== (3) 得到()()()()a B n ka Ak a B n ka A ααπαπ--=+-=+ex p cos ex p sin (4)于是有()αkka -=tan (5)此即能量满足的超越方程.当12E V =-时,由于1tan 000-=-=⎪⎪⎭⎫ ⎝⎛ηηηmV mV a mV (6)故4ππ-=n a mV η()Λ,3,2,1=n (7)最后得到势阱的宽度0 41mV n a ηπ⎪⎭⎫ ⎝⎛-= (8)三、(20分) 证明如下关系式(1)任意角动量算符ˆj r 满足 ˆˆˆi j j j ⨯=r r r h .证明 对x 分量有()ˆˆˆˆˆˆˆ=i y z z y xxj j j j j j j ⨯=-r r h同理可知,对y 与z 分量亦有相应的结果,故欲证之式成立.投影算符ˆn pn n =是一个厄米算符,其中,{}n 是任意正交归一的完备本征函数系.证明在任意的两个状态ψ与ϕ之下,投影算符ˆn p的矩阵元为ˆn pn n ψϕψϕ=而投影算符ˆn p的共軛算符ˆnp+的矩阵元为±{*****ˆˆˆn n n p p p n n n n n n ψϕψϕϕψϕψϕψψϕ+⎡⎤===⎣⎦=⎡⎤⎡⎤=⎣⎦⎣⎦显然,两者的矩阵元是相同的,由ψ与ϕ的任意性可知投影算符ˆn p是厄米算符. 利用()()()*''kkkx x x x ψψδ=-∑证明()()ˆˆx mk x mn kn kxpx p =∑,其中,(){}kx ψ为任意正交归一完备本征函数系. 证明()()()()()()()()()()()()()()()()()()'''**''*'''*'*''*'*''ˆˆd ˆd d ˆd d ˆd d ˆd d ˆx m x n mn mx n mn x m k k n x kmkknxkmkxknkxp x x xpx x x x x x x px x x x x x x px x x x x x x px x x x x x x px x pψψψδψψδψψψψψψψψψ∞-∞∞∞-∞-∞∞∞-∞-∞∞∞-∞-∞∞∞-∞-∞==-=-===⎰⎰⎰⎰⎰∑⎰⎰∑⎰⎰∑四、(20分) 在2L 与z L表象中,在轨道角动量量子数1l=的子空间中,分别计算算符ˆx L 、ˆy L 与ˆz L 的矩阵元,进而求出它们的本征值与相应的本征矢.解 在2L 与z L 表象下,当轨道角动量量子数1l =时,1,0,1m =-,显然,算符ˆx L 、ˆy L 与ˆz L 皆为三维矩阵.由于在自身表象中,故ˆzL是对角矩阵,且其对角元为相应的本征值,于是有100ˆ000001z L ⎛⎫⎪= ⎪⎪-⎝⎭ (1) 相应的本征解为1011; 0000; 100; 01z z z L L L ψψψ-⎛⎫⎪== ⎪⎪⎝⎭⎛⎫ ⎪== ⎪⎪⎝⎭⎛⎫ ⎪=-= ⎪⎪⎝⎭h h (2)对于算符ˆx L 、ˆy L 而言,需要用到升降算符,即()()1ˆˆˆ21ˆˆˆ2i x y L L L L L L +-+-=+=- (3)而ˆ,1L lm m ±=± (4)当1,1,0,1l m ==-时,显然,算符ˆx L 、ˆy L 的对角元皆为零,并且,ˆˆ1,11,11,11,10ˆˆ1,11,11,11,10x yx yL L L L -=-=-=-= (5)只有当量子数m 相差1±时矩阵元才不为零,即ˆˆˆˆ1,11,01,01,11,01,11,11,0ˆˆ1,01,11,11,0ˆˆ1,11,01,01,1x x x xy yy yL L L L L L L L -=-===-==-== (6)于是得到算符ˆx L、ˆyL 的矩阵形式如下0100i 0ˆˆ101; i 0i 0100i 0x y L L -⎛⎫⎛⎫⎪⎪==-⎪⎪⎪⎪⎭⎭ (7) yL ˆ满足的本征方程为⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--321321 0ii 0i 0i 02c c c c c c λη (8)相应的久期方程为2i 02i 2i 02i =-----λλληηηη (9)将其化为023=-λλη(10)得到三个本征值分别为ηη-===321;0 ;λλλ (11)将它们分别代回本征方程,得到相应的本征矢为⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=i 2i 21 ;10121 ;i 2i 21321ψψψ (12) ˆx L 满足的本征方程为112233010101 010c c c c c c λ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (13)相应的久期方程为0λ-= (14)将其化为023=-λλη (15) 得到三个本征值分别为ηη-===321;0 ;λλλ (16)将它们分别代回本征方程,得到相应的本征矢为12311111; 0; 22111ψψψ⎛⎫⎛⎫⎛⎫⎪=== ⎪⎪ ⎪ ⎪-⎭⎝⎭⎝⎭ (17) 五、(20分) 由两个质量皆为μ、角频率皆为ω的线谐振子构成的体系,加上微扰项21 ˆx x W λ-=(21,xx 分别为两个线谐振子的坐标)后,用微扰论求体系基态能量至二级修正、第二激发态能量至一级修正. 提示: 线谐振子基底之下坐标算符的矩阵元为⎥⎦⎤⎢⎣⎡++=+-1,1,2121n m n m n n n x m δδα式中,ημωα=. 解 体系的哈密顿算符为W H H ˆˆˆ0+= (1)其中()()212221222210 ˆ21ˆˆ21ˆx x Wx x p p H λμωμ-=+++= (2)已知0ˆH 的解为()()()()2121021,1x x x x n E n n n n ϕϕψωα=+=η (3)其中n fn n n ,,3,2,1,2,1,0,,21ΛΛ==α (4)将前三个能量与波函数具体写出来()()()()()()()()()()()()00001020111011212110202212102220122231112; 2, 3, E x x E x x x x E x x x x x x ωψϕϕωψϕϕψϕϕωψϕϕψϕϕψϕϕ=========h h h (5)对于基态而言,021===n n n ,10=f ,体系无简并.利用公式⎥⎦⎤⎢⎣⎡++=+-1,1,2121n m n m n m n n x δδαϕϕ (6)可知()0ˆ0010==ψψW E()∑∑≠=-=01000020ˆˆn f nn n nE E W W E αααψψψψ (7)显然,求和号中不为零的矩阵元只有2232302ˆˆαλψψψψ-==W W (8)于是得到基态能量的二级修正为()32242020020841ωμλαλη-=-=E E E (9)第二激发态为三度简并,能量一级修正满足的久期方程为()()()123332312312222113121211=---E W W W W E W W W WE W (10)其中1122331221133123320W W W W W W W W W =========(11)将上式代入(10)式得到()()121200E E --= (12)整理之,()12E 满足()()()23112240E E λα-+= (13)于是得到第二激发态能量的一级修正为()()()21231222121 ;0 ;αλαλ==-=E E E (14)1. 微观粒子具有 波粒 二象性.2.德布罗意关系是粒子能量E 、动量P 与频率ν、波长λ之间的关系,其表达式为: E=hν, p=/h λ . 3.根据波函数的统计解释,dxt x 2),(ψ的物理意义为:粒子在x —dx 范围内的几率 .4.量子力学中力学量用 厄米 算符表示.5.坐标的x 分量算符和动量的x 分量算符xp 的对易关系为:[],x p i =h .6.量子力学关于测量的假设认为:当体系处于波函数ψ(x)所描写的状态时,测量某力学量F 所得的数值,必定是算符F ˆ的本征值 .7.定态波函数的形式为: t E i n n ex t x η-=)(),(ϕψ.8.一个力学量A 为守恒量的条件是:A 不显含时间,且与哈密顿算符对易 .9.根据全同性原理,全同粒子体系的波函数具有一定的交换对称性,费米子体系的波函数是_反对称的_____________,玻色子体系的波函数是_对称的_______ _.10.每个电子具有自旋角动量S ρ,它在空间任何方向上的投影只能取两个数值为: 2η±.1、(10分)利用坐标和动量算符的对易关系,证明轨道角动量算符的对易关系: 证明:zy x L i L L ˆ]ˆ,ˆ[η=]ˆˆ,ˆˆ[]ˆ,ˆ[z x y z yx p x p z p z p y L L --=]ˆˆ,ˆ[]ˆˆ,ˆ[z x y z x z p x p z p z p x p z py ---=]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[z y x y z z x z p x p z p z p z p x p y p z py +--=]ˆ,ˆ[]ˆ,ˆ[z y x z p x p z p z py +=y z z y z x x z p p x z p x p z p p z y p z py ˆ]ˆ,[]ˆ,ˆ[ˆ]ˆ,[]ˆ,ˆ[+++=y z x z p p x z p z py ˆ]ˆ,[]ˆ,ˆ[+=y z y z x z x z p p x z p p z x p z p y p pyz ˆˆ],[ˆ]ˆ,[ˆ],ˆ[]ˆ,ˆ[+++=y x p i x pi y ˆ)(ˆ)(ηη+-=ˆˆ2、(10分)由Schr ödinger 方程证明几率守恒:其中几率密度 几率流密度证明:考虑 Schr ödinger 方程及其共轭式:在空间闭区域τ中将上式积分,则有:1、(10分)设氢原子处于状态),()(23),()(21),,(11211021ϕθϕθϕθψ--=Y r R Y r R r求氢原子能量E 、角动量平方L 2、角动量Z 分量L Z 的可能值及这些可能值出现的几率.解:在此状态中,氢原子能量有确定值22222282ηηs s e n e E μμ-=-=)2(=n ,几率为1角动量平方有确定值为2222)1(ηηλλ=+=L)1(=λ,几率为1角动量Z 分量的可能值为2|),(|),(),(),(t r t r t r t r ρρρρψ=ψψ=*ω22(,)[()](,)2i r t V r r t t μ∂ψ=-∇+ψ∂h r r rh 0=•∇+∂∂J tρω][2ψ∇ψ-ψ∇ψ=**μηρi J 22[](1)2i V t μ∂ψ=-∇+ψ∂h h 22[](2)2i V t μ**∂-ψ=-∇+ψ∂h h (1)(2)*ψ⨯-ψ⨯将式得:][2222****ψ∇ψ-ψ∇ψ-=ψ∂∂ψ+ψ∂∂ψμηηηt i t i ][22ψ∇ψ-ψ∇ψ•∇=ψψ∂∂***μηη)(t i τμτττd d dt d i ][22ψ∇ψ-ψ∇ψ•∇=ψψ***⎰⎰ηη)(τμτττd i d dt d ][2ψ∇ψ-ψ∇ψ•∇-=ψψ***⎰⎰η)(ττωττd J d t r dtdρρ•∇-=⎰⎰),(0=•∇+∂∂J tρω01=Z L η-=2Z L其相应的几率分别为41, 432、(10分)求角动量z 分量 的本征值和本征函数.解:波函数单值条件,要求当φ 转过 2π角回到原位时波函数值相等,即:求归一化系数最后,得 L z 的本征函数3、(20分)某量子体系Hamilton量的矩阵形式为:设c << 1,应用微扰论求H 本征值到二级近似.解:c << 1,可取 0 级和微扰 Hamilton 量分别为:H 0 是对角矩阵,是Hamilton H 0在自身表象中的形式.所以能量的 0 级近似为:E 1(0)= 1 E 2(0)= 3⎪⎪⎪⎭⎫ ⎝⎛='⎪⎪⎪⎭⎫ ⎝⎛-=c c c H H 0000002000300010⎪⎪⎪⎭⎫ ⎝⎛-=2000301c c cH ˆzd L i d φ=-h ππφφψππ2112||2202220=→===⎰⎰c c d c d Λη,2,1,021)(±±=⎪⎩⎪⎨⎧==m e m l im m z φπφψ归一化系数。
郑州轻工业学院2008—2009学年度第二学期《量子力学》课程期末试卷A卷一、简答题(每小题8分,共32分)1.态叠加原理2.波函数的统计解释及波函数的标准条件3. 全同性原理和泡利不相容原理4. 量子力学五个基本假设是什么?二、计算题(共68分)1. 假设一平面转子角速度为ω,转动惯量为I ,试用波尔-索莫非条件求其能量可能值 (8分)2. 证明对易关系(8分)3. 设氢原子处于归一化状态 211021111(,,)()(,)()(,)22r R r Y R r Y ψθϕθϕθϕ-=-ˆˆˆ[,]x L y i z=求其能量、角动量平方及角动量Z分量的可能值,这些可能值出现的几率和这些力学量的平均值。
(15分)4. 二元矩阵A ,B 满足20,1,A AA A A B A A +++=+==, (1)证明2B B =(2)在B 表象中求出A 的矩阵 (共15分)5.在某一选定的一组正交基下哈米顿算符由下列矩阵给出(1)设c << 1,应用微扰论求H 本征值到二级近似; (2)求H 的精确本征值;(3)在怎样条件下,上面二结果一致。
(共22分)郑州轻工业学院2008—2009学年度 第二学期《量子力学》课程期末试卷B 卷一、简答题(每小题8分,共32分)1. 德布罗意关系⎪⎪⎪⎭⎫ ⎝⎛-=2000301c c cH2.波函数的统计解释及波函数的标准条件3. 全同性原理和泡利不相容原理4. 试描述史特恩-盖拉赫实验二、计算题(共68分)1.证明:如果算符ˆA和ˆB均是厄米算符,则(ˆˆ)也是厄米算符A B(8分)2. 试求算符ˆixd Fie dx=-的本征函数 (8分)3. 设粒子在宽度为a 的一维无限深势阱中运动,已知粒子的波函数为求粒子能量取值的几率分布与其平均值。
(14分)24()cosx x x aaππψ=4. 有一粒子,其 Hamilton 量的矩阵形式为:H = H 0 + H ’,其中求能级的一级近似和波函数的0级近似。
2007级材料物理(1) (2)《量子力学》试卷A 答案及评分标准一、填空(共25分) 1、1.220A (3分)2、21c ,22c (4分, 每空2分) 3、二度简并的(2分) 4、厄密算符 (2分) 5、球谐函数()ϕθ,lm Y (3分)6、xx i x P P x n nxx n∂∂=- ˆˆ (4分) 7、i s ;ˆ2ˆσ = (4分,每空2分) 8、1和3(3分) 二、简答题(共13分) 1、(7分)答: 量子力学中用波函数()t z y x ,,,ψ描述微观粒子的运动状态,波函数的统计解释是波函数是一种概率波,()2,,,t z y x ψ代表粒子在t 时刻在空间一点(x,y,z)处出现的几率。
波函数与声波和光波的主要区别在于波函数乘以一个常数,波函数描述的概率波不变,即其描写的粒子的状态并不改变;而声波和光波乘以一个常数后体系的状态完全改变。
2、(6分)答: 量子力学中的测不准关系是:2≥∆⋅∆x p x 。
其表明坐标和它所对应的动量的不确定度两者相互制约,其中一个量测量的越准确,另一个量就越测不准。
如果两个算符不对易,那么这两个算符没有共同的本征函数,因此这两个算符代表的力学量不能同时有确定值。
三、证明题(12分)1、(5分)证明:自由粒子平面波函数为()Et x P iPx x Ae-=ψ()x x P x Et x P ixp x P Ae dx d i P ψψ=⎥⎦⎤⎢⎣⎡-=- ˆ,符合本征方程。
2、(7分)证明:设m 为ZL ˆ的本征态,与其相对应的本征值为 m ,则 m m m L Z =ˆ (1) (1)式的共轭式为m m L m Z=+ˆ (2) +=Z Z L L ˆˆ ∴(2)式改写为m m L m Z=ˆ 利用基本对易关系:X y Z Z y L i L L L L ˆˆˆˆˆ =- 在m态下求X L:m L m L X X ˆ=m L i m L i X X ˆ =m L L m m L L m L i y Z Z y X ˆˆˆˆ-= m L m m m L m m Z y ˆˆ -= 0= 0=∴x L四、计算题(50分) 1、(15分)解: (a)对BC-CB=iA分别右乘B 和左乘B ,利用B 2=1,得 BCB -CB 2 = BCB -C = iAB ① B 2C -BCB =C -BCB = iBA ② ①+②得:AB+BA = 0类似有 AC+CA = 0 (5分) (b)由于A 2= 1,可知其本征值为1±。
武汉理工大学教务处试题标准答案及评分标准用纸| 课程名称—量子力学—— ( A 卷) | 一、选择题(每题3分,共15分) 装 1.B 2.C 3. A 4.D 5.B | 二、填空题 (每空2分,共20分)1. 单值的,平方可积的2. 线性算符,厄米算符3. 平均值 几率分布4. 4 200ψ,211ψ,210ψ,211ψ-5. 平均场 积三、 证明题(共15分)证明:(1)[][]ˆˆ,1111ˆˆˆˆ2222ˆˆˆˆ,,122a a p p p p p p i i x p p x +⎡⎤⎫⎫⎡⎤=-⎥⎪⎪⎣⎦⎪⎪⎥⎭⎭⎦⎤⎡⎤⎡⎤⎤=+--⎥⎥⎥⎥⎥⎥⎥⎦⎦⎦⎦=-=-其中利益[]ˆˆ,xp i = (6分) (2)[],,,a a a a a a a a a a +++⎡⎤⎡⎤=+=-⎣⎦⎣⎦ ,,,a a a a a a a a a a +++++++⎡⎤⎡⎤⎡⎤=+=⎣⎦⎣⎦⎣⎦(4分) (3)可以求得:)ˆxa a +=+)ˆpa a +=-系统Hamilton 为()()()()22222ˆ1111ˆˆ2222211121222p H xa a a a a a aa a a a a μωωμωωω++++++⎡⎤=+=--++⎢⎥⎣⎦⎛⎫=+=+=+ ⎪⎝⎭ (5分)四 计算题(第1、2题各15分,第3、4题各10分,要求有具体计算步骤)1、解:(1)一维无限深势阱的本征态波函数是()n n xx aπψ=(2分) 利用三角函数积化和、差,将()x ψ改写 ()2cos x x x a a ππψ=21cos x x a a ππ⎡⎤=+⎢⎥⎣⎦22sin 2sin cos x x x a a a πππ⎤=+⎥⎦3sin sin xx a a ππ⎤=+⎥⎦3x x a a ππ⎤=+⎥⎦()()13x x ψψ=+⎤⎦ (4分) ()x ψ是非本征态,它可以有二种本征态,部分处在()1xx aπψ=出现几率为12,能量为22122E ma π=部分处在()33xx aπψ=,出现几率为12,能量为223292E ma π= (2分) (2)处于这种状态下粒子的能量平均值22132115222E E E ma π=+= (3分)(3)粒子随时间变化的波函数为 ()229223,n i i iE t t t ma ma nnx x x t C ee e a a ππππψψ---⎫⎫==⎪⎪⎪⎪⎭⎭∑(4分) 2、解:(1)在z σ表象中,0110x σ⎛⎫=⎪⎝⎭ 00y i i σ-⎛⎫= ⎪⎝⎭ 1001z σ⎛⎫= ⎪-⎝⎭(3分)cos sin sin cos i x x y y z z i e n n n n eϕϕθθσσσσθθ-⎛⎫=++= ⎪-⎝⎭,其本征方程为cos sin cos sin 0sin cos sin cos i i i i a a a e e b b b ee ϕϕϕϕθθθλθλθθθθλ--⎛⎫⎛⎫-⎛⎫⎛⎫⎛⎫=⇒= ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 有非零解的条件为cos sin 01sin cos i i e eϕϕθλθλθθλ--=⇒=±-- (4分)当1λ=时,对应的本征态为()()1cos /2sin /2i e ϕθψθ-⎛⎫=⎪⎝⎭ 当1λ=-时,对应的本征态为()()2sin /2cos /2i e ϕθψθ-⎛⎫=⎪-⎝⎭ (2分) (2)在ˆz s本征态1/2χ下,n σ的可能测值为1± 故n σ的可能测值为1+的几率为()()()()22211/21cos /2,sin /2cos /20i e ϕψχθθθ⎛⎫== ⎪⎝⎭(3分)故n σ的可能测值为1-的几率为()()()()22221/21sin /2,cos /2sin /20i e ϕψχθθθ-⎛⎫=-= ⎪⎝⎭(3分)3、解:微扰算符的的矩阵是'''111213'''212223'''31323300'000H H H b H H H H a H H H ba **⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ (1) 根据无简并微扰论,一级能量修正量是: kk H从(1)中看出,对角位置的矩阵元全是零,因此一级修正量0)0(3)0(2)0(1===E E E (2分)又二级能量公式是: 2'(2)(0)(0)nkknk nn kH E E E ≠=-∑(2分)所需的矩阵元'nk H 已经直接由式(1)表示出,毋需再加计算,因而有:2222'''12131(2)1(0)(0)(0)(0)(0)(0)(0)(0)1121313n nnH H H b E EEEEEEEE ==+=----∑(2分)2222'''21232(2)2(0)(0)(0)(0)(0)(0)(0)(0)2312123n n n H H H aE EE E E E E E E ==+=----∑ (2分)22222'''32313(2)3(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)332313132n nnH H H b a E EEEEEEEEEE==+=+-----∑(2分)4.解:(1)利用21ˆˆ2q H P A q c φμ⎛⎫=-+ ⎪⎝⎭可得系统的哈密顿量为222222211ˆˆˆˆˆ221ˆˆˆ2x x y y zz x y z q q q q H P A q P A P A P A q y c c c c q P By P P q yc φεμμεμ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+=-+-+--⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦⎡⎤⎛⎫=+++-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(4分)(2)证明:2222221ˆˆˆˆˆˆ,,2111ˆˆˆˆˆˆˆ,,,,0222x x y z x x x y x z x x q H P P By P P q y P c q P By P P P P P q y P c εμεμμμ⎡⎤⎡⎤⎛⎫⎡⎤=+++-⎢⎥⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎛⎫⎡⎤⎡⎤⎡⎤=+++-=⎢⎥ ⎪⎣⎦⎣⎦⎣⎦⎝⎭⎢⎥⎣⎦2222221ˆˆˆˆˆˆ,,2111ˆˆˆˆˆˆˆ,,,,0222z x y z z x z y z z z z q H P P By P P q y P c q P By P P P P P q y P c εμεμμμ⎡⎤⎡⎤⎛⎫⎡⎤=+++-⎢⎥⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎛⎫⎡⎤⎡⎤⎡⎤=+++-=⎢⎥ ⎪⎣⎦⎣⎦⎣⎦⎝⎭⎢⎥⎣⎦ˆx P 的本征函数为()/x x ip x P x ψ= ,本征值为x p -∞<<∞ ˆz P 的本征函数为()/z zip z P x ψ= ,本征值为z p -∞<<∞ (4分) (3)选守恒量完全集为()ˆˆˆ,,x zH P P (2分)。
量子力学试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中的波函数描述了粒子的哪种属性?A. 位置B. 动量C. 能量D. 概率密度答案:D2. 哪个原理表明一个粒子的波函数可以展开成一组完备的本征函数?A. 泡利不相容原理B. 薛定谔方程C. 玻恩规则D. 量子态叠加原理答案:D3. 量子力学中,哪个算符代表粒子的位置?A. 动量算符B. 能量算符C. 位置算符D. 角动量算符答案:C4. 量子力学中,哪个原理描述了测量过程对系统状态的影响?A. 海森堡不确定性原理B. 量子纠缠C. 量子退相干D. 量子测量原理答案:D5. 哪个方程是量子力学中描述粒子时间演化的基本方程?A. 薛定谔方程B. 狄拉克方程C. 克莱因-戈登方程D. 麦克斯韦方程答案:A二、填空题(每题2分,共10分)1. 量子力学中,粒子的状态由______描述,而粒子的物理量由______表示。
答案:波函数;算符2. 根据量子力学,粒子的位置和动量不能同时被精确测量,这被称为______。
答案:海森堡不确定性原理3. 在量子力学中,粒子的波函数在空间中的变化遵循______方程。
答案:薛定谔4. 量子力学中的______原理指出,一个量子系统在任何时刻的状态都可以表示为该系统可能状态的线性组合。
答案:态叠加5. 量子力学中,粒子的波函数必须满足______条件,以保证物理量的概率解释是合理的。
答案:归一化三、计算题(每题10分,共20分)1. 假设一个粒子处于一维无限深势阱中,势阱宽度为L。
求该粒子在基态时的能量和波函数。
答案:粒子在基态时的能量E1 = (π^2ħ^2) / (2mL^2),波函数ψ1(x) = sqrt(2/L) * sin(πx/L),其中x的范围是0 ≤ x ≤ L。
2. 考虑一个粒子在一维谐振子势能中运动,其势能表达式为V(x) = (1/2)kx^2。
求该粒子的能级和相应的波函数。
答案:粒子的能级En = (n + 1/2)ħω,其中n = 0, 1, 2, ...,波函数ψn(x) = (1/sqrt(2^n n!)) * (mω/πħ)^(1/4) * e^(-mωx^2/(2ħ)) * Hn(x),其中Hn(x)是厄米多项式。
中国海洋大学命题专用纸(首页)2005-2006学年第 2 学期试题名称:量子力学(A卷)共 2 页第 1 页中国海洋大学命题专用纸(附页)中国海洋大学命题专用纸(首页)2005-2006学年第 2 学期试题名称:量子力学(B卷)共 2 页第 1 页中国海洋大学命题专用纸(附页)中国海洋大学命题专用纸(首页)06-07学年第 2 学期试题名称:量子力学(A卷) 共 2 页第 1 页1)写出在t >0时刻的波函数;(2)在t >0时刻振子能量的可能测值及其相应的概率是多少?能量平均值是多少?11. 设()θϕθϕθcos ,sin sin ,cos sin =n 是(ϕθ,)方向的单位矢量,则n ⋅σ是自旋σ在该方向的分量,z y x σσσ,,是它的三个特例。
(1)写出n ⋅σ在z σ表象中的矩阵表示;(2)求n⋅σ的本征态。
12.有一个电子受到沿x 方向的均匀磁场的作用,不考虑轨道运动,Hamilton 量表为x mceB H σ2=,设t =0时电子自旋向上(2/ +=z s ), (1)由Schrodinger 方程求出t 时刻的自旋波函数;(2)t 时刻电子自旋是否一定向上?自旋向上的概率是多少? 13.把传导电子限制在金属内部的是金属内的一种平均势,对于下列一维模型(如图):⎩⎨⎧><-=0,00,)(0x x V x V 试计算接近金属表面的传导电子(能量E >0)的反射率。
学年第 2 学期试题名称:量子力学(B卷) 共 2 页第 1 页中国海洋大学2007-2008学年第2学期期末考试试卷ψ连续否?其一阶导数'(xr t的结构。
,)的测值如何?中国海洋大学 2007-2008学年 第2学期 期末考试试卷 信息科学与工程 学院《量子力学》课程试题(B 卷) 共 2 页 第 1 页时刻氢原子的波函数、平均能量、能量为)r 为定态波函数,其对应的能量为分别为电子的轨道角动量和自旋角动量,的共同本征态为φ两种情况分别求出其相应的本征值。
武汉大学近十年量子力学部分考研真题的分类解析摘要:量子力学是大学物理学本科学生的必修课,同时它也是国内许多知名高校的物理学研究生入学考试的必考科目。
本文将武汉大学2002年—2011年的非相对论量子力学考研真题分八大类解析,给出了标准解法。
并在此基础上提炼出解题模型,提高了运用量子力学的理论解决问题的能力。
关键词:量子力学;考研真题;模型目录前言: (1)1 真题的分类解析 (1)1.1 一维散射问题 (1)1.1.1 阶梯势垒的散射 (1)1.1.2 δ势的散射 (3)1.2一维束缚定态问题 (3)1.2.1无限深势阱求解 (4)1.2.2 δ势求解 (4)1.2.3 初值问题求解 (5)1.2.4 傅立叶变换的应用 (7)1.3 三维束缚态问题 (8)1.3.1 无限深球方势阱基态求法 (8)1.3.2 盒子势求解 (9)1.4 两个角动量算符有关题目求解 (10)1.4.1 轨道角动量算符 (10)1.4.2 自旋角动量算符 (12)1.5 不确定关系的应用 (13)1.6 表象理论相关习题求解 (15)1.7 近似理论的应用 (16)1.7.1 非简并定态微扰 (17)1.7.2 简并定态微扰 (18)1.7.3 变分法 (19)1.8 多体问题——全同性原理的应用 (20)2 重要解题模型 (21)2.1 一维无限深势模型 (21)δ势模型 (21)2.2 ()x2.3 盒子势模型 (21)2.4 中心力场模型 (22)2.5 平面转子模型 (22)2.6 空间转子模型 (22)3 总结 (22)致谢: (22)参考文献: (23)前言:量子力学自诞生以来便显示出强大的生命力,它是描写微观物质的一个物理学理论,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的学科都是以量子力学为基础。
基于这点,国内各大高校的研究生入学考试都将其设为必考科目。
量子力学试题集量子力学期末试题及答案(A) 选择题(每题3分共36分)1.黑体辐射中的紫外灾难表明:CA、黑体在紫外线部分辐射无限大的能量;B、黑体在紫外线部分不辐射能量;C、经典电磁场理论不适用于黑体辐射公式;D、黑体辐射在紫外线部分才适用于经典电磁场理论。
2.关于波函数Ψ的含义,正确的就是:BA、Ψ代表微观粒子的几率密度;B、Ψ归一化后,ψψ*代表微观粒子出现的几率密度;C、Ψ一定就是实数;D、Ψ一定不连续。
3.对于偏振光通过偏振片,量子论的解释就是:DA、偏振光子的一部分通过偏振片;B、偏振光子先改变偏振方向,再通过偏振片;C、偏振光子通过偏振片的几率就是不可知的;D、每个光子以一定的几率通过偏振片。
4.对于一维的薛定谔方程,如果Ψ就是该方程的一个解,则:AA、*ψ一定也就是该方程的一个解;B、*ψ一定不就是该方程的解;C、Ψ与*ψ一定等价;D、无任何结论。
5.对于一维方势垒的穿透问题,关于粒子的运动,正确的就是:CA、粒子在势垒中有确定的轨迹;B、粒子在势垒中有负的动能;C、粒子以一定的几率穿过势垒;D粒子不能穿过势垒。
6.如果以∧l表示角动量算符,则对易运算],[yxll为:BA、ih∧z lB 、 ih ∧zlC 、i∧x l D 、h∧xl7.如果算符∧A 、∧B 对易,且∧A ψ=Aψ,则:BA 、ψ 一定不就是∧B 的本征态; B 、ψ一定就是 ∧B 的本征态;C 、*ψ一定就是∧B 的本征态;D 、 ∣Ψ∣一定就是∧B 的本征态。
8.如果一个力学量∧A 与H∧对易,则意味着∧A :CA 、 一定处于其本征态;B 、一定不处于本征态;C 、一定守恒;D 、其本征值出现的几率会变化。
9.与空间平移对称性相对应的就是:B A 、 能量守恒; B 、动量守恒; C 、角动量守恒; D 、宇称守恒。
10.如果已知氢原子的 n=2能级的能量值为-3、4ev,则 n=5能级能量为:D A 、 -1、51ev; B 、-0、85ev; C 、-0、378ev; D 、 -0、544ev11.三维各向同性谐振子,其波函数可以写为nlm ψ,且 l=N-2n,则在一确定的能量 (N+23)h ω下,简并度为:BA 、)1(21+N N ;B 、)2)(1(21++N N ;C 、N(N+1);D 、(N+1)(n+2)12.判断自旋波函数 )]1()2()2()1([21βαβαψ+=s 就是什么性质:CA 、 自旋单态;B 、自旋反对称态;C 、自旋三态;D 、z σ本征值为1、二 填空题(每题4分共24分)1.如果已知氢原子的电子能量为eV nE n 26.13-= ,则电子由n=5 跃迁到n=4 能级时,发出的光子能量为:———————————,光的波长为———— ————————。
一、填空题:(每题 4 分,共 40 分)1. 微观粒子具有 波粒 二象性。
2.德布罗意关系是粒子能量E 、动量P 与频率ν、波长λ之间的关系,其表达式为:E=h ν, p=/h λ 。
3.根据波函数的统计解释,dx t x 2),(ψ的物理意义为:粒子在x —dx 范围内的几率 。
4.量子力学中力学量用 厄米 算符表示。
5.坐标的x 分量算符和动量的x 分量算符x p 的对易关系为:[],x p i = 。
6.量子力学关于测量的假设认为:当体系处于波函数ψ(x)所描写的状态时,测量某力学量F 所得的数值,必定是算符Fˆ的 本征值 。
7.定态波函数的形式为: t E in n ex t x-=)(),(ϕψ。
8.一个力学量A 为守恒量的条件是:A 不显含时间,且与哈密顿算符对易 。
9.根据全同性原理,全同粒子体系的波函数具有一定的交换对称性,费米子体系的波函数是_反对称的_____________,玻色子体系的波函数是_对称的_______ _。
10.每个电子具有自旋角动量S ,它在空间任何方向上的投影只能取两个数值为: 2± 。
二、证明题:(每题10分,共20分)1、(10分)利用坐标和动量算符的对易关系,证明轨道角动量算符的对易关系:证明:zy x L i L L ˆ]ˆ,ˆ[ =]ˆˆ,ˆˆ[]ˆ,ˆ[z x y z yx p x p z p z p y L L --=2、(10分)由Schr ödinger 方程证明几率守恒:其中几率密度 几率流密度 证明:考虑 Schr ödinger 方程及其共轭式:2|),(|),(),(),(t r t r t r t rψ=ψψ=*ω22(,)[()](,)2i r t V r r t t μ∂ψ=-∇+ψ∂0=∙∇+∂∂J tω][2ψ∇ψ-ψ∇ψ=**μi J ]ˆˆ,ˆ[]ˆˆ,ˆ[z x y z x z p x p z p z p x p z py ---=]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[z y x y z z x z p x p z p z p z p x p y p z py +--=]ˆ,ˆ[]ˆ,ˆ[z y x z p x p z p z py +=y z z y z x x z p p x z p x p z p p z y p z py ˆ]ˆ,[]ˆ,ˆ[ˆ]ˆ,[]ˆ,ˆ[+++=y z x z p p x z p z py ˆ]ˆ,[]ˆ,ˆ[+=y z y z x z x z p p x z p p z x p z p y p pyz ˆˆ],[ˆ]ˆ,[ˆ],ˆ[]ˆ,ˆ[+++=y x p i x pi y ˆ)(ˆ)( +-=]ˆˆ[x y p y px i -= zL i ˆ =在空间闭区域τ中将上式积分,则有:三、计算题:(共40分)1、(10分)设氢原子处于状态),()(23),()(21),,(11211021ϕθϕθϕθψ--=Y r R Y r R r 求氢原子能量E 、角动量平方L 2、角动量Z 分量L Z 的可能值及这些可能值出现的几率。
《量⼦⼒学试卷A》答案《量⼦⼒学》试题 A 答案(闭卷)(电⼦科学与技术系2008级)姓名班级学号1、 (10分) 简述量⼦⼒学的5个基本假设[答] (1) 微观体系状体由波函数描述。
波函数满⾜连续性、有限性和单值性。
(2) ⼒学量⽤厄⽶算符表⽰。
(3) 将体系的状态波函数⽤算符的本征函数展开则在态中测量⼒学量得到结果为的⼏率是 ,得到结果在范围内的⼏率是 (4) 体系的状态波函数满⾜薛定谔⽅程: , 为体系的哈密顿算符。
(5) 在全同粒⼦所组成的体系中,两全同粒⼦相互调换不改变体系的状态(全同性原理)。
2、(10分) 分别判断下列三个波函数所描述的状态是否为定态?并说明理由。
1()()()E E ix i tix i tx u x eu x eψ---=+12212()()()()E E iti tx u x eu x e E E ψ--=+≠3()()()E E i t i tx u x eu x eψ-=+[答]2112()()()(2)E E E E ititx x u x eeωψψ--==++ 与时间⽆关,是定态;2*22111()()()(2)i x i x x x u x e e ωψψ-==++,与时间有关,不是定态;i H t∧?ψ=ψ?H ∧n λ2n c d λλλ→+2c d λλF ∧ψψF ∧Φ()n n n F F λλλλ∧∧Φ=ΦΦ=Φn n n c c d λλλψ=Φ+Φ∑222*333()()()(2)EEititx x u x e eωψψ-==++,与时间有关,不是定态。
3、(10分) 已知⼀质量为m 的粒⼦在⼀维势场??<>∞≤≤=000)(x a x ax x U 或中运动(1)写出该粒⼦⼀维薛定谔定态波动⽅程; (2)求解该粒⼦的能级;(3)求解该粒⼦归⼀化后的波函数2()()2()()()2d x E x x a m dx d x x E x x am dx ψψψψψ?-=≤-+∞=>??令222mE k = 则有通解为kx B kx A x cos sin )(+=ψ边界条件为:解得,能级波函数为:??<>≤≤=000)sin(2)(x a x a x axn a x 或πψ4、(10分) (1) 设??,AB 为厄⽶算符,且[??,A B ]0≠,证明()i AB BA -为厄⽶算符;(2) 下列算符中,哪些是线性算符?其中哪些是厄⽶算符?dxdx ,2, 22dx d ,, Sin , dxdi,ln [答] (1)因为??,AB 为厄⽶算符,对于任意两个波函数,φψ,有: ***??A d A d φψτφψτ=??,***B d B d φψτφψτ=??E ψ222()0d k x dx ψψ+=()sin cos 0(0)cos 0a A ka B ka B ka ψψ=+===0B =n k aπ=22222n E ma π=******************[,]()???()()??????()([,])i A B d i AB BA d i AB d i BA d i A B d i B A d i B A d i A B d iBA d iAB B d iAB iBA d i A Bd φψτφψτφψτφψτφψτφψτφψτφψτφψτφψτφψτφψτ=-=-=-=-=-+=-=即()i ABBA -为厄⽶算符,得证。
2,2- (C )2,,,2-- (D ),,0,,2-- 、在光的照射下,原子从低能级跃迁到高能级,这种现象称为 ( )
)自发和受激吸收 (C )光的吸收 (D )自发辐射 )线性厄米算符的属于不同本征值的本征函数,彼此
、变分原理在于:根据具体问题在物理上的特点,先提出
ˆ
i L
z
题各15分,第
、在一维无限深势阱〔0,a〕中,粒子处于第一激发态,即
S,S
是二个自旋,
1z
武汉理工大学教务处
试题标准答案及评分标准用纸
| 课程名称—量子力学—— ( B 卷) | 一、选择题(每题3分,共15分) 装 1.C 2.B 3. D 4.C 5.D
| 二、填空题 (每空2分,共20分)
1. i -∇,p i ∇
2. 实数 正交
3. 费米-狄拉克 费米子
4. q
p P A c
=-
正则动量 5. 试探 极值
三、 证明题(共15分)
(1)证明:令1a n n λ+
=+ 则
其共轭式为*
1n a n λ=+,与上式两边分别作用得 (2分) *
11n aa n n n λ
λ+
=++
利用a a n n n +
= ,1a a +⎡⎤=⎣⎦和mn m n δ= (5分)
等式左边=111n a a n n n n n +
+=+=+ 等式右边=()2
2
2
1111n n n n λλ
λ++=++=
故λ=
1a n +=+ (3分)
(2)证明:ˆˆˆx z y L yp zp =- ˆˆˆy x z L z p x p =- ˆˆˆz
y x L xp yp =- (2分)
[][][][][]()ˆˆˆˆˆˆˆˆˆˆˆˆˆˆ,,,,,,ˆˆˆˆˆˆˆ,00,x y z y x z z x z z y x z z
z x y z y x z L L y p z p z p x p y p z p y p x p z p z p y p x p
y p z p p z p x i x p y p i L
⎡⎤⎡⎤⎡⎤=--=--+⎣⎦⎣⎦⎣⎦=--+=-=
利用动量分量彼此对易和[]ˆ,z z p
i = (3分) 四 计算题(第1、2题各15分,第3、4题各10分,要求有具体计算步骤)
1、解:一维无限深势阱中,粒子处于第一激发态的波函数为 (
)22x x a πψ⎛⎫=
⎪⎝⎭
(2分) (1)粒子坐标的平均值:()()*
22
20022sin 2a x a x x x x dx x dx a a πψψ∞
⎛⎫=== ⎪⎝⎭
⎰⎰ ()()2
*
22222220
02211sin 38a x x x x x dx x dx a a a πψψπ∞
⎛⎫⎛⎫=
=
=- ⎪ ⎪⎝⎭⎝⎭
⎰
⎰
x ∆=
= (5分)
(2)动量的平均值:()()()()**
22220
ˆ0d p x p x dx x i
x dx dx ψψψψ∞
∞
⎛
⎫
=
=-= ⎪⎝⎭
⎰
⎰ ()()()()22
2
2
*2
*2
2
22
222
00
4ˆd p x p
x dx x x dx dx a πψ
ψψψ∞
∞
⎛
⎫==-= ⎪
⎝
⎭⎰⎰
2p a
π
∆=
(5分) (3)粒子动能为22p E m =,则有222
2
422p E m ma
π== (3分) 2、解:(1)Hamilton 量满足的本征方程为
21021
01201
200003003a a a b b b c c c λ
λλλ-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫
⎪⎪ ⎪
⎪⎪
=⇒-= ⎪⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭⎝
⎭⎝⎭
非零解的条件为
()()2
210
1
203100
03λ
λλλλ
--=--=- (6分)
即123λλ== 31λ=是可能的能量本征值,能量有简并。
(2
)
)21051203003i H H H i i i i i ψψψψ+
⎛⎫⎛⎫
⎪===---= ⎪ ⎪⎝⎭
(3分)
)2
22221011
1203
003i H H H i i i i i ψψψψ+⎛⎫⎛⎫
⎪⎪===---= ⎪⎪ ⎪⎪⎝⎭⎭
(3分)
3
H ∆==
(3分) 3、解:选2
2
12()S S S =+与12z z z S S S =+的共同本征态s SM χ。
当1S =,0,1S M =±是三重态,对二电子交换对称。
0S =,0S M = 是单态,对二电子交换反对称。
(2分)
首先有
2
2
2
21212122
12
()23 22
S S S S S S S S S =+=++⋅=+⋅
定态方程为
s s SM SM H E χχ=
因为
22211002 , 0s s M M S S χχχ==
所以
2
2
2
121113()4
4
s s s
M M M S S χχχ⋅=-=
2
12000034
S S χχ⋅=-
又
1121100() 0
s s s z M z z M s M z S S S M S χχχχ=+== (4分)
对三重态能级为
2
, 0,14
s s E M A B M =+
=±
分为三条:
2
2
2
123 , , 4
44
E A B E B E A B =+
=
=-+
(3分)
对单态能级仅一条:2
034
E B =-
(1分)
4、解:氢原子的本征解为 42
2
1
2
n e E n μ=-
(2分)
由波函数归一化条件可知归一化常数为
1
2
1112322
c -
⎛⎫=++=
⎪⎝
⎭ (2分) 不为零的能量取值几率为
()()()24331;84
W E W E W E ==
= 能量平均值为
()4
2432
31167842304e E E E E μ=++=- (2分)
当0t >时,波函数为
()()()()2233441,exp exp exp 28i i i r t r E t r E t r E t ψψ⎛⎫⎛⎫⎛⎫
ψ=
-+-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
=()()()444234333
1exp exp exp 8218832
i i i r e t r e t r e t μψμψμ⎛⎫⎛⎫⎛⎫
=
++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
(4分)。