2020年北师大版数学七年级上册第六章数据的收集与整理 第四节统计图的选择扇形统计图 条形统计图课件
- 格式:pptx
- 大小:1.42 MB
- 文档页数:31
统计图的特点(1)条形统计图:条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按照一定的顺序排列起来。
作用:从条形统计图中很容易看出各种数量的多少。
(2)拆线统计图:折线统计图是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。
作用:折线统计图不但可以表示出数量的多少,而且能够清楚地表示出数量增减变化的情况。
(3)扇形统计图:扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数。
作用:通过扇形统计图可以很清楚地表示各部分数量同总数之间的关系。
折线统计图不但能反映数据(量)的多少,更能反映某一项目在某一时间内的数据(量)增减变化情况七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.若正整数x 、y 满足(25)(25)25x y --=,则x y +等于A .18或10B .18C .10D .26【答案】A【解析】因为x,y 是正整数,所以(2x -5),(2y -5)均为整数,因为25=1×25,或25=5×5, 所以存在两种情况: ① 2x -5=1, 2y -5=25,计算出x=3,y=15, 所以x+y=18,② 2x -5=5, 2y -5=5,计算出x=y=5, 所以x+y=10,故选A.点睛:本题考查有理数乘法,解决此题的关键是分类讨论,不要漏掉任何一种情况. 2.关于x 的不等式组1020x x +>⎧⎨-≤⎩,其解集在数轴上表示正确的是( ). A . B .C .D .【答案】D【解析】解不等式(1)得:1x >-;解不等式(2)得:2x ≤;结合在数轴上表示不等式解集时:“大于”向右,“小于”向左;“大于和小于用圆圈”,“大于或等于和小于或等于用圆点”可确定A 、B 、C 错误,D 正确,故选D.3.今年某市有30000名考生参加中考,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是( )A .每位考生的数学成绩是个体B .30000名考生是总体C .这100名考生是总体的一个样本D .1000名学生是样本容量【答案】A【解析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A 、每位考生的数学成绩是个体,此选项正确;B、30000名考生的数学成绩是总体,此选项错误;C、这100名考生的数学成绩是总体的一个样本,此选项错误;D、1000是样本容量,此选项错误;故选:A.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.4.若3a﹣22和2a﹣3是实数m的平方根,且t,则不等式23x t-﹣32x t-≥512的解集为( )A.x≥910B.x≤910C.x≥811D.x≤811【答案】B【解析】先根据平方根求出a的值,再求出m,求出t,再把t的值代入不等式,求出不等式的解集即可.【详解】解:∵3a﹣22和2a﹣3是实数m的平方根,∴3a﹣22+2a﹣3=0,解得:a=5,3a﹣22=﹣7,所以m=49,t7,∵2x t3-﹣3x t2-≥512,∴2x73-﹣3x72-≥512,解得:x≤9 10.故选B.【点睛】本题考查算术平方根、解一元一次不等式和平方根,能求出t的值是解题关键.5.如图,两只蚂蚁以相同的速度沿甲、乙两条不同的路线,同时从A出发爬向终点B,则()A.按甲路线走的蚂蚁先到终点B.按乙路线走的蚂蚁先到终点C.两只蚂蚁同时到终点D.无法确定【答案】C【解析】根据平移可得出两蚂蚁行程相同,结合二者速度相同即可得出结论.【详解】∵将甲的路线分别向左侧和下方平移,可发现甲、乙两只蚂蚁的行程相同,且两只蚂蚁的速度相同,∴两只蚂蚁同时到达.故选C.【点睛】本题考查利用平移解决实际问题,熟练掌握平移的性质是解题的关键.6.某天,小王去朋友家借书,在朋友家停留一段时间后,返回家中,如图是他离家的路程(千米)与时间(分)的关系的图象,根据图象信息,下列说法正确的是()A.小王去时的速度大于回家的速度B.小王在朋友家停留了10分钟C.小王去时所花时间少于回家所花时间D.小王去时走上坡路施,回家时走下坡路【答案】B【解析】A、根据速度=路程÷时间,可求出小王去时的速度和回家的速度,比较后可得出A不正确;B、观察函数图象,求出小王在朋友家停留的时间,故B正确;;C、先求出小王回家所用时间,比较后可得出C不正确;D、题干中未给出路况如何,故D不正确.综上即可得出结论.【详解】解:A、小王去时的速度为2000÷20=100(米/分),小王回家的速度为2000÷(40−30)=200(米/分),∵100<200,∴小王去时的速度小于回家的速度,A不正确;B、∵30−20=10(分),∴小王在朋友家停留了10分,B正确;C、40−30=10(分),∵20>10,∴小王去时所花时间多于回家所花时间,C不正确;D、∵题干中未给出小王去朋友家的路有坡度,∴D不正确.故选:B.【点睛】本题考查了函数图象,观察函数图象逐一分析四条结论的正误是解题的关键.7等于()A.±4 B.4 C.﹣4 D.±2【答案】B|a|的答案.=|﹣4|=4,故选:B.【点睛】本题考查平方根的性质,熟记平方根的性质是解题的关键.8.给出下列4个命题:①垂线段最短;②互补的两个角中一定是一个为锐角,另一个为钝角;③同旁内角相等,两直线平行;④同旁内角的两个角的平分线互相垂直.其中真命题的个数为()A.1 B.2 C.3 D.4【答案】A【解析】①根据垂线段的性质即可判断,②如果两个都是直角则可判断,③根据平行线的判定定理可判断,④因为没说明两直线平行,所以不能得出.【详解】①应该是连接直线为一点与直线上的所有线段,垂线段最短,所以错误;②如果两个都是直角则可判断“互补的两个角中一定是一个为锐角,另一个为钝角”错误;③根据平行线的判定定理可判断同旁内角相等,两直线平行正确;④因为没说明两直线平行,所以不能得出,故错误.故选A【点睛】本题考查垂线段的性质、平行线的判定,解题的关键是掌握垂线段的性质、平行线的判定.9.如图,下列条件中不能使a∥b的是()A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°【答案】C【解析】根据平行线的判定方法即可判断.【详解】A. ∠1=∠3,同位角相等,可判定a∥b;B. ∠2=∠3,内错角相等,可判定a∥b;C. ∠4=∠5,互为邻补角,不能判定a∥b;D. ∠2+∠4=180°,同旁内角互补,可判定a∥b;故选C.【点睛】此题主要考查平行线的判定方法,解题的关键是熟知平行线的判定定理.10.用一条直线m 将如图1 的直角铁皮分成面积相等的两部分.图2、图3 分别是甲、乙两同学给出的作法,对于两人的作法判断正确的是()A.甲正确,乙不正确B.甲不正确,乙正确C.甲、乙都正确D.甲、乙都不正确【答案】C【解析】根据图形中所画出的虚线,可以利用图形中的长方形、梯形的面积比较得出直线两旁的面积的大小关系.【详解】如图:图形2中,直线m经过了大长方形和小长方形的对角线的交点,所以两旁的图形的面积都是大长方形和小长方形面积的一半,所以这条直线把这个图形分成了面积相等的两部分,即甲做法正确;图形3中,经过大正方形和图形外不添补的长方形的对角线的交点,直线两旁的面积都是大正方形面积的一半-添补的长方形面积的一半,所以这条直线把这个图形分成了面积相等的两部分,即乙做法正确.故选C.【点睛】此题主要考查了中心对称,根据图形中的割补情况,抓住经过对角线的交点的直线都能把长方形分成面积相等的两部分这一特点,即可解决问题.二、填空题题11.已知AB∥x轴,A点的坐标为(3,2),且AB=4,则B点的坐标为_____.【答案】(﹣1,2)或(7,2)【解析】试题分析:根据平行于x轴的点的纵坐标相等求出点B的纵坐标,再分两种情况求出点B的横坐标,然后写出即可.解:∵AB∥x轴,A点的坐标为(3,2),∴点B的纵坐标为2,∵AB=4,∴点B在点A的左边时,点B的横坐标为3﹣4=﹣1,此时点B的坐标为(﹣1,2),点B在点A的右边时,点B的横坐标为3+4=7,此时,点B的坐标为(7,2),∴点B的坐标为(﹣1,2)或(7,2).故答案为(﹣1,2)或(7,2).12.当x分别取10,1111,9,,8,,,2,10982,1,0时,计算分式2211xx-+的值,再将所得结果相加,其和等于_____【答案】﹣1【解析】先把x=n和1xn=代入代数式,并对代数式化简,得到它们的和为0,然后把x=1、0代入代数式求出代数式的值,再把所得的结果相加求出所有结果的和.【详解】解:因为2222222211n 11n n 1n 0n 1n 1n 111n ⎛⎫- ⎪---⎝⎭+=+=+++⎛⎫+ ⎪⎝⎭, 所以当x 分别取值1n,n (n 为正整数)时,计算所得的代数式的值之和为0, 则将所得结果相加,其和等于11010111101--+=-=-++, 故答案为:﹣1.【点睛】本题考查的是代数式的求值,本题的x 的取值较多,并且除x=0外,其它的数都是成对的且互为倒数,把互为倒数的两个数代入代数式得到它们的和为0,这样计算起来就很方便.13.若a 3b y 与-2a x b 是同类项,则y x =_____.【答案】1.【解析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,分别求出x ,y 的值,然后求出y x 即可.【详解】∵a 3b y 与-2a x b 是同类项,∴x=3,y=1,∴y x =13=1.,故答案为:1.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:一是所含字母相同,二是相同字母的指数也相同.14.如图,将ABC 沿BC 方向平移得到DEF ,若90B ∠=,6AB =,8BC =,2BE =, 1.5DH =,阴影部分的面积为______.【答案】10.5【解析】根据平移的性质得AB=DE=6,BC=EF=8,根据S 阴影=S △DEF -S △HEC =11••22DE EF HE EC -,可求出答案.【详解】由平移性质可得,AB=DE=6,BC=EF=8,所以,EH=DE-DH=6-1.5=4.5;EC=BC-BE=8-2=6,所以,S 阴影=S △DEF -S △HEC =1111••68 4.5610.52222DE EF HE EC -=⨯⨯-⨯⨯= . 故答案为10.5.【点睛】本题考核知识点:平移. 解题关键点:熟记平移的性质.15.如图,l ∥m ,∠1=120°,∠A =55°,则∠ACB 的大小是_____.【答案】65°【解析】∵l ∥m ,∠1=120°,∴∠ABC =180°-∠1=60°,∴∠ACB=180°-60°-55°=65°.故答案为65°.16.已知(2x 21)(3x 7)(3x 7)(x 13)-----可分解因式为(3x a)(x b)++,其中a 、b 均为整数,则a 3b +=_____.【答案】31-.【解析】首先提取公因式3x ﹣7,再合并同类项即可根据代数式恒等的条件得到a 、b 的值,从而可算出a+3b 的值:∵()()()()(2x 21)(3x 7)(3x 7)(x 13)3x 72x 21x 133x 7x 8-----=---+=--,∴a=-7,b=-1.∴a 3b 72431+=--=-.17.已知关于x 、y 的方程组334x y a x y a-=+=-⎧⎨⎩ ,其中−3⩽a ⩽1,有以下结论:①当a=−2时,x 、y 的值互为相反数;②当a=1时,方程组的解也是方程x+y=4−a 的解;③若x ⩽1,则l ⩽y ⩽4.其中所有正确的结论有______(填序号)【答案】①②③.【解析】解方程组得出x 、y 的表达式,根据a 的取值范围确定x 、y 的取值范围,逐一判断.【详解】解方程组334x y a x y a -=+=-⎧⎨⎩,得112y a x a=-=+⎧⎨⎩ , ∵−3⩽a ⩽1,∴−5⩽x ⩽3,0⩽y ⩽4,①当a=−2时,x=1+2a=−3,y=1−a=3,x ,y 的值互为相反数,结论正确; ②当a=1时,x+y=2+a=3,4−a=3,方程x+y=4−a 两边相等,结论正确;③当x ⩽1时,1+2a ⩽1,解得a ⩽0,且−3⩽a ⩽1,∴−3⩽a ⩽0,∴1⩽1−a ⩽4,∴1⩽y ⩽4结论正确,故答案为:①②③.【点睛】此题考查相反数,二元一次方程组的解,解题关键在于掌握运算法则.三、解答题18.(1)解方程组:4103235x y x y +=⎧⎨-=⎩;(2)解不等式组:()2151422x x ->-⎧⎪⎨+<⎪⎩.【答案】(1)510x y =⎧⎨=-⎩;(2)20x -<<.【解析】(1)利用加减消元法解方程组;(2)先分别解两个不等式,然后根据大于小的小于大的取中间确定不等式组的解集.【详解】(1)解:①2⨯得:8220x y +=③,②+③得: 1155x =,解得:x=5,把x=5代入①得:y=-10 ,所以,方程组的解为:510x y =⎧⎨=-⎩ ;(2) 解:由①得: 2x >-,由②得: 0x <,所以,不等式组的解为:20x -<<.故答案为:(1)5{10x y ==- ;(2)20x -<< .【点睛】本题考查解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.同时考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.如图,小明站在乙楼BE前方的点C处,恰好看到甲、乙两楼楼顶上的点A和E重合为一点,若B、C相距30米,C、D相距60米,乙楼高BE为20米,小明身高忽略不计,则甲楼的高AD是多少米?【答案】甲楼的高AD是40米.【解析】由图可知,EF∥DC,AD⊥DC,EB⊥BC,证明△AEF≌△ECB,根据全等三角形的判定和性质定理即可得到结论.【详解】解:∵EF∥DC,AD⊥DC,EB⊥BC,∴∠AEF=∠C,∠AFE=∠EBC=90°,∵B、C相距30米,C、D相距60米,∴EF=DB=BC=30米,∴△AEF≌△ECB(ASA),∴AF=BE,∵DF=BE,∴AD=2BE=2×20=40(米).答:甲楼的高AD是40米.【点睛】本题考查了全等三角形的判定和性质,解题的关键是找出证明三角形全等的条件.20.育人中学开展课外体育活动,决定开设A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A项目的人数所占的百分比为________ ,其所在扇形统计图中对应的圆心角度数是______度;(2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?【答案】(1)40% ,144;(2)补图见解析;(3)估计全校最喜欢踢毽子的学生人数约100人.【解析】试题分析:(1)利用100%减去D、C、B三部分所占百分比即可得到最喜欢A项目的人数所占的百分比;所在扇形统计图中对应的圆心角度数用360°×40%即可;(2)根据频数=总数×百分比可算出总人数,再利用总人数减去D、C、B三部分的人数即可得到A部分的人数,再补全图形即可;(3)利用样本估计总每个体的方法用1000×样本中喜欢踢毽子的人数所占百分比即可.解:(1)100%﹣20%﹣10%﹣30%=40%,360°×40%=144°;(2)抽查的学生总人数:15÷30%=50,50﹣15﹣5﹣10=20(人).如图所示:(3)1000×10%=100(人).答:全校最喜欢踢毽子的学生人数约是100人.21.先化简,再求值:已知x2-2x-1=0,求代数式(x-1)2+(x-3)(x+3)-2(x-5)的值.【答案】2x 2-1x+2,1【解析】原式利用完全平方公式,平方差公式展开,去括号合并同类项得到最简结果,把已知等式变形后代入化简式计算即可.【详解】解:(x-1)2+(x-3)(x+3)-2(x-5) =x 2-2x+1+x 2-9-2x+10 =2x 2-1x+2, ∵x 2-2x-1=0, ∴x 2-2x=1,∴原式=2(x 2-2x )+2=1. 【点睛】此题考查了整式的混合运算——条件求值,熟练掌握运算法则是解本题的基础,条件与目标式的相互转化和整体思想是解题的关键. 22.阅读下列材料解决问题:将下图一个正方形和三个长方形拼成一个大长方形,观察这四个图形的面积与拼成的大长方形的面积之间的关系.∵用间接法表示大长方形的面积为:2x px qx pq +++,用直接法表示面积为:()()x p x q ++ ∴2()()x px qx pq x p x q +++=++于是我们得到了可以进行因式分解的公式:2()()x px qx pq x p x q +++=++ (1)运用公式将下列多项式分解因式:①234x x +-, ②2815m m -+; (2)如果二次三项式“22a ab b ++”中的“”只能填入有理数1, 2, 3, 4,并且填入后的二次三项式能进行因式分解,请你写出所有的二次三项式.【答案】(1)①(4)(1)x x +-;②(m-3)(m-5);(2)22222,32a ab b a ab b ++++,222243,44a ab b a ab b ++++【解析】(1)根据阅读材料中的结论分解即可; (2)找出能用公式法及十字相乘法分解的多项式即可. 【详解】(1)①234x x +-=(4)(1)x x +-;2815m m -+=(m-3)(m-5);(2)22222,32a ab b a ab b ++++,222243,44a ab b a ab b ++++ 【点睛】此题考查因式分解的应用,掌握运算法则是解题关键 23. (1)计算:|﹣3|﹣4-|3-2|; (2)解方程:2536x y x y +=⎧⎨-=⎩【答案】(1)234-;(2)方程组的解为 31x y =⎧⎨=-⎩【解析】(1)利用绝对值,算术平方根计算可得;(2)把第二个方程变形,然后代入第一个方程,利用代入消元法可得结果. 【详解】(1)原式=()3223---= 3232234-+-=-; (2)①×3+② 得7x =21, 解得 x =3, 将x =3代入②, 得y =-1, 所以方程组的解为 31x y =⎧⎨=-⎩24.探索:小明和小亮在研究一个数学问题:已知AB ∥CD ,AB 和CD 都不经过点P ,探索∠P 与∠A 、∠的数量关系.发现:在图1中,小明和小亮都发现:∠APC =∠A+∠C ;小明是这样证明的:过点P 作PQ ∥AB∴∠APQ=∠A()∵PQ∥AB,AB∥CD.∴PQ∥CD()∴∠CPQ=∠C∴∠APQ+∠CPQ=∠A+∠C即∠APC=∠A+∠C小亮是这样证明的:过点作PQ∥AB∥CD.∴∠APQ=∠A,∠CPQ=∠C∴∠APQ+∠CPQ=∠A+∠C即∠APC=∠A+∠C请在上面证明过程的过程的横线上,填写依据;两人的证明过程中,完全正确的是.应用:在图2中,若∠A=120°,∠C=140°,则∠P的度数为;在图3中,若∠A=30°,∠C=70°,则∠P的度数为;拓展:在图4中,探索∠P与∠A,∠C的数量关系,并说明理由.【答案】两直线平行,内错角相等;平行于同一直线的两直线平行;小明的证法;100°;40°;∠APC=∠A﹣∠C【解析】试题分析:过点P作AB的平行线,用相似的证明方法运用平行线的性质进行证明即可试题解析:如图1,过点P作PQ∥AB,∴∠APQ=∠A(两直线平行,内错角相等)∵PQ∥AB,AB∥CD. ∴PQ∥CD(平行于同一直线的两直线平行)∴∠CPQ=∠C∴∠APQ+∠CPQ=∠A+∠C 即∠APC=∠A+∠C,故两人的证明过程中,完全正确的是小明的证法;如图2,过点P作PE∥AB,∴∠APE+∠A=180°,∠A=120°,∴∠APE=60°,∵PE∥AB,AB∥CD. ∴PE∥CD(平行于同一直线的两直线平行)∴∠CPE+∠C=180°,∠C=140°,∴∠CPE=40°,∴∠APC=∠APE+∠CPE=100°;如图3,过点P作PF∥AB,∴∠APF=∠A,∵PF∥AB,AB∥CD. ∴PF∥CD,∴∠CPF=∠C ∴∠CPF﹣∠APF=∠C﹣∠A 即∠APC=∠C﹣∠A=40°;如图4,过点P作PG∥AB,∴∠APG+∠A=180°,∴∠APG=180°﹣∠A∵PG∥AB,AB∥CD,∴PG∥CD,(平行于同一直线的两直线平行)∴∠CPG+∠C=180°,∴∠CPG=180°﹣∠C ∴∠APC=∠CPG﹣∠APG=∠A﹣∠C.考点:平行线的判定与性质25.某校七(1)班学生为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,请解答以下问题;级别 A B C D E F月均用水量x (t)0<x≤55<x≤1010<x≤1515<x≤2020<x≤2525<x≤30频数(户) 6 12 m 10 4 2(1)本次调查采用的方式是(填“全面调查”或“抽样调查);(2)若将月均用水量的频数绘成形统计图,月均用水量“15<x≤20”组对应的圆心角度数是72°,则本次调查的样本容量是,表格中m的值是,补全频数分布直方图.(3)该小区有500户家庭,求该小区月均用水量超过15t的家庭大约有多少户?【答案】(1)抽样调查;(2)50、16;(3)160户【解析】(1)由“随机调查了该小区部分家庭”可得答案;(2)用B 级别户数除以其所占比例可得样本容量,用总户数减去其它级别户数求出C 级别户数m 的值; (3)利用样本估计总体思想求解可得.【详解】解:(1)由于是随机调查了该小区部分家庭, 所以本次调查采用的方式是抽样调查, 故答案为:抽样调查;(2)本次调查的样本容量是10÷72360=50,m =50﹣(6+12+10+4+2)=16, 补全频数分布直方图如下:故答案为:50、16;(3)该小区月均用水量超过15t 的家庭大约有500×104250++=160(户). 【点睛】本题考查频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列各数中的无理数是()A.B.C.D.【答案】D【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A. 是有理数,故不符合题意;B. 是有理数,故不符合题意;C. =3是有理数,故不符合题意;D. 是无理数.故选D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.如图所示,直线AB交CD于点O,OE平分∠BOD,OF平分∠COB,∠AOD:∠BOE=5:2,则∠AOF等于()A.140°B.130°C.120°D.110°【答案】B【解析】先设出∠BOE=2α,再表示出∠DOE=α,∠AOD=5α,建立方程求出α,最用利用对顶角,角之间的和差即可.【详解】解:设∠BOE=2α,∵∠AOD:∠BOE=5:2,∴∠AOD=5α,∵OE 平分∠BOD , ∴∠DOE =∠BOE =2α∴∠AOD+∠DOE+∠BOE =180°, ∴5α+2α+2α=180°, ∴α=20°,∴∠AOD =5α=100°, ∴∠BOC =∠AOD =100°, ∵OF 平分∠COB , ∴∠COF =12∠BOC =50°, ∵∠AOC =∠BOD =4α=80°, ∴∠AOF =∠AOC+∠COF =130°, 故选B . 【点睛】本题是对顶角,邻补角题,还考查了角平分线的意义,解本题的关键是找到角与角之间的关系,用方程的思想解决几何问题是初中阶段常用的方法.3.如图,BD 平分ABC ∠,点E 为BA 上一点,EG BC ∥交BD 于点F .若135∠=︒,则ABF ∠的度数为( )A .25︒B .35︒C .70︒D .17.5︒【答案】B【解析】由BD 平分ABC ∠可得:要求ABF ∠则需求出DBC ∠,由EG BC 可得:DBC ∠=∠1,即可得出答案.【详解】∵EG//BC, ∴DBC ∠=∠1, ∵135∠=︒, ∴DBC ∠=35=︒, 又∵BD 平分ABC ∠,∴ABF ∠=DBC ∠=35=︒.故选B.【点睛】考查的是平行线的性质和角平分线的性质,解题关键分析出要求ABF ∠则需求出DBC ∠,双由EG BC 可得:DBC ∠=∠1,从而将所求转化成已知条件.4.若方程2x a-1+y=1是关于x 、y 的二元一次方程,则a 的值是( )A .1-B .0C .1D .2【答案】D【解析】根据二元一次方程的定义求解即可.【详解】解:∵方程121a x y -+=是关于x 、y 的二元一次方程,∴11a -=.解得:2a =.故答案选:D .【点睛】本题考查了二元一次方程的定义,解题的关键是熟练掌握二元一次方程的定义.5.下列四个实数中,是有理数的是( )A .πB .CD 【答案】B【解析】根据有理数是有限小数或无限循环小数,可得答案.【详解】解:π2是有理数.故选:B .【点睛】本题考查了实数,有理数是有限小数或无限循环小数,无理数是无限不循环小数.6.已知a b <,则下列不等式一定成立的是( )A .220a b -<B .55a b -<-C .44a b +>+D .1122a b >【答案】A【解析】根据不等式的性质逐一进行判断即可得.【详解】A. a b <,则2a<2b ,则220a b -<,故A 选项正确;B. a b <,则55a b ->-,故B 选项错误;C. a b <,则44a b +<+,故C 选项错误;D. a b <,则1122a b <,故D 选项错误, 故选A.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变. 7.若单项式x 2y m-n 与单项式-12x 2m+n y 3是同类项,则这两个多项式的差是( ) A .1 2x 4y 6B .1 2x 2y 3 C .32x 2y 3 D .-12x 2y 3 【答案】C【解析】根据同类项的定义确定x ,y 的次数,然后根据合并同类项的法则计算即可求解. 【详解】解:∵单项式x 2y m-n 与单项式-12x 2m+n y 1是同类项, ∴x 2y m-n -(-12x 2m+n y 1)=(1+12)x 2y 1=32x 2y 1. 故选:C .【点睛】此题考查了整式的加减,以及同类项,熟练掌握同类项的定义是解本题的关键.8.要了解某校初中学生的课外作业负担情况,若采用抽样调查的方式进行调查,则下面哪种调查具有代表性( )A .调查该校全体女生B .调查该校全体男生C .调查该校七、八、九年级各100名学生D .调查该校九年级全体学生【答案】C【解析】根据“抽样调查”的相关要求进行分析判断即可.【详解】∵“调查全体女生”、“调查全体男生”和“调查九年级全体学生”都只是调查了该校部分特定的学生,不能反映全校的情况,而“调查七、八、九三个年级各100名学生”能够比较全面的反映该校学生作业的负担情况,∴上述四种调查方式中,选项C 中的调查方式更具有代表性.故选C.知道“在抽样调查中怎样选取样本才能使样本更有代表性”是解答本题的关键.9.晓东根据某市公交车阶梯票价,得出乘坐路程m (单位:公里)和票价n (单位:元)之间的关系如下表:我们定义公交车的平均单价为w m=,当7,10,13m =时,平均单价依次为1w ,2w ,3w ,则1w ,2w ,3w 的大小关系是( )A .123w w w >>B .312w w w >>C .231w w w >>D .132w w w >> 【答案】D【解析】根据题意,按计费规则计算即可.【详解】解:由题意1232237100.28570.20.208133w w w =≈===≈,,, 所以132w w w >>,故选D .【点睛】本题为实际应用问题,考查了函数图象的意义以阅读图表能力,解答关键需要理解计费规则. 10.下列命题中是假命题的是( )A .两点的所有连线中,线段最短B .两条直线被第三条直线所截,同位角相等C .等式两边加同一个数,结果仍相等D .不等式两边加同一个数,不等号的方向不变【答案】B【解析】根据线段的性质、平行线的性质、等式的性质和不等式的性质判断即可。
第六章ꢀ数据的收集与整理6.4ꢀ统计图的选择1.条形统计图能清楚地表现出每2.折线统计图能清楚具体数目;的变化情况;3.扇形统计图能清楚地表现各部分在总体中百分比.统计图的选择1.(5分)(2019·威海)为配合全科大阅读活动,学校团委对全校学生阅读兴趣调查的数据进行整理.欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是(D )A.条形统计图B.频数直方图C.折线统计图D.扇形统计图2.(5分)为了描述我县城区某一天的气温变化情况,选择( C )A.扇形统计图B.条形统计图C.折线统计图D.直方图3.(5分)我国五座名山的海拔高度如下表所示:山名泰山华山黄山庐山峨眉山海拔/米 1 532.7 2 154.9 1 864.8 1 473.4 3 079.3根据表中的数据作出统计图,以便更清楚地表示这几座山的高度,应选择形(填“条形”“折线”或“扇形”)统计图.4.(10分)美化都市,改善人们的居住条件已成为城市建设的一项重要内容.现将A,B,C,D,E五个城市的土地面积与绿化面积统计如下:A B C D E土地面积16 807 5 910 6 5977 434 2 020/平方公里绿化面积5 042 1 478 1 979 2 974909/平方公里容易使人产生错觉的统计图5.(5分)根据如图所示的甲、乙两户居民家庭全年支出费用的扇形统计图,下面对全年食品支费用判断正确的A.甲户比乙户多B.乙户比C.甲、乙两户一样多D.无法确6.(5分)乐乐在报纸上看到甲、乙两公司2014年-2018年的销售收入情况如图所示:关于两家公司2014-2018年的销售收入的增长速度,下列说法正确的是( A )A.甲快B.乙快C.一样快D.无法比较7.(15分)下表给出了2019年4月份三家牛奶生产厂家的利润额:厂家甲乙丙利润/万元40 80341 77511 572小华设计了如下统计图(如图).(1)在统计图中,最多与最少的两者给你的直观感觉是什么?(2)直观感觉与实际相符合吗?(3)为避免此统计图给人的错觉,应怎样改动?几倍ꢀ有题。
七年级数学上册新版北师大版:
《第六章数据的收集与整理》知识归纳
1、普查与抽样调查
为了特定目的对全部考察对象进行的全面调查,叫做普查。
其中被考察对象的全体叫做总体,组成总体的每一个被考察对象称为个体。
从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体抽取的一部分个体叫做总体的一个样本。
2、扇形统计图扇形统计图:利用圆与扇形来表示总体与部分的关系,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。
(各个扇形所占的百分比之和为1)
圆心角度数=360°×该项所占的百分比。
(各个部分的圆心角度数之和为360°)画法:(1)计算不同部分占总体的百分比(在扇形中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360的比)。
(2)计算各个扇形的圆心角(顶点在圆心的角叫做圆心角)的度数。
(3)在圆中画出各个扇形,并标上百分比。
3、频数直方图
频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组画在横轴上,纵轴表示各组数据的频数。
4、各种统计图的特点
条形统计图:能清楚地表示出每个项目的具体数目。
折线统计图:能清楚地反映事物的变化情况。
扇形统计图:能清楚地表示出各部分在总体中所占的百分比。
1。