烟塔合一
- 格式:ppt
- 大小:568.50 KB
- 文档页数:37
浅析烟塔合一工程技术要点摘要:烟塔合一工程技术是该工程项目实施的重要组成部分,研究其相关课题有着重要意义。
本文首先对相关内容做了概述,分析了烟塔合一技术依据,并结合相关实践经验,分别从多个角度与方面就烟塔合一与常规烟囱对比问题展开了研究,阐述了个人对此的几点看法与认识,望有助于相关工作的实践。
关键词:烟塔合一;工程;技术;要点1前言烟塔合一工程技术是一项实践性较强的综合性工作,其具体实施方法的特殊性不言而喻。
该项课题的研究,将会更好地提升对烟塔合一工程技术的分析与掌控力度,从而通过合理化的措施与途径,进一步优化该项工作的最终整体效果。
2工程概况神华国华永州发电厂一期(2×1000MW)工程厂址位于湖南省永州市东安县芦洪市镇境内的灌坝村、西江桥村、大枧塘村,厂址东南距永州市城区约15.5km,西南距东安县城区约27.0km。
神华国华永州发电厂一期为新建工程,建设规模为2×1050MW超超临界燃煤机组,同步建设高效烟气脱硫、脱硝及除尘装置。
电厂按装机4×1000MW级燃煤机组规划,留有扩建余地。
3烟塔合一技术依据由于采用石灰石-石膏湿法脱硫工艺,烟气经石灰石(湿法)脱硫后,烟温一般在50℃左右,50℃的烟气与室外空气密度差较小,烟囱壁散热导致的烟气温降(烟囱非双曲线形),其流动特性不及冷却塔,加上气候变化的影响,致使经脱硫后50℃的烟气很难通过烟囱排放。
若采用烟囱排放须增加回转式GGH,对烟气进行加热,温度达到SO2的露点温度(72℃)以上,这样会导致系统复杂,初投资及运行費用增加,冷却塔具有一定高度,比烟囱的表面积大许多,而且采用冷却塔排烟则无须对烟气进行加热,不用GGH,还可以合并锅炉引风机和脱硫增压风机,降低电厂建设费用,有利于降低发电成本。
二是由于厂址位于哈尔滨市区,距太平国际机场约为17km,处于航线净空区范围内,对附近构筑物的高度有限制。
采用烟塔合一技术可有效避开航空影响。
浅析“烟塔合一”火电厂烟气通过冷却塔排放技术的应用东北电力设计院于国续内容提要:本文通过对火电厂采用烟塔合一技术特点的分析和与常规烟囱排烟方案的综合技术经济比较指出,采用烟塔合一技术在国内随着环境空气污染物排放标准的提高,已基本具备应用的条件,技术上是可行的。
采用烟塔合一方案有利于烟气的抬升与扩散,有一定环境效益,但由于目前技术上还主要依赖国外,总投资较高,同时有关环境影响尚无相应的标准和规范,且认识上可能还不尽一致,有可能对工程的报批产生潜在的不利影响。
因此,如果工程上无烟囱高度的限制,建议现阶段用冷却塔排烟方案的决策要慎重。
关键词:烟塔合一环境1 问题的由来火电厂锅炉排出的烟气通过冷却塔排放,即简称为“烟塔合一”的技术是国内近一两年来在电力工程设计中引起关注的一项新技术。
其实用冷却塔排烟,在国外已成功应用20几年,目前已成功应用到单机容量百万千瓦级的机组的电厂,可以说这已不是什么新技术。
“烟塔合一”示意图见图1。
图1“烟塔合一”示意图现在我们为什么开始关注此项技术呢?据了解目前国内准备采用“烟塔合一”的有华能北京热电厂、天津东北郊热电厂、石家庄良村热电厂、国华三河电力有限公司二期、大唐哈尔滨第一热电厂、华能九台电厂、国华宁海电厂二期等等,有的工程已通过了环境影响评价,有的在进行初可研和可研,有的则已开始实施。
所列这些工程采用“烟塔合一”的原因大都是由于电厂的烟囱高度受到厂址附近机场的限制,不能满足环保要求,厂址又不能搬迁,解决问题的唯一出路就是取消烟囱,用高度比烟囱低得多的冷却塔排烟。
大多数以城市集中供热为目的热电厂,由于合理的供热半径限制,热电厂厂址选择的自由度较小,难以避开机场,另一种情况是,如九台电厂,除机场限制条件外,是一个技术经济条件最好的的厂址,难以割舍。
另外,用冷却塔排烟,理论上有利于烟气的抬升与扩散,有利于环境保护或其它特定条件,也是某些工程,如宁海电厂(采用海水冷却塔,其海水的防腐措施有可能与排烟要求相结合,而节约投资),业主感兴趣的理由。
“烟塔合一”技术在环评中有关问题的探讨作者:李立峰张树深来源:《绿色科技》2010年第06期摘要:介绍了国内外燃煤电厂“烟塔合一”技术的应用现状,阐述了“烟塔合一”的工艺流程及技术特点,重点进行了“烟塔合一”排烟方案与常规的烟囱排烟方案对环境影响的对比分析,并针对燃煤电厂“烟塔合一”技术在环评过程中存在的问题进行探讨。
关键词:燃煤电厂;烟塔合一;环境影响评价中图分类号:X169文献标识码:B文章编号:1005-569X(2010)06-0098-031 引言“烟塔合一”技术是将火电厂烟囱和冷却塔合二为一,取消烟囱,利用冷却塔巨大热量和热空气量对脱硫后湿烟气进行抬升,在大多数情况下,其混合气体的抬升高度高于比冷却塔高几十米的烟囱,从而促进烟气内污染物的扩散。
“烟塔合一”技术起源于德国。
我国燃煤电厂自2005年开始引用“烟塔合一”技术,该技术不仅可以提高火力发电系统的能源利用效率,而且大大简化了火电厂的烟气系统,减少了设备投资并节约了有限的土地资源。
2 “烟塔合一”技术的应用现状2.1 国外应用现状德国于20世纪70年代开始研究“烟塔合一”技术,于1982年建设第一座“烟塔合一”火电厂,即Volklingen电厂。
1985年完成一系列测评。
自此,“烟塔合一”技术在德国新建电厂中得到了广泛应用。
同时,德国结合工程实际制订了“烟塔合一”技术的相关技术标准和评价准则。
随着“烟塔合一”技术的逐步成熟,德国、波兰、土耳其、希腊等国家改建和新建了很多无烟囱电厂,其中大部分集中在德国。
目前,德国采用“烟塔合一”技术且已运行的有20多座电厂,装机总容量超过12000MW,最大单机容量已达到1000MW[1],如德国的Neurath电厂,装设2×1100MW机组。
德国要求“烟塔合一”的塔入口SO2质量浓度为400mg/m3,NOx质量浓度为200mg/m3。
对一些燃烧褐煤且采用“烟塔合一”技术的电厂,则未要求其对排烟进行脱硝(比如黑泵电厂)处理。
摘要:介绍了国内外燃煤电厂“烟塔合一”技术的应用现状,阐述了“烟塔合一”的工艺流程及技术特点,重点进行了“烟塔合一”排烟方案与常规的烟囱排烟方案对环境影响的对比分析,并针对燃煤电厂“烟塔合一”技术在环评过程中存在的问题进行探讨。
关键词:燃煤电厂;烟塔合一;环境影响评价中图分类号:X169文献标识码:B文章编号:1005-569X(2010)06-0098-031 引言“烟塔合一”技术是将火电厂烟囱和冷却塔合二为一,取消烟囱,利用冷却塔巨大热量和热空气量对脱硫后湿烟气进行抬升,在大多数情况下,其混合气体的抬升高度高于比冷却塔高几十米的烟囱,从而促进烟气内污染物的扩散。
“烟塔合一”技术起源于德国。
我国燃煤电厂自2005年开始引用“烟塔合一”技术,该技术不仅可以提高火力发电系统的能源利用效率,而且大大简化了火电厂的烟气系统,减少了设备投资并节约了有限的土地资源。
2 “烟塔合一”技术的应用现状2.1 国外应用现状德国于20世纪70年代开始研究“烟塔合一”技术,于1982年建设第一座“烟塔合一”火电厂,即Volklingen电厂。
1985年完成一系列测评。
自此,“烟塔合一”技术在德国新建电厂中得到了广泛应用。
同时,德国结合工程实际制订了“烟塔合一”技术的相关技术标准和评价准则。
随着“烟塔合一”技术的逐步成熟,德国、波兰、土耳其、希腊等国家改建和新建了很多无烟囱电厂,其中大部分集中在德国。
目前,德国采用“烟塔合一”技术且已运行的有20多座电厂,装机总容量超过12000MW,最大单机容量已达到1000MW[1],如德国的Neurath电厂,装设2×1100MW机组。
德国要求“烟塔合一”的塔入口SO2质量浓度为400mg/m3,NOx质量浓度为200mg/m3。
对一些燃烧褐煤且采用“烟塔合一”技术的电厂,则未要求其对排烟进行脱硝(比如黑泵电厂)处理。
其他国家投运的“烟塔合一”机组台数不多,目前尚未见到相关要求。
烟塔合一技术原理
烟塔合一技术原理,简单来说就是将原本分开的脱硫、脱硝和除尘设备合并在一起,通过一套工艺流程完成对烟气中污染物的处理。
这种技术的出现,既解决了传统烟气处理设备占地面积大、投资高、运行成本高的问题,也有利于提高烟气处理效率、减少对环境的污染。
烟塔合一技术的原理主要包括以下几个方面:首先是烟气的预处理,将含尘颗粒物去除,通常采用静电除尘器或布袋除尘器进行处理。
接着是脱硫过程,利用石灰石浆液对烟气中的二氧化硫进行吸收,生成石膏并排出系统。
然后是脱硝过程,利用氨水对烟气中的氮氧化合物进行还原,将其转化为氮气和水蒸气,从而减少对大气的污染。
最后是烟气的净化处理,通过干法除尘或湿法除尘等方法,将烟气中的微小颗粒物和有机物去除,最终排放出清洁的烟气。
烟塔合一技术的原理是基于烟气处理的工艺特点和环保要求,通过整合各项处理工艺,实现烟气多污染物一体化处理,从而达到节能
减排、降低运行成本和提高处理效率的目的。
相比传统的烟气处理设备,烟塔合一技术不仅占地面积小、投资成本低,而且运行稳定,管理维护方便。
因此,在工业烟气治理和环保建设中得到越来越广泛的应用。
总之,烟塔合一技术通过对烟气进行预处理、脱硫、脱硝和净化等工艺步骤,实现了烟气多污染物的一体化处理,为减少大气污染、改善环境质量发挥了积极的作用。
随着环保技术的不断进步和完善,相信烟塔合一技术将在未来得到更广泛的推广和应用。
烟塔合一运用电厂案例【最新版】目录一、引言二、烟塔合一的定义和原理三、烟塔合一在电厂中的应用案例四、烟塔合一的优点五、结论正文一、引言随着我国经济的快速发展,电力需求不断增长,火力发电作为主要的电力来源之一,其环境问题日益突出。
传统的烟囱排放方式,不仅造成了严重的大气污染,还影响了周围环境的美观。
为了解决这一问题,烟塔合一技术应运而生,将烟囱和冷却塔合二为一,实现节能减排。
本文将以电厂为例,介绍烟塔合一技术的应用案例及其优点。
二、烟塔合一的定义和原理烟塔合一,顾名思义,是将烟囱和冷却塔融合在一起的一种技术。
其基本原理是利用冷却塔内部的空气流动,使烟气在塔内得以充分扩散,从而降低烟气排放温度,减少烟气对环境的污染。
同时,烟塔合一技术还能提高电厂的热效率,降低能源消耗。
三、烟塔合一在电厂中的应用案例目前,烟塔合一技术已在我国多个电厂得到成功应用。
以某沿海电厂为例,该电厂采用了烟塔合一技术,将原有的烟囱和冷却塔合并,形成了一个高度为 200 米的新型烟塔合一结构。
该结构不仅显著降低了烟气排放温度,还大大减少了烟气对周边环境的影响,美化了景观。
四、烟塔合一的优点烟塔合一技术具有以下优点:1.节能减排:烟塔合一技术降低了烟气排放温度,减少了烟气对环境的污染,有助于实现节能减排的目标。
2.提高热效率:烟塔合一技术利用了冷却塔内部的空气流动,使烟气得以充分扩散,提高了电厂的热效率。
3.美化环境:烟塔合一技术将烟囱和冷却塔合二为一,减少了占地面积,美化了周边环境。
4.降低运营成本:烟塔合一技术减少了烟囱和冷却塔的分离和维护成本,有助于降低电厂的运营成本。
五、结论综上所述,烟塔合一技术在电厂中的应用具有显著的优点,有助于实现节能减排、提高热效率、美化环境等多重目标。
“烟塔合一”玻璃钢烟道一、优点“烟塔合一”技术是针对电力企业研制的当今世界上先进的环保技术,在城市规划和环境改善方面具有以下明显优势:一是充分利用冷却塔的巨大能量,对除尘、脱硫后的湿烟气进行有效抬升,促进净烟气中未脱除污染物的扩散,降低其落地浓度。
二是由于机组不必再建设烟囱及脱硫系统的烟气再加热装置。
这样不仅可缓解城市建设用地紧张和建筑物限高等问题,并且可以显著改善城市周边电厂建设同城市整体规划的适应性和灵活度,有利于缩小热源、电源与负荷中心间的距离,提高电厂的经济性并有利于城市供热、供电的可靠性。
此项技术在国外已成功实施近二十多年,技术已臻成熟。
目前我国有许多电厂正在实施这种技术。
二、应用目前,河北三河电厂、天津国电津能公司和华能北京热电公司在新建机组均采用“烟塔合一”技术进行除尘、脱硝和脱硫排放,三河电厂是第一个采用国产化的“烟塔合一”技术的机组。
国华三河电厂为满足城市社会经济的快速发展,改善北京市区的大气环境质量,三河电厂二期工程(2×300MW机组)项目决定采用烟塔合一技术,主要基于以下几方面考虑:第一、由于采用石灰石一石膏湿法脱硫系统,脱硫系统排放烟气温度只有50℃左右,若采用烟囱排放须对其进行再加热,温度达到S02的露点温度(72℃)以上。
而采用冷却塔排烟则无此限制,还可节省GGH系统和烟囱初期投资及运行费用。
第二、由于该项目选址距北京顺义机场较近,采用烟塔合一技术可有效避开对航空影响。
第三、脱硫系统所用的增压风机与锅炉所用的吸风机合而为一既节省了设备的初期投资,又为整个机组的经济运行打下了良好的基础。
经测算,通过120米高的冷却塔排烟,对地面造成的SO2和PM10、NOX年均落地浓度总体好于240米高烟囱排烟对地面造成的落地浓度。
工程建成后,每年可减少排放二氧化硫2万多吨,烟尘100多吨,具有良好的环保效益。
1、特点本工程采用了烟塔合一的技术,取消了传统的烟囱,将经脱硫后的烟气通过穿过冷却塔筒壁的烟道送入塔中心,随塔内蒸发气体一同排放。