光学传递函数实验(PPT课件)
- 格式:ppt
- 大小:532.01 KB
- 文档页数:31
第六章光学成像系统的传递函数由衍射理论知道,即使一个没有象差的完善的透镜或光学系统,也得不到理想的几何象,而是一个由孔径决定的衍射光斑。
衍射斑的存在影响光学系统分辨物体细节的能力。
对于有象差存在的实际光学系统,还因为象差的存在而影响衍射斑中光能的分布,从而降低了光学系统的质量。
在常用的评价成象质量的方法中,如星点法是通过研究一个点物的衍射图形来判断象差的大小;分辨率法是用一个具有一定空间分布的鉴别率板作为物体来判断成象的好坏。
这些方法都存在一定的局限性。
实际的物体是有复杂的光强分布或振幅分布的,可以看作一个包含有各种空间频率的复杂光栅。
按照阿贝成象理论,一个只受衍射限制而无象差的理想光学系统,因为物体的频谱中的高频部分受到孔径的限制而不能参与成象,致使象面的复振幅分布不同于物面,即表示细节的高频部分丢失而使分辨率下降。
对于有象差存在的实际光学系统,不仅反映细节的高频部分由于孔径的限制而丢失,其它较低频率成分的光波也由于象差的存在而使得其振幅降低或位相改变,从而影响成象质量。
为了全面评价一个光学系统的成象质量的优劣,必须全面考察物面上的各种频率成分经过光学系统的传播情况,用来衡量这个传播状况的函数就是传递函数。
现在,光学传递函数的概念和理论已经较普遍地应用于光学设计结果的评价、控制光学元件的自动设计过程、光学镜头质量检验、光学系统总体设计的考虑及光学信息处理等方面。
特别是光学传递函数为光学仪器的设计、制造和使用提供了统一的评价标准,成为一个更全面更客观的质量评价方法。
本章主要讲授在频率域中描写衍射受限系统的成像特性。
所谓衍射受限系统即成像只受到有限大小孔经衍射的影响,无几何光学像差的理想系统。
对于有象差存在的实际光学系统对传递函数的影响也将作原理性的介绍。
§6-1 透镜、衍射受限系统的点扩展函数一、透镜的点扩展函数在§2-4中我们在学习脉冲响应和叠加积分时,引入了线性系统的点扩展函数(脉冲响应)的概念。
实验二 光学传递函数测量和透镜像质评价一. 实验目的1. 了解光学镜头传递函数测量的基本原理;2. 掌握传递函数测量和光学系统成像品质评价的近似方法3. 学习抽样、平均和统计算法。
二. 主要仪器及设备1. 导轨,滑块,调节支座,支杆,可调自定心透镜夹持器,干板夹;2. 多用途三色LED 面光源;3. 波形发生器,待测双凸透镜(Φ30,f120),待测双胶合透镜(Φ30,f90);4. CCD 及其稳压电源,CCD 光阑;5. 图像采集卡及其与CCD 连线,微机及相应软件。
三. 实验原理光学传递函数(Optical transfer function, OTF )表征光学系统对物体或图像中不同空间频率的信息成分的传递特性,广泛用于对光学成像系统成像质量的评价。
信息光学的理论分析表明光学成像过程可以近似作为线性空间平移不变系统来处理,从而可以在频域中讨论光学系统的响应特性。
任何二维物体(或图像)都可以分解成一系列x 方向和y 方向的不同空间频率()简谐函数(物理上表示正弦光栅)的线性叠加:),(o o o y x f v u ,[,)(2exp ),(),(dudv vy uxi v u F y x f o ooo o o +=∫∫∞∞−∞∞−π] (1)式中为的傅里叶谱,它正是物体所包含的空间频率()的成分含量,其中低频成分表示缓慢变化的背景和大的物体轮廓,高频成分则表征物体的细节。
),(v u F o ),(y x f o v u ,当该物体经过光学系统后,各个不同频率的正弦信号发生两个变化:首先是调制度(或反差度)下降,其次是相位发生变化,这一综合过程可表示为),(),(),(v u F v u H v u F o i ×=, (2)式中表示像的傅里叶谱。
称为光学传递函数,是一个复函数,它的模为调制),(v u F i ),(v u H度传递函数(Modulation transfer function, MTF ),相位部分则为相位传递函数(Phase transfer function, PTF )。
光学传递函数的测量和评价光学传递函数(Optical Transfer Function,OTF)是光学系统的重要性能参数之一,用于描述系统对特定频率和振幅的光信号的传递特性。
在光学系统中,由于各种因素的影响,例如像差、散射、衍射等,导致成像质量的下降。
通过测量和评价光学传递函数,可以定量地衡量光学系统的成像能力,并用于优化系统设计以及改进图像质量。
OTF(f) = ∫∫ H(x,y,λ)e^(-i2π(f_xx + f_yy)) dx dy其中,H(x,y,λ)是系统的传递函数,f_xx和f_yy是频率域上的空间变量,λ是波长。
测量光学传递函数需要使用相应的设备和方法。
其中最常见的方法是利用干涉仪和特定的测试物体来进行。
干涉仪可以提供高精度的相位测量,并通过引入加权函数来计算光学传递函数。
测试物体可以是周期性或随机的,用于激发系统的不同频率响应。
通过改变空间频率和振幅,可以获得系统在不同条件下的传递函数。
评价光学传递函数的常见方法包括一下几种:1. MTF(Modulation Transfer Function)评价:MTF是光学传递函数的模值,用于描述系统对模糊度的传递能力。
MTF以频率为横轴,传递函数的大小为纵轴,可以绘制成曲线,从而直观地表示系统对不同频率的描述能力。
一个好的系统应该在低频段具有高的传递能力,从而保证清晰度。
2. PSF(Point Spread Function)评价:PSF是系统对点光源成像后的分布情况,通过观察PSF分布,可以直观地了解系统的成像质量。
PSF的形状和大小与系统的光学传递函数密切相关。
理想情况下,PSF应该是一个尖峰,表示系统对目标的清晰成像。
3. RES(Resolution)评价:分辨率是评价系统成像能力的重要参数之一,描述了系统在成像过程中能够分辨的最小细节大小。
通过评估系统对不同空间频率的响应能力,可以获得系统的分辨率。
对于不同的应用,分辨率的要求也不同,例如在医学影像中,高分辨率是非常重要的。
光学传递函数的测量实验报告光学传递函数(Optical Transfer Function,OTF)是描述光学系统传递图像的能力的一个重要参数。
在本实验中,我们测量了一个光学系统的OTF,并通过实验结果来分析系统的分辨率、模糊度和对比度等性能指标。
一、实验目的1.掌握光学传递函数的测量方法和原理;2.通过实验测量分析光学系统的性能指标。
二、实验器材1.光学系统:包括光源、透镜、物体和图像传感器等;2.光学传递函数测量装置:包括光栅、透镜、准直器和图像传感器等;3.计算机。
三、实验步骤1.搭建光学系统并调整聚焦,使图像清晰可见;2.将物体放置在光路上,并调整光源亮度,使图像适度明亮;3.将光栅装置放置在物体和准直器之间,调整光栅与物体、光栅与准直器之间的距离,使光栅图像清晰可见;4.将图像传感器连接到计算机上,并打开相应的测量软件;5.在测量软件中选择测量光栅图像的位置和大小;6.开始测量并记录测量结果。
四、实验数据处理1.根据测量结果计算光学传递函数的值;2.绘制光学传递函数曲线图;3.分析光学系统的分辨率、模糊度和对比度等性能指标。
五、实验结果及分析通过分析光学传递函数曲线,我们可以计算光学系统的最大分辨率和模糊度。
最大分辨率可以通过光学传递函数的零点频率来计算,即当光学传递函数为0的频率对应的空间频率。
而模糊度则可以通过传递函数值等于0.5时对应的空间频率来计算。
根据实验数据,我们计算得到系统的最大分辨率为50线/mm,模糊度为0.3线/mm。
除了分辨率和模糊度外,光学传递函数还可以反映系统的对比度。
对比度可以通过传递函数的低频增益来估算,即传递函数在低频段的最大值。
根据实验数据,我们计算得到系统的对比度为0.8六、结论通过本实验,我们成功测量了光学系统的光学传递函数,并分析了系统的分辨率、模糊度和对比度等性能指标。
实验结果表明,该光学系统在高频段的传递能力较差,分辨率相对较低;在低频段的传递能力较好,对低频细节的传递能力较强。