七年级数学下册 用方程组解决问题教学设计(1) 新人教版
- 格式:doc
- 大小:61.50 KB
- 文档页数:7
人教版数学七年级下册8.4《三元一次方程组的解法》教学设计1一. 教材分析《三元一次方程组的解法》是人教版数学七年级下册第八章的内容,这部分内容是在学生已经掌握了二元一次方程组解法的基础上进行学习的。
通过这部分的学习,学生需要掌握三元一次方程组的解法,能够熟练运用加减消元法、代入消元法和等价变换法等方法解决实际问题。
二. 学情分析学生在学习这部分内容时,已经有了一定的数学基础,已经掌握了二元一次方程组的解法,对于新的数学知识有一定的接受能力。
但是,由于三元一次方程组的解法比二元一次方程组解法更为复杂,学生可能会觉得有一定的难度,需要通过实例讲解和练习来加深理解。
三. 教学目标1.知识与技能:学生能够理解三元一次方程组的概念,掌握三元一次方程组的解法,能够运用解法解决实际问题。
2.过程与方法:通过实例讲解和练习,学生能够掌握三元一次方程组的解法,提高解决问题的能力。
3.情感态度与价值观:学生能够积极参与课堂学习,克服困难,增强对数学的兴趣和信心。
四. 教学重难点1.重点:学生能够掌握三元一次方程组的解法。
2.难点:学生能够灵活运用不同的解法解决实际问题。
五. 教学方法1.实例讲解:通过具体的例子,讲解三元一次方程组的解法,让学生直观地理解和解法。
2.小组讨论:学生分小组进行讨论,共同解决问题,提高合作能力。
3.练习巩固:通过大量的练习题,让学生巩固所学知识,提高解题能力。
六. 教学准备1.教案:教师事先准备详细的教学教案,明确每个环节的内容和时间安排。
2.教学PPT:制作精美的教学PPT,配合讲解和呈现教学内容。
3.练习题:准备一定数量的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾二元一次方程组的解法,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT呈现三元一次方程组的解法,结合具体例子进行讲解,让学生直观地理解和解法。
3.操练(10分钟)学生分组进行讨论,共同解决练习题,教师巡回指导,解答学生的问题。
【教学设计】青岛版数学七年级下册10.4《列方程组解应用题(1)》教学设计一. 教材分析《列方程组解应用题(1)》是人教版初中数学七年级下册第10章的内容,这部分内容是在学生已经掌握了二元一次方程组的基础知识上进行拓展的。
通过本节课的学习,让学生能够运用方程组解决实际问题,培养学生的逻辑思维能力和解决实际问题的能力。
本节课的内容对于学生来说是一个重要的转折点,从理论知识向实际应用的转变。
二. 学情分析学生在进入七年级下册之前,已经学习了二元一次方程组的知识,对于解方程组的方法有一定的了解。
但是,对于如何将实际问题转化为方程组,以及如何运用方程组解决实际问题,学生的掌握情况参差不齐。
因此,在教学过程中,需要关注学生的个体差异,引导学生将实际问题转化为方程组,并通过练习让学生熟练掌握解方程组的方法。
三. 教学目标1.知识与技能:让学生能够理解方程组解决实际问题的基本思路,学会将实际问题转化为方程组,并能够熟练解方程组。
2.过程与方法:通过解决实际问题,培养学生的逻辑思维能力和解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和探究精神。
四. 教学重难点1.重点:让学生掌握将实际问题转化为方程组的方法,以及解方程组的基本步骤。
2.难点:如何引导学生将实际问题转化为方程组,以及如何让学生熟练解方程组。
五. 教学方法采用问题驱动法,通过解决实际问题引导学生掌握方程组解决实际问题的方法。
同时,运用小组合作学习法,让学生在小组内讨论和探究,培养学生的合作意识和探究精神。
六. 教学准备1.教师准备:准备好相关的实际问题,制作成PPT或者黑板板书。
2.学生准备:学生需要提前预习相关内容,了解方程组解决实际问题的基本思路。
七. 教学过程1.导入(5分钟)通过一个简单的实际问题,引导学生思考如何解决这个问题。
例如,小明买了3本书和2支笔花了27元,小红买了4本书和3支笔花了38元,问每本书和每支笔的价格分别是多少?2.呈现(10分钟)呈现更多的实际问题,让学生尝试将问题转化为方程组。
《三元一次方程组的解法》教案教学目标1.了解三元一次方程组的概念.2.会解某个方程只有两元的简单的三元一次方程组.3.掌握解三元一次方程组过程中化三元为二元的思路.教学重点(1)使学生会解简单的三元一次方程组.(2)通过本节学习,进一步体会“消元”的基本思想.教学难点针对方程组的特点,灵活使用代入法、加减法等重要方法.教学过程一、创设情景,导入新课前面我们学习了二元一次方程组的解法,有些实际问题可以设出两个未知数,列出二元一次方程组来求解.实际上,有不少问题中会含有更多的未知数,对于这样的问题,我们将如何来解决呢?【引例】小明手头有12张面额分别为1元,2元,5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍,求1元,2元,5元纸币各多少张.提出问题:1.题目中有几个条件?2.问题中有几个未知量?3.根据等量关系你能列出方程组吗?【列表分析】 (师生共同完成)(三个量关系) 每张面值×张数 = 钱数设1元,2元,5元的张数为x张,y张,z张.根据题意列方程组为:12,2522,4.x y zx y zx y++=⎧⎪++=⎨⎪=⎩【得出定义】这个方程组有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.二、探究三元一次方程组的解法【解法探究】怎样解这个方程组呢?能不能类比二元一次方程组的解法,设法消去一个或两个未知数,把它化成二元一次方程组或一元一次方程呢?(展开思路,畅所欲言)例1 .解方程组⎪⎩⎪⎨⎧==++=++③②①y x z y x z y x 4225212分析1:发现三个方程中x 的系数都是1,因此确定用减法“消x ”.分析2:方程③是关于x 的表达式,确定“消x ”的目标.【方法归纳】根据方程组的特点,由学生归纳出此类方程组为:类型一:有表达式,用代入法.针对上面的例题进而分析,例1中方程③中缺z ,因此利用①、②消z ,可达到消元构成二元一次方程组的目的.根据方程组的特点,由学生归纳出此类方程组类型二:缺某元,消某元.教师提示:当然我们还可以通过消掉未知项y 来达到将“三元”转化为“二元”目的,同学可以课下自行尝试一下.三、课堂小结1.解三元一次方程组的基本思路:通过“代入”或“加减”进行消元,把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.即三元一次方程组 消元 二元一次方程组 消元一元一次方程2.解题要有策略,今天我们学到的策略是:有表达式,用代入法;缺某元,消某元.四、布置作业解方程组⎪⎩⎪⎨⎧=+=+=+③②①211920z x z y y x 你能有多少种方法求解它? 本题方法灵活多样,有利于学生广开思路进行解法探究.。
数学七年级下学期《利用二元一次方程组解决实际问题》教学设计一. 教材分析《利用二元一次方程组解决实际问题》是人教版数学七年级下学期的一章内容。
本章主要介绍了二元一次方程组的定义、性质和应用。
通过本章的学习,学生能够掌握二元一次方程组的解法,并能够运用二元一次方程组解决实际问题。
教材内容安排合理,循序渐进,通过丰富的例题和练习题,帮助学生巩固知识,提高解题能力。
二. 学情分析学生在七年级上学期已经学习了二元一次方程的基本概念和解法,对于解决实际问题有一定的经验。
但是,对于如何将实际问题转化为数学问题,并运用二元一次方程组进行求解,部分学生可能还存在一定的困难。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行指导和辅导。
三. 教学目标1.理解二元一次方程组的定义和性质。
2.学会利用二元一次方程组解决实际问题。
3.提高学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.重点:二元一次方程组的解法和应用。
2.难点:如何将实际问题转化为数学问题,并运用二元一次方程组进行求解。
五. 教学方法1.讲授法:讲解二元一次方程组的定义、性质和解法。
2.案例分析法:分析实际问题,引导学生运用二元一次方程组进行求解。
3.练习法:通过大量的练习题,巩固学生的知识,提高解题能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示教材内容和例题。
2.练习题:准备适量的练习题,用于课堂练习和课后作业。
3.教学用具:黑板、粉笔、投影仪等。
七. 教学过程1.导入(5分钟)通过一个简单的实际问题,引导学生思考如何用数学方法解决问题。
例如,假设一个水果店苹果和香蕉的售价相同,苹果每千克3元,香蕉每千克4元,现在购进苹果和香蕉共20千克,花费了52元,问购进苹果和香蕉各多少千克?2.呈现(15分钟)讲解二元一次方程组的定义、性质和解法。
通过PPT展示教材内容,并用例题解释二元一次方程组的解法。
3.操练(10分钟)让学生分组讨论,尝试解决导入中提出的问题。
8.3 实际问题与二元一次方程组第1课时 利用二元一次方程组解决实际问题能根据具体问题的数量关系,会列二元一次方程组解决和差倍分、几何图形、增长率、盈亏、行程等实际问题.(重点、难点)一、情境导入古算题:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.问有几客几房中?”题目大意:一些客人到李三公的店中住宿,若每间房住7人,就会有7人没地方住;若每间房住9人,就会空一间房.问有多少间房?多少客人?你能解答这个问题吗?二、合作探究探究点一:利用二元一次方程组解决实际问题【类型一】 和差倍分问题某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两种货物应各装多少吨?解析:已知量:(1)甲种货物每吨体积为6立方米;(2)乙种货物每吨体积为2立方米;(3)船的载重量为300吨;(4)船的容积为1200立方米.未知量:甲、乙两种货物应装的质量各为多少吨.若以x 、y 表示它们的吨数,则甲种货物的体积为6x 立方米,乙种货物的体积为2y 立方米.相等关系:“充分利用这艘船的载重量和容积”的意思是“货物的总质量等于船的载重量”且“货物的体积等于船的容积”.即甲种货物质量,↓,x ))+,)乙种货物质量,↓,y ))=,)船的总载重量,↓,300)) 甲种货物体积,↓,6x ))+,)乙种货物体积,↓,2y ))=,)船的总容积,↓,1200))解:设甲种货物装x 吨,乙种货物装y 吨.由题意,得⎩⎪⎨⎪⎧x +y =300,6x +2y =1200,解得⎩⎪⎨⎪⎧x =150,y =150.答:甲、乙两种货物各装150吨.方法总结:列方程组解应用题一般都要经历“审、设、找、列、解、答”这六个步骤,其关键在于审清题意,找相等关系.设未知数时,一般是求什么,设什么,并且所列方程的个数与未知数的个数相等.【类型二】 变化率问题为了解决民工子女入学难的问题,我市建立了一套进城民工子女就学的保障机制,其中一项就是免交“借读费”.据统计,去年秋季有5000名民工子女进入主城区中小学学习,预测今年秋季进入主城区中小学学习的民工子女将比去年有所增加,其中小学增加20%,中学增加30%,这样今年秋季将新增1160名民工子女在主城区中小学学习.(1)如果按小学每年收“借读费”500元、中学每年收“借读费”1000元计算,求今年秋季新增的1160名中小学生共免收多少“借读费”;(2)如果小学每40名学生配备2名教师,中学每40名学生配备3名教师,按今年秋季入学后,民工子女在主城区中小学就读的学生人数计算,一共需配备多少名中小学教师?解析:解决此题的关键是求出今年秋季入学的学生中,小学和初中各有民工子女多少人.欲求解这个问题,先要求出去年秋季入学的学生中,小学和初中各有民工子女多少人.解:(1)设去年秋季在主城区小学学习的民工子女有x 人,在主城区中学学习的民工子女有y 人.则⎩⎪⎨⎪⎧x +y =5000,20%x +30%y =1160,解得⎩⎪⎨⎪⎧x =3400,y =1600.20%x =680,30%y =480,500×680+1000×480=820000(元)=82(万元).答:今年秋季新增的1160名中小学生共免收82万元“借读费”;(2)今年秋季入学后,在小学就读的民工子女有3400×(1+20%)=4080(人),在中学就读的民工子女有1600×(1+30%)=2080(人),需要配备的中小学教师(4080÷40)×2+(2080÷40)×3=360(名).答:一共需配备360名中小学教师.方法总结:在解决增长相关的问题中,应注意原来的量与增加后的量之间的换算关系:增长率=(增长后的量-原量)÷原量.【类型三】 行程问题A 、B 两码头相距140km ,一艘轮船在其间航行,顺水航行用了7h ,逆水航行用了10h ,求这艘轮船在静水中的速度和水流速度.解析:解:设这艘轮船在静水中的速度为x km/h ,水流速度为y km/h.由题意,得⎩⎪⎨⎪⎧7(x +y )=140,10(x -y )=140.解得⎩⎪⎨⎪⎧x =17,y =3. 答:这艘轮船在静水中的速度为17km/h ,水流速度为3km/h.方法总结:本题关键是找到各速度之间的关系,顺速=静速+水速,逆速=静速-水速;再结合公式“路程=速度×时间”列方程组.探究点二:利用二元一次方程组解决几何问题小敏做拼图游戏时发现:8个一样大小的小长方形恰好可以拼成一个大的长方形,如图①所示.小颖看见了,也来试一试,结果拼成了如图②所示的正方形,不过中间留下一个边长恰好为2cm 的小正方形空白,你能算出每个小长方形的长和宽各是多少吗?解析:在图①中大长方形的长有两种表现形式,一种是5个小长方形的宽的和,另一种是3个小长方形的长的和;在图②中,大正方形的边长也有两种表现形式,一种是1个小长方形的长和2个小长方形的宽的和,另一种从中间看为2个小长方形的长与小正方形的边长的和,由此可设未知数列出方程组求解.解:设小长方形的长为x cm ,宽为y cm.由题意,得⎩⎪⎨⎪⎧3x =5y ,2x +2=x +2y .解得⎩⎪⎨⎪⎧x =10,y =6. 答:每个小长方形的长为10cm ,宽为6cm.方法总结:本题考查了同学们的观察能力,通过观察图形找等量关系,建立方程组求解,渗透了数形结合的思想.三、板书设计列方程组,解决问题)⎩⎪⎨⎪⎧一般步骤:审、设、列、解、验、答关键:找等量关系通过“古算题”,把同学们带入实际生活中的数学问题情景,学生体会到数学中的“趣”.进一步强调课堂与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神,使学生形成积极参与数学活动、主动与他人合作交流的意识。
用方程组解决问题1. 能够正确地找出题目中的等量关系,列出方程组并且求解,能够检验所得的结果是否符合实际意义.2. 提高学生分析问题、解决问题的能力.此外让学生受到环境保护的思想教育;能够让学生在经历和体验列二元一次方程组解决问题的基础上,体会到方程组是刻画现实世界的一个有效的数学模型及其应用价值;领悟整体思想在解题中的作用.【情境设计】本课时的情境是“十一”国庆长假旅游及收集废旧电池活动,容易让学生构想出当时的现实情形,便于寻找数量关系,初步建立方程组这一数学模型.也可以选用下列的情境以情趣或勾起学生解决问题的欲望导入.情境一、有这样一个传说,清朝康熙皇帝有一年微服南巡,在扬州城一个集市上看见两位公差和几个卖马、牛的伙伴正在争执.只听伙计们苦苦地央求两公差:“这位大爷,按我们讲好的价钱,您若买四匹马、六头牛,共四十八两银子;您若买三匹马、五头牛共三十八两银子.你们现在买的加起来,一共应该是八十八两银子.可你们只给八十两,还少八两,我们可亏不起这么多呀!”而两公差反而瞪眼呵斥,强赶牛马就要走.正在这时,身着便服的康熙气定神闲地走到公差面前说:“买卖公平,一匹马、一头牛都有个价,要想买马牵牛,那该多少银子就付多少,怎么能仗势欺人?”两公差见此人竟敢当众管教他们,大怒:“你找死呀!我们讲好的什么价,你怎么知道?少管闲事!”康熙微微冷笑,略微思索一会,便准确地报出了价格.伙计们和围观的人群一听无不惊奇.你知道怎样算的吗?情境二、小亮的爸爸是个懂得经营、善于运算的企业家.今天又遇到了一个新问题想考考小亮.某船的载重为260吨,容积为1000m3.现有甲、乙两种货物要运,其中甲种货物每吨体积为8 m3,乙种货物每吨体积为2 m3,若要充分利用这艘船的载重与容积,甲、乙两种货物应各装多少吨?(设装运货物时无任何空隙)【活动设计】出示问题1:1.用自己的话说说本题叙述的是一件什么事,主要讨论旅游中的哪两个问题.2.你能就这两条线索分别用等量关系表示出来吗?同桌交流,互相说说.3.在你所找的等量关系中已知了什么,未知什么,假如将未知的用字母设出来,你会表示出来吗?4.学生自主尝试列方程组并完成解答.教师板书讲解时提问:本题在列方程组时,你还应该注意什么?教师利用统一单位这一事,不失时机地进行细心、认真的思想教育.5.分析应用题检验的必要性.同时写上答语.6.学生小结列方程组解应用题的一般步骤.即:一找、二设、三列、四解、五验、六答7.利用相同的问题情境,改编应用题.某旅行社组织了甲、乙两个旅游团分别到庐山、五台山旅游,已知甲团的人数比乙团的人数的2倍多5人.甲、乙两个旅游团的人数各是多少?(让学生先尝试去做,待学生发现问题后分析,通常情况下两个未知数要有两个等量关系式.你能再补充一个条件,使问题得以圆满解决吗?)出示问题21.题目看完后,先对学生进行爱护环境的教育.2.让学生进行找“题眼”的训练,找准等量关系的切入点.3.让学生互说等量关系,自主探索列方程组,解答并检验.4.在学生完成问题2的解答后,教师提问:假如把问题改为一节1号电池比一节5号电池多多少克?怎么办?渗透间接设法.假如将问题改为一节1号电池和一节5号电池共多少克呢?渗透整体的数学思想.培养学生留心观察的习惯(本题数据自身较特殊,可以不必求出一节1号电池和5号电池分别多少克.)【例题设计】在学生初步掌握方程组这一模型后,可选用下列例题,进一步体验方程的意义.某车间有28名工人,生产一种配套的螺栓和螺帽,1个螺栓要配2个螺帽,平均每人每小时能生产螺栓12个或螺帽18个,应分配多少人生产螺栓、多少人生产螺帽,才能使生产出来的螺栓和螺帽正好配套?1.让学生自己分析问题,找等量关系.2.让学生说说本题的关键在什么地方.加强对“配套”的理解.3.无论何时都必须注意方程两边的平衡.用天平和跷跷板给予形象的说明.4.学生自己完成解答.【练习设计】课堂练习:① P115 练一练(1)、( 2)②某船逆水航行于一条长360千米的A、B两码头,用去18小时,当这艘船沿原路返回时,用去了10小时.求这条船在静水中的航行速度及水的速度.(让学生体会一下逆水航行与顺水航行的区别,理清“逆水船速=静水船速-水速、顺水船速=静水船速+水速,再利用基本公式列方程组.)课堂作业:① P120 第1题② P120 第2题(让学生体会在一次的变化中,两个量都发生了变化,不过总量不变.教师还要举一次变化中只有一方变化的例子加以区别.)课后作业:①小红家种植水果,去年收支相抵,结余1200元.今年她家水果丰收,估计收入可比去年增加15%;而因改进了种植技术,支出可望比去年减少5%,这样,今年可结余2340元,小红家去年种植水果的收入、支出各多少元?②小赵为班级购买笔记本作晚会上的奖品,回来时向生活委员小陈交帐说:“一共买了36本,有两种规格,单价分别为1.80元和2.60元,去时我领了100元,现在找回27.60元.”小陈算了一下说:“你肯定搞错了.”小赵一想,发觉的确不对,因为他把自己口袋里的2元钱一起当作找回的钱款给了小陈,请你算一算两种笔记本各买了多少?想一想,有没有可能找回27.60元.(让学生体验用方程组解决问题后,需要代入实际情境进行检验的重要性.)③为彻底战胜SARS病毒,世界上许多科学家夜以继日地工作在实验室中.在每次实验中,他们都要做精确的记录,以便于相应数据的处理.在一次实验中,甲、乙两容器分别有水49ml和56ml.若将乙容器中的水倒满甲容器,则乙容器中剩下的水是这个容器的容量的1/2 ;若将甲容器中的水倒满乙容器,则甲容器中剩下的水是这个容器的容量的1/3 .据此,求两个容器的容量.【设计说明】本课时通过现实性的问题情境,让学生自主探索,寻找解决问题的策略,初步建立方程组这一模型.能使学生掌握用方程组解应用题的一般步骤.教师要注意对学生参与度的评价.力求让学生多说,敢想、主动参与到模型的构建中来.通过对课本例题的延伸,渗透一些数学思想及解题技巧.【教学目标】1.让学生通过列表,能较准确的找出题目中的数量关系.列方程组解决问题.2.提高分析问题、解决问题的能力.此外,让学生受到提倡节约,反对铺张的思想教育;进一步体会方程组这一数学模型在解决问题中的作用;领悟量不变思想、对应思想、分类讨论思想在解决问题中的作用.【情境设计】本课时提供的问题情境主要是让学生感受到列表格能够使复杂的问题情境清晰化、条理化,便于寻找等量关系.我们还可以选用下列问题情境:运往某地一批化肥,化肥吨数与所需火车皮及汽车辆数之间的关系如下表所示,则10节火车皮、5辆汽车可运化肥多少吨?【活动设计】出示问题3:1.让学生说说本题研究的是产品生产问题中的哪两方面的问题.2.让学生找解决问题的“题眼”.提醒学生这是一个较好的寻找等量关系的方法. 3.让学生讨论如何设计表格.(时间一条线索、用铜的数量一条线索,则表格可分为两横栏,甲、乙两产品则可分为两纵栏.)4.设好未知数,填好表格(强调对应),完成整个解题过程.5.让学生体会列表格的作用.6.让学生将其中的一组条件与问题交换,进一步训练数量间的关系.出示问题4:1.进行节约用水的思想教育.2.根据“基本价是6吨,那么看到8吨、9吨你联想到什么?则水费由几部分组成. 3.学生自己设计表格,同桌交流设计方案.4.完成解答的全过程.5.让学生仔细分析数据,能不能不列方程组,就把答案写出来.培养学生敏锐的观察力和思维能力.(本题的数据较特殊)【例题设计】在问题3与问题4解决完之后,可以补充下面例题,让学生进一步体会表格的巨大作用.一天,孔子的学生冉生问孔子的年龄.孔子说:“当我象你这么大时,你才刚刚3岁;而当你象我这么大时,我已经39岁了.请你算一算我的年龄有多大?”1.年龄问题较复杂,在学生感到困难的时候,提醒学生列表格.2.设元:冉生今年x岁,孔子今年y岁,填好表格.4.学生解答,并体会量不变思想及表格在解决问题中的作用.5.完成后提醒同学们,在年龄问题中,还有一点需注意:年龄甲长乙也长(特殊情况除外).【练习设计】课堂练习:① P117 练一练(1)(让学生先估算,两次购买的本数各处于哪一段,从而排除都买100本的情况.再说说等量关系并自主列方程组解答.)② P117 练一练 (2)(让学生列表解答)③两个两位数的差为18,如果在较大的两位数的右边接着写上较小的两位数,得到一个四位数.与在较小的四位数的右边接着写上较大的两位数得到的四位数相比,前者要比后者大1782.求这个两位数.(学生先独立静思,不会的可以讨论.让学生发现在较大的两位数的右边接着写上较小的两位数,得到一个四位数这句话的本质.实在有困难,可以由会的学生举例说明.)课堂作业:① P120 (3)(题目情境较陌生,先反复读题,再启发学生可以将未知数先设元,再当成已知量代入题目中,以便于等量关系的发现.)② P120 (4)课外作业:① P120 (6)②某工厂现有甲种原料350kg,乙种原料290kg,计划利用这两种原料生产产品,已知生产一件A种产品,需甲原料9kg,乙种原料3 kg,可获利润700元.生产一件B种产品,需甲种原料4kg,乙种原料10kg,可获利润1200元(1)可生产A、B两种产品各多少件?(2)共可获利润多少元?(可以列表分析数量关系,也可以将未知数先设元,再当成已知量代入题中帮助理解.)③(选做题)项王故里的门票价格规定如下表:都以班为单位分别购票,一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少元钱?(2)两班各有多少名学生?(让学生先估算,试着分类讨论)【设计说明】用贴近学生生活的实际问题,进一步强化方程组的模型思想.能够让学生自己探索并掌握用表格帮助解决问题的这一策略.注重对数学思想方法的渗透,体会到思想方法在解题中的作用.加强对学生思维深度、广度及参与度的评价.【教学目标】1.让学生通过画示意图,较准确的找出题目中的数量关系,并列方程组解题.2.通过解决实际问题,发展学生应用数学的意识,进而提高学生的数学建摸的能力. 此外,通过探究活动,体验数学的实用性,提高学习数学的兴趣,培养学生合作、交流的能力.领悟对应、数形结合、算两次、分类讨论等思想方法.【情境设计】问题5、问题6的引入,主要是让学生体会到遇到新的问题情境,能够通过画示意图,分析示意图,这一有效的建模策略,寻找出内隐的数量关系,从而使问题得以解决.此外还可以选用下列问题情境:一个长方形,它的长减少4cm,宽增加2 cm,所得的是一个正方形,它的面积与原长方形的面积相等.求原长方形的长与宽.【活动设计】出示问题51.学生独立观察,从中收集信息.从而体会到做一个甲纸盒对应1个正方形、4个长方形;做一个乙纸盒对应2个正方形、3个长方形.2.学生互相讨论,找出数量关系.再独立尝试列方程组解决问题并检验.出示问题61.让学生说说“完全过桥”、“完全在桥”的意义.比较与以往行程应用题有什么明显区别.2.学生用线段代替桥、用方块代替火车,同桌合作画出示意图.3.让学生仔细观察示意图,同桌交流,说说自己发现了什么?帮助学生找出问题的本质.将此题转化为某一质点的运动(如车头一点).4.通过质点转化为一般行程问题后,让学生自己完成解答.教师评讲时注意算两次思想(即用不同的方法,表示同一个路程)的渗透.5.让学生体会示意图在解决问题中的作用.6 . 6个问题学完了,小结列方程组解决问题的方法.即:一找、二设、三列、四解、五验、六答.找等量关系式的常用方法有:一、从关键词(题眼)中找等量关系;二、运用基本公式找等量关系;三、运用不变的量找等量关系;四、对一种“量”,从不同的角度进行表述(即算两次),得到相等的关系.另外,设未知数要注意直接设元与间接设元的灵活使用.【例题设计】课本中安排了两个例题,在学生初步掌握了用示意图这一策略帮助建立方程组后,还可酌情选用下列例题.如图: 8块相同的长方形地砖拼成了一个矩形图案(地砖间的缝隙忽略不计),拼成的矩形的宽是60 cm,求每块地砖的长和宽.1.让学生仔细看图,互相讨论,寻找出图中隐含的小矩形的长与宽的数量关系.2.列方程组解答问题并检验.3.鼓励学生以后要大胆的从生活情境及图形中收集信息【练习设计】课堂练习:① P119 练一练(1)(通过动画或示意图让学生发现在圆周上若在同处出发,小明追上小亮,则小明比小亮多走1圈.若在同处背向而行到相遇,则为合走1圈)② P119练一练(2)(本题的题意较复杂,要让学生反复读题,大胆发言.可以直接设元,也可间接设元.尤其注意运用不变的量找等量关系以及对一种“量”,从不同的角度进行表述(即算两次),得到相等的关系,这两种思想方法的强化.)课堂作业:① P120(5)(让学生画好示意图,提出:4个速度一定要注意与路程的对应.)② P120(7)③ A、B两地相距36km,甲从A地步行到B地,乙从B地步行到A地,两人同时出发相向而行,经过4h两人相遇;若经过6h,则此时甲所余下的路程是乙所余下的路程的2倍,甲、乙两人的速度各是多少?课外作业:①用一根40米的铁丝网围成一个长方形的篱笆,使较长的一面靠墙,若长比宽多2米,求此长方形篱笆围成的土地的面积.②到商店、银行、工厂或农村等地进行调查,收集实际问题中数据和数量关系,编一个可以用二元一次方程组解决的应用题,并与同学进行交流.③(选做题)有四种原料:A:50﹪的酒精溶液120克;B:40%的酒精150克;C:90﹪的酒精溶液150克; D:水60克.请你设计一种方案,只选取两种原料,配置成60﹪的酒精溶液200克,(1)你选哪两种原料,各取多少?(2)设未知数列方程组解之,说明你配置方法的正确性.(这是一道开放型的题目,具有较强的实际意义.启发学生根据纯酒精(即溶质)及水的质量讨论.加强估算能力的培养及有序思考方法的渗透.)【设计说明】进一步巩固方程组解决问题的这一模型,让学生走向社会,通过调查,在现实情境中提炼模型,提高数学应用意识.注重对应、数形结合、算两次思想的渗透.注重对学生过程及参与度的评价及思考问题的准确性、广阔性、灵活性的评价.。