10道公式法解一元二次方程练习题
- 格式:doc
- 大小:27.50 KB
- 文档页数:8
解一元二次方程专项练习题(带答案)1、用配方法解下列方程:(1) 025122=++x x (2) 1042=+x x(3) 1162=-x x (4)0422=--x x2、用配方法解下列方程:(1) 01762=+-x x (2) x x 91852=-(3) 52342=-x x (4)x x 2452-=3、用公式法解下列方程:(1) 08922=+-x x (2) 01692=++x x(3) 38162=+x x (4)01422=--x x4、运用公式法解下列方程:(1) 01252=-+x x (2) 7962=++x x(3) 2325x x =+ (4) 1)53)(2(=--x x5、用分解因式法解下列方程:(1)01692=++x x (2) x x x 22)1(3-=-(3))32(4)32(2+=+x x (4)9)3(222-=-x x6、用适当方法解下列方程:(1) 22(3)5x x -+= (2) 230x ++=(3) 2)2)(113(=--x x ; (4) 4)2)(1(13)1(+-=-+x x x x7、 解下列关于x 的方程:(1) x 2+2x -2=0 (2) 3x 2+4x -7=(3) (x +3)(x -1)=5 (4) (x -2)2+42x =08、解下列方程(12分)(1)用开平方法解方程:4)1(2=-x (2)用配方法解方程:x 2 —4x +1=0(3)用公式法解方程:3x 2+5(2x+1)=0 (4)用因式分解法解方程:3(x -5)2=2(5-x )9、用适当方法解下列方程:(1)0)14(=-x x (2)027122=++x x(3)562+=x x (4)45)45(+=+x x x(5)x x 314542=- (6)0242232=-+-x x(7)12)1)(8(=-++x x (8)14)3)(23(+=++x x x解一元二次方程专项练习题 答案1、【答案】(1)116±-; (2) 142±-; (3) 523±; (4) 51± 2、【答案】(1)11=x ,612=x (2)31=x ,562=-x(3)41=x ,4132=-x (4)5211±-=x3、【答案】 (1) 4179±=x (2) 3121=-=x x (3) 411=x ,432=-x (4)262±=x4、【答案】 (1) x 1=561,5612--=+-x (2). x 1=-3+7,x 2=-3-7(3)21=x ,312=-x (4)61311±=x 5、【答案】(1)3121=-=x x (2)11=x ,322=-x(3)231=-x ,212=x (4)31=x ,92=x6、【答案】(1)11=x ,22=x (2)321=-=x x (3)4,3521==x x ; (4)3,221-==x x7、【答案】(1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 8、【答案】解:(1) 1,321-==x x (2)32,3221-=+=x x(3)3105,310521--=+-=x x (4)313,521==x x 。
公式法解方程练习题公式法是解方程的一种常用方法,通过将方程转化为一元二次方程,然后利用求根公式求解。
在这篇文章中,我们将给出一些公式法解方程的练习题,以帮助读者巩固和提高解方程的能力。
一、一元二次方程的基本形式一元二次方程的一般形式为ax² + bx + c = 0,其中a、b、c为已知数,且a≠0。
练习题1:解方程x² - 4x + 3 = 0。
解:将方程与一般形式进行对比,可知a = 1,b = -4,c = 3。
根据一元二次方程的求根公式 x = (-b ±√(b²-4ac))/(2a),代入对应的数值,得:x = (4 ± √((-4)²-4×1×3))/(2×1)。
化简并计算,可得方程的解x₁ = 3,x₂ = 1。
练习题2:解方程2x² + 5x - 3 = 0。
解:将方程与一般形式进行对比,可知a = 2,b = 5,c = -3。
根据一元二次方程的求根公式 x = (-b ± √(b²-4ac))/(2a),代入对应的数值,得:x = (-5 ± √(5²-4×2×(-3)))/(2×2)。
化简并计算,可得方程的解x₁ ≈ -1.5,x₂ ≈ 0.5。
二、一元二次方程的特殊情况1. 完全平方形式当一元二次方程可以写成完全平方的形式时,可以直接利用平方根的性质来求解。
练习题3:解方程(x - 2)² = 9。
解:观察方程可知,它可以改写为(x - 2)² - 3² = 0。
利用平方根的性质,得到(x - 2) = ±3。
进一步化简,得到x = 5 或 x = -1。
2. 因式分解形式有些一元二次方程可以进行因式分解,然后利用零乘法求解。
练习题4:解方程x² - 5x + 6 = 0。
一元二次方程公式法计算题10道一、题目。
1. 解方程x^2 - 2x - 3 = 02. 求解方程2x^2+3x - 2 = 03. 解一元二次方程x^2+4x+1 = 04. 求方程3x^2-5x + 2 = 0的解。
5. 解方程x^2-6x+9 = 06. 求解4x^2+4x+1 = 07. 解5x^2-x - 4 = 08. 求方程x^2+3x - 10 = 0的解。
9. 解方程2x^2-7x+3 = 010. 求解3x^2+x - 1 = 0二、解析。
1. 对于方程x^2-2x - 3=0,其中a = 1,b=- 2,c=-3。
- 根据一元二次方程求根公式x=frac{-b±√(b^2)-4ac}{2a},先计算判别式Δ=b^2-4ac=<=ft(-2)^2-4×1×<=ft(-3)=4 + 12=16。
- 则x=(2±√(16))/(2)=(2±4)/(2),解得x_1=3,x_2=-1。
2. 对于方程2x^2+3x - 2 = 0,这里a = 2,b = 3,c=-2。
- 判别式Δ=b^2-4ac=3^2-4×2×<=ft(-2)=9 + 16 = 25。
- 由求根公式可得x=(-3±√(25))/(2×2)=(-3±5)/(4),解得x_1=(1)/(2),x_2=-2。
3. 对于方程x^2+4x + 1 = 0,a = 1,b = 4,c = 1。
- 判别式Δ=b^2-4ac=4^2-4×1×1=16 - 4 = 12。
- 则x=(-4±√(12))/(2)=(-4±2√(3))/(2)=-2±√(3),即x_1=-2+√(3),x_2=-2-√(3)。
4. 对于方程3x^2-5x + 2 = 0,a = 3,b=-5,c = 2。
解一元二次方程中考题专项训练(配方法)配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式1.用适当的数填空:①、x 2+6x+ =(x+ )2 ②、x 2-5x+ =(x - )2;③、x 2+ x+ =(x+ )2 ④、x 2-9x+ =(x - )22.将二次三项式2x 2-3x-5进行配方,其结果为_________.3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.4.将x 2-2x-4=0用配方法化成(x+a )2=b 的形式为___ ____,•所以方程的根为_________.5.若x 2+6x+m 2是一个完全平方式,则m 的值是6.用配方法将二次三项式a 2-4a+5变形,结果是7.把方程x 2+3=4x 配方,得8.用配方法解方程x 2+4x=10的根为9.用配方法解下列方程:(1)3x 2-5x=2. (2)x 2+8x=9 (3)x 2+12x-15=0 (4)41 x 2-x-4=010.用配方法求解下列问题(1)求2x 2-7x+2的最小值 ; (2)求-3x 2+5x+1的最大值。
解一元二次方程中考题专项训练(因式分解法)1.因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
2.分解因式法的步骤:①把方程右边化为0;②看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘; ③如果可以,就可以化为乘积的形式。
1.x 2-5x 因式分解结果为_______;2x (x-3)-5(x-3)因式分解的结果是______.2.方程(2x-1)2=2x-1的根是________.3.如果不为零的n 是关于x 的方程x 2-mx+n=0的根,那么m-n 的值为( ).A .-12B .-1C .12D .1 4.下面一元二次方程解法中,正确的是( ).A .(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x 1=13,x 2=7B .(2-5x )+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x 1=25,x 2=35 C .(x+2)2+4x=0,∴x 1=2,x 2=-2D .x 2=x 两边同除以x ,得x=15. 解方程(1)4x 2=11x (2)(x-2)2=2x-4 (3)25y 2-16=0 (4)x 2-12x+36=06. 方程4x 2=3x-2+1的二次项是 ,一次项是 ,常数项是7. 已知关于x 的方程ax 2+bx+c=0有一根为1,一根为-1,则a+b+c= , a-b+c=8. 已知关于x 的方程3)12(2=++-x m mx m 是一元二次方程,则m=9. 关于x 的一元二次方程(a-1)x 2+a 2-1=0有一根为0,则a=10. 方程(x-1)2=5的解是11.用适当方法解方程:(1)(2x-3)2=9(2x+3)2 (2)x 2-8x+6=0 (3)(x+2)(x-1)=1012.已知08)2)((=-+++y x y x ,则x+y 的值( )(A )-4或2 (B)-2或4 (C)2或-3 (D)3或-213.能力提升若a 2+b 2+ba-2+45=0 ,则b a b a +-=______________ 14.中考链接:已知9a 2-4b 2=0,求代数式22a b a b b a ab+--的值。
公式法解一元二次方程练习题一.选择题(共11小题)1.一元二次方程x2+x﹣1=0的根为()A .B .C .D .2.如果一元二次方程x2+px+q=0能用公式法求解,那么必须满足的条件是()A.p2﹣4q≥0B.p2﹣4q≤0C.p2﹣4q>0D.p2﹣4q<03.当﹣1<k<0时,关于x的一元二次方程x2+4x﹣k =0根的情况是()A.有两个相等的实数根B.有两个不等的实数根C.有一个实数根D.没有实数根4.关于x的一元二次方程x2﹣(2m﹣1)x﹣2m=0(其中m)的根的情况是()A.没有实数根B.有实数根C.有两个相等的实数根D.有两个不等的实数根5.如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为()A.m B.m C.mD.m6.在平面直角坐标系中,若直线y=﹣2x+a不经过第一象限,则关于x的方程ax2+x+2=0的实根的个数是()A.0B.1C.2D.1或27.关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,则k的取值范围是()A.k且k≠1B.k且k≠1C.k D.k8.关于x的一元二次方程x2+bx+c=0有两个相等的实数根,则b2﹣2(1+2c)=()A.﹣2B.2C.﹣4D.49.若关于x的一元二次方程kx2﹣2x+3=0有两个实数根,则k的取值范围是()A.k B.kC.k且k≠0D.k且k≠010.如果一元二次方程ax2+bx+c=0(a≠0)能用公式法求解,那么必须满足的条件是()A.b2﹣4ac≥0B.b2﹣4ac≤0C.b2﹣4ac>0D.b2﹣4ac<011.下列各项中,以x为根的一元二次方程可能是()A.x2+bx+c=0B.x2+bx﹣c=0C.x2﹣bx+c=0D.x2﹣bx﹣c=0二.填空题(共2小题)12.关于x的一元二次方程(m﹣2)x2+3x﹣1=0有两个不等实数根,则实数m的取值范围是.13.如图,点A在数轴的负半轴,点B在数轴的正半轴,且点A对应的数是2x﹣1,点B对应的数是x2+x,已知AB=5,则x的值为.三.解答题(共5小题)14.已知关于x的方程x2﹣(k+3)x+3k=0.(1)求证:无论k取任何实数,该方程总有实数根;(2)若等腰三角形的三边长分别为a,b,c,其中a =1,并且b,c恰好是此方程的两个实数根,求此三角形的周长.15.关于x的一元二次方程为(m﹣1)x2﹣2mx+m+1=0.(1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?16.已知关于x的方程kx2﹣(k+2)x+2=0.(1)证明:不论k为何值,方程总有实数根;(2)k为何整数时,方程的根为正整数.17.(1)解方程(x﹣3)2=2x(3﹣x);(2)已知关于x的一元二次方程(a+c)x2+2bx+(a ﹣c)=0,其中a,b,c分别为△ABC三边的长.①如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;②如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;③如果△ABC是等边三角形,试求这个一元二次方程的根.18.已知关于x 的方程.(1)求证:无论k取何值,此方程总有实数根;(2)若x=1是这个方程的一个根,求k的值和它的另一个根;(3)若等腰△ABC的一边长a=4,另两边b、c恰好是这个方程的两个根,求这个等腰三角形的周长是多少?公式法解一元二次方程练习题参考答案与试题解析一.选择题(共11小题)1.一元二次方程x2+x﹣1=0的根为()A .B .C .D .【解答】解:x2+x﹣1=0由题意可得,a=1,b=1,c=﹣1,∵,∴,即,故选:B.2.如果一元二次方程x2+px+q=0能用公式法求解,那么必须满足的条件是()A.p2﹣4q≥0B.p2﹣4q≤0C.p2﹣4q>0D.p2﹣4q<0【解答】解:∵a=1,b=p,c=q,∴Δ=b2﹣4ac=p2﹣4q≥0时,一元二次方程x2+px+q=0能用公式法求解,故选:A.3.当﹣1<k<0时,关于x的一元二次方程x2+4x﹣k =0根的情况是()A.有两个相等的实数根B.有两个不等的实数根C.有一个实数根D.没有实数根【解答】解:x2+4x﹣k=0,Δ=42+4k=4(4+k),∵﹣1<k<0,∴4+k>0,∴Δ>0,∴该方程有两个不等的实数根.故选:B.4.关于x的一元二次方程x2﹣(2m﹣1)x﹣2m=0(其中m)的根的情况是()A.没有实数根B.有实数根C.有两个相等的实数根D.有两个不等的实数根【解答】解:由题意,Δ=b2﹣4ac=[﹣(2m﹣1)]2﹣4×1×(﹣2m)=4m2﹣4m+1+8m=4m2+4m+1=(2m+1)2.∵m,∴(2m+1)2>0,∴方程有两个不相等的实数根.故选:D.5.如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为()A.m B.mC.m D.m 【解答】解:∵一元二次方程2x2+3x+m=0有两个相等的实数根,∴Δ=32﹣4×2m=9﹣8m=0,解得:m.故选:C.6.在平面直角坐标系中,若直线y=﹣2x+a不经过第一象限,则关于x的方程ax2+x+2=0的实根的个数是()A.0B.1C.2D.1或2【解答】解:∵直线y=﹣2x+a不经过第一象限,∴a≤0,∵ax2+x+2=0,当a=0,方程ax2+x+2=0为一元一次方程,即x+2=0,解得x=﹣2;方程有一个实数根,当a<0时,方程ax2+x+2=0为一元二次方程,∵Δ=1﹣8a>0,∴方程有2个实数根.故选:D.7.关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,则k的取值范围是()A.k且k≠1B.k且k≠1C.k D.k【解答】解:当k﹣1≠0,即k≠1时,此方程为一元二次方程.∵关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,∴Δ=(2k+1)2﹣4×(k﹣1)2×1=12k﹣3≥0,解得k;当k﹣1=0,即k=1时,方程为3x+1=0,显然有解;综上,k的取值范围是k,故选:D.8.关于x的一元二次方程x2+bx+c=0有两个相等的实数根,则b2﹣2(1+2c)=()A.﹣2B.2C.﹣4D.4【解答】解:∵关于x的一元二次方程x2+bx+c=0有两个相等的实数根,∴Δ=b2﹣4c=0,∴b2=4c,∴b2﹣2(1+2c)=b2﹣4c﹣2=0﹣2=﹣2.故选:A.9.若关于x的一元二次方程kx2﹣2x+3=0有两个实数根,则k的取值范围是()A.k B.kC.k且k≠0D.k且k≠0【解答】解:∵关于x的一元二次方程kx2﹣2x+3=0,∴k≠0,∵方程有两个实数根,∴Δ=(﹣2)2﹣4k×3≥0,解得k,∴k的取值范围是k且k≠0,故选:D.10.如果一元二次方程ax2+bx+c=0(a≠0)能用公式法求解,那么必须满足的条件是()A.b2﹣4ac≥0B.b2﹣4ac≤0C.b2﹣4ac>0D.b2﹣4ac<0【解答】解:若一元二次方程ax2+bx+c=0(a≠0)能用公式法求解,则b2﹣4ac≥0;故选:A.11.下列各项中,以x为根的一元二次方程可能是()A.x2+bx+c=0B.x2+bx﹣c=0C.x2﹣bx+c=0D.x2﹣bx﹣c=0【解答】解:利用公式法可知:A.x,故不符合题意.B.x,故不符合题意.C.x,故不符合题意.D.x,故符合题意.故选:D.二.填空题(共2小题)12.关于x的一元二次方程(m﹣2)x2+3x﹣1=0有两个不等实数根,则实数m 的取值范围是m且m≠2.【解答】解:∵关于x的一元二次方程(m﹣2)x2+3x ﹣1=0总有两个不相等的实数根,∴Δ>0且m﹣2≠0,∴9﹣4(m﹣2)×(﹣1)>0且m﹣2≠0,∴m 且m≠2.故答案为:m且m≠2.13.如图,点A在数轴的负半轴,点B在数轴的正半轴,且点A对应的数是2x﹣1,点B对应的数是x2+x,已知AB=5,则x的值为.【解答】解:根据题意,得:x2+x﹣(2x﹣1)=5,整理,得:x2﹣x﹣4=0,∵a=1,b=﹣1,c=﹣4,∴Δ=(﹣1)2﹣4×1×(﹣4)=17>0,则x,∴x1,x2,∵点A在数轴的负半轴,∴2x﹣1<0,即x,∴x,故答案为:.三.解答题(共5小题)14.已知关于x的方程x2﹣(k+3)x+3k=0.(1)求证:无论k取任何实数,该方程总有实数根;(2)若等腰三角形的三边长分别为a,b,c,其中a =1,并且b,c恰好是此方程的两个实数根,求此三角形的周长.【解答】(1)证明:∵关于x的方程x2﹣(k+3)x+3k =0,∴Δ=[﹣(k+3)]2﹣12k=k2+6k+9﹣12k=k2﹣6k+9=(k﹣3)2≥0,则无论k取何实数值,方程总有实数根;(2)解:当b=c时,k=3,方程为x2﹣6x+9=0,解得:x1=x2=3,此时三边长为1,3,3,周长为1+3+3=7;当a=b=1或a=c=1时,把x=1代入方程得:1﹣(k+3)+3k=0,解得:k=1,此时方程为:x2﹣4x+3=0,解得:x1=3,x2=1,当x'=1时,此时三边长为1,1,3,不能组成三角形,当x=3时,此时三边长为1,3,3,周长为3+3+1=7,综上所述,△ABC的周长为7.15.关于x的一元二次方程为(m﹣1)x2﹣2mx+m+1=0.(1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?【解答】解:(1)[(m﹣1)x﹣(m+1)](x﹣1)=0,(m﹣1)x﹣(m+1)=0或x﹣1=0,所以x 1,x2=1;(2)x 1,由于m为整数,所以当m﹣1=1或2时,x为正整数,此时m=2或m=3,所以m为2或3时,此方程的两个根都为正整数.16.已知关于x的方程kx2﹣(k+2)x+2=0.(1)证明:不论k为何值,方程总有实数根;(2)k为何整数时,方程的根为正整数.【解答】解:(1)当k=0时,方程有根x=1;当k≠0时,Δ=(k+2)2﹣8k=(k﹣2)2≥0,综上,无论k为何值时,这个方程总有两个实数根;(2)当k=0时,方程有根x=1,符合题意;当k≠0时,∵kx2﹣(k+2)x+2=0,∴(kx﹣2)(x﹣1)=0,∴x 1,x2=1,∵方程的两个实数根都是正整数,∴k=1或2.综上,k的整数值为0、1、2.17.(1)解方程(x﹣3)2=2x(3﹣x);(2)已知关于x的一元二次方程(a+c)x2+2bx+(a ﹣c)=0,其中a,b,c分别为△ABC三边的长.①如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;②如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;③如果△ABC是等边三角形,试求这个一元二次方程的根.【解答】解:(1)(x﹣3)2=2x(3﹣x);移项得,(x ﹣3)2+2x(x﹣3)=0,∴(x﹣3)(x﹣3+2x)=0,∴(x﹣3)(3x﹣3)=0,∴x1=3,x2=1;(2)①△ABC为等腰三角形;理由如下:把x=﹣1代入方程得a+c﹣2b+a﹣c=0,则a=b,∴△ABC为等腰三角形;②△ABC为直角三角形;理由如下:∵方程有两个相等的实数根,∴Δ=(2b)2﹣4(a+c)(a﹣c)=0,即b2+c2=a2,∴△ABC为直角三角形;③∵△ABC为等边三角形,∴a=b=c,∴方程化为x2+x=0,解得x1=0,x2=﹣1.18.已知关于x 的方程.(1)求证:无论k取何值,此方程总有实数根;(2)若x=1是这个方程的一个根,求k的值和它的另一个根;(3)若等腰△ABC的一边长a=4,另两边b、c恰好是这个方程的两个根,求这个等腰三角形的周长是多少?【解答】解:(1)Δ=(2k+1)2﹣4×1×4(k)=4(k)2≥0,此时方程有两个实数根.综上所述,无论k取何值,此方程总有实数根.(2)若x=1是这个方程的一个根,则1﹣(2k+1)+4(k)=0,解得k=1,∴关于x的方程x2﹣3x+2=0,解方程得x1=1,x2=2,∴方程的另一根是2;(3)当a=4为底边,则b,c为腰长,则b=c,则Δ=0.∴4(k)2=0,解得:k.此时原方程化为x2﹣4x+4=0∴x1=x2=2,即b=c=2.此时△ABC三边为4,2,2,构不成三角形,当a=4为腰,则b=4为腰长,c为底,则16﹣4(2k+1)+4(k)=0,求得k,∴关于x的方程为x2﹣6x+8=0.解得x=2或4,∴c=2,∴周长为4+4+2=10.故这个等腰三角形的周长是10.。
10道公式法解一元二次方程练习题及答案公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二?b?2?4ac2次方程ax?bx?c?0的求根公式:x?。
公式法2a2的步骤:就是把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项为c1.一般地,对于一元二次方程ax2+bx+c=0,当b2-4ac≥0时,它的根是_____ 当b-4ac 2.方程ax2+bx+c=0有两个相等的实数根,则有____ ____ ,?若有两个不相等的实数根,则有_____ ____,若方程无解,则有__________.3.不解方程,判断方程:①x2+3x+7=0;②x2+4=0;③x2+x-1=0中,有实数根的方程有个4.已知一个矩形的长比宽多2cm,其面积为8cm,则此长方形的周长为________.1?x2x2?x?15.当x=_____ __时,代数式与的值互为相反数.426.若方程x-4x+a=0的两根之差为0,则a的值为________.7.若方程3x2+bx+1=0无解,则b应满足的条件是________.8.用公式法解方程x2=-8x-15,其中b2-4ac=_______,x1=_____,x2=________.9.一元二次方程x2-2x-m=0可以用公式法解,则m=. A.0B.1C.-1D.±110.用公式法解方程4y2=12y+3,得到A.B.y= C.D.11.已知a、b、c是△ABC的三边长,且方程a+2bx-c=0的两根相等,则△ABC为A.等腰三角形 B.等边三角形 C.直角三角形 D.任意三角形12. 用公式法解下列方程:112x2-3x-5=02t2+3=7t x2+x-=03222x??2?0 x?6x?12?0 x=4x+222-3x+22x-24=0 x=x- x+5=02=44x-2=0x+x-35=013. 若规定两数a、b通过“※”运算,得到4ab,即a※b=4ab,例如2※6=4?×2?×6=48求3※5的值;求x※x+2※x-2※4=0中x的值;若无论x是什么数,总有a※x=x,求a的值.用公式法解一元二次方程练习题姓名______________一.填空题。
初中数学:《公式法解一元二次方程》练习(含答案)一、选择题:1.一元二次方程x(x﹣2)=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根2.已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.有两个实数根3.已知关于x的一元二次方程(x+1)2﹣m=0有两个实数根,则m的取值范围是()A.m≥﹣ B.m≥0 C.m≥1 D.m≥24.关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,则k的取值范围是()A.k<B.k>C.k<且k≠0 D.k>且k≠0二、填空题5.一元二次方程x2+x=3中,a=______,b=______,c=______,则方程的根是______.6.若x1,x2分别是x2﹣3x+2=0的两根,则x1+x2=______.7.已知三角形两边长是方程x2﹣5x+6=0的两个根,则三角形的第三边c的取值范围是______.8.已知关于x的一元二次方程(k+1)x2﹣2x﹣1=0有两个不相同的实数根,则k的取值范围是______.9.写出一个一元二次方程,使它有两个不相等的实数根______.10.一次二元方程x2+x+=0根的情况是______.11.若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值范围是______.12.已知代数式7x(x+5)与代数式﹣6x2﹣37x﹣9的值互为相反数,则x=______.13.已知一次函数y=﹣x+4与反比例函数在同一直角坐标系内的图象没有交点,则k的取值范围是______.14.对于实数a,b,定义运算“﹡”:a﹡b=.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1﹡x2=______.三、解答题(共4小题,满分0分)15.用公式法解方程:①4x2﹣4x+1=0②x2﹣x﹣3=0.16.不解方程,判断下列方程的根的情况:①2x2+3x﹣4=0②3x2+2=2x③x2=x﹣1.17.已知关于x的方程mx2﹣(3m﹣1)x+2m﹣2=0,求证:无论m取任何实数时,方程恒有实数根.18.已知关于x的一元二次方程:x2﹣(2k+1)x+4(k﹣)=0.(1)求证:这个方程总有两个实数根;(2)若等腰△ABC的一边长a=4,另两边长b、c恰好是这个方程的两个实数根,求△ABC的周长.《公式法》参考答案与试题解析一、选择题:1.一元二次方程x(x﹣2)=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【解答】解:原方程变形为:x2﹣2x=0,∵△=(﹣2)2﹣4×1×0=4>0,∴原方程有两个不相等的实数根.故选A.2.已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.有两个实数根【解答】解:∵(x﹣1)2=b中b<0,∴没有实数根,故选:C.3.已知关于x的一元二次方程(x+1)2﹣m=0有两个实数根,则m的取值范围是()A.m≥﹣ B.m≥0 C.m≥1 D.m≥2【解答】解;(x+1)2﹣m=0,(x+1)2=m,∵一元二次方程(x+1)2﹣m=0有两个实数根,∴m≥0,故选:B.4.关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,则k的取值范围是()A.k<B.k>C.k<且k≠0 D.k>且k≠0 【解答】解:根据题意得k≠0且△=(﹣1)2﹣4k>0,解得k<且k≠0.故选C.二、填空题5.一元二次方程x2+x=3中,a= ,b= 1 ,c= ﹣3 ,则方程的根是x1=﹣1+,x2=﹣1﹣.【解答】解:移项得, x+x﹣3=0∴a=,b=1,c=﹣3∴b2﹣4ac=7∴x1=﹣1+,x2=﹣1﹣.6.若x1,x2分别是x2﹣3x+2=0的两根,则x1+x2= 3 .【解答】解:根据题意得x1+x2=3.故答案为3.7.已知三角形两边长是方程x2﹣5x+6=0的两个根,则三角形的第三边c的取值范围是1<c <5 .【解答】解:∵三角形两边长是方程x2﹣5x+6=0的两个根,∴x1+x2=5,x1x2=6∵(x1﹣x2)2=(x1+x2)2﹣4x1x2=25﹣24=1∴x1﹣x2=1,又∵x1﹣x2<c<x1+x2,∴1<c<5.故答案为:1<c<5.8.已知关于x的一元二次方程(k+1)x2﹣2x﹣1=0有两个不相同的实数根,则k的取值范围是k>﹣2且k≠﹣1 .【解答】解:根据题意得k+1≠0且△=(﹣2)2﹣4(k+1)•(﹣1)>0,解得k>﹣2且k≠﹣1.故答案为k>﹣2且k≠﹣1.9.写出一个一元二次方程,使它有两个不相等的实数根x2+x﹣1=0 .【解答】解:比如a=1,b=1,c=﹣1,∴△=b2﹣4ac=1+4=5>0,∴方程为x2+x﹣1=0.10.一次二元方程x2+x+=0根的情况是方程有两个相等的实数根.【解答】解:∵△=12﹣4×=0,∴方程有两个相等的实数根故答案为方程有两个相等的实数根.11.若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值范围是a≥﹣1 .【解答】解:当a=0时,方程是一元一次方程,有实数根,当a≠0时,方程是一元二次方程,若关于x的方程ax2+2(a+2)x+a=0有实数解,则△=[2(a+2)]2﹣4a•a≥0,解得:a≥﹣1.故答案为:a≥﹣1.12.已知代数式7x(x+5)与代数式﹣6x2﹣37x﹣9的值互为相反数,则x= 1±.【解答】解:根据题意得:7x(x+5)﹣6x2﹣37x﹣9=0,这里的:x2﹣2x﹣9=0,这里a=1,b=﹣2,c=﹣9,∵△=4+36=40,故答案为:1±13.已知一次函数y=﹣x+4与反比例函数在同一直角坐标系内的图象没有交点,则k的取值范围是k>4 .【解答】解:依题意可得x2﹣4x+k=0无解,也就是这个一元二次方程无实数根,那么根据根的判别式△=b2﹣4ac=16﹣4k,没有实数根,那么16﹣4k<0,解此不等式可得k>4.故答案为:k>4.14.对于实数a,b,定义运算“﹡”:a﹡b=.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1﹡x2= 3或﹣3 .【解答】解:∵x1,x2是一元二次方程x2﹣5x+6=0的两个根,∴(x﹣3)(x﹣2)=0, 解得:x=3或2,①当x1=3,x2=2时,x1﹡x2=32﹣3×2=3;②当x1=2,x2=3时,x1﹡x2=3×2﹣32=﹣3.故答案为:3或﹣3.三、解答题(共4小题,满分0分)15.用公式法解方程:①4x2﹣4x+1=0②x2﹣x﹣3=0.【解答】解:(1)这里a=4,b=﹣4,c=1, ∵△=32﹣16=16,(2)这里a=1,b=﹣,c=﹣3,∵△=2+12=14,∴x=.16.不解方程,判断下列方程的根的情况:①2x2+3x﹣4=0②3x2+2=2x③x2=x﹣1.【解答】解:①△=32﹣4×2×(﹣4)=41>0,所以方程两个不相等的实数根;②方程化为一般式为3x2﹣2x+2=0,△=(﹣2)2﹣4×3×2=0,所以方程有两个相等的实数根;③方程化为一般式为x2﹣x+1=0,△=(﹣)2﹣4××1<0,所以方程无实数根.17.已知关于x的方程mx2﹣(3m﹣1)x+2m﹣2=0,求证:无论m取任何实数时,方程恒有实数根.【解答】证明:当m=0时,原方程为x﹣2=0,解得x=2;当m≠0时,△=(3m﹣1)2﹣4m(2m﹣2)=(m+1)2≥0,所以方程有两个实数根,所以无论m为何值原方程有实数根.18.已知关于x的一元二次方程:x2﹣(2k+1)x+4(k﹣)=0.(1)求证:这个方程总有两个实数根;(2)若等腰△ABC的一边长a=4,另两边长b、c恰好是这个方程的两个实数根,求△ABC的周长.【解答】(1)证明:△=(2k+1)2﹣4×1×4(k﹣)=4k2﹣12k+9=(2k﹣3)2,∵无论k取什么实数值,(2k﹣3)2≥0, ∴△≥0,∴无论k取什么实数值,方程总有实数根;(2)解:∵x=,∴x1=2k﹣1,x2=2,∵b,c恰好是这个方程的两个实数根,设b=2k﹣1,c=2,当a、b为腰,则a=b=4,即2k﹣1=4,解得k=,此时三角形的周长=4+4+2=10;当b、c为腰时,b=c=2,此时b+c=a,故此种情况不存在.综上所述,△ABC的周长为10.。
一元二次方程10道例题一、直接开平方法例1:解方程(x - 3)^2=16解析:对于方程(x - 3)^2 = 16,根据直接开平方法,我们得到:x-3=±4当x - 3=4时,x=4 + 3=7;当x-3=-4时,x=- 4+3=-1。
所以方程的解为x_1 = 7,x_2=-1。
二、配方法例2:解方程x^2+6x - 7 = 0解析:在方程x^2+6x-7 = 0中,1. 移项得x^2+6x=7。
2. 配方:在等式两边加上一次项系数一半的平方,即x^2+6x + 9=7 + 9,得到(x + 3)^2=16。
3. 然后用直接开平方法,x+3=±4。
- 当x+3 = 4时,x=1。
- 当x + 3=-4时,x=-7。
所以方程的解为x_1=1,x_2 = - 7。
三、公式法例3:解方程2x^2-5x+3=0解析:对于一元二次方程ax^2+bx + c=0(a≠0),其求根公式为x=(-b±√(b^2 - 4ac))/(2a)。
在方程2x^2-5x + 3=0中,a = 2,b=-5,c = 3。
1. 先计算判别式Δ=b^2-4ac=(-5)^2-4×2×3=25 - 24 = 1。
2. 把a、b、Δ的值代入求根公式,得到x=(5±√(1))/(4)。
- 当取正号时,x=(5 + 1)/(4)=(3)/(2)。
- 当取负号时,x=(5-1)/(4)=1。
所以方程的解为x_1=(3)/(2),x_2 = 1。
四、因式分解法例4:解方程x^2-3x+2=0解析:1. 对x^2-3x + 2进行因式分解,得到(x - 1)(x - 2)=0。
2. 则有x-1=0或者x - 2=0。
- 当x-1=0时,x = 1。
- 当x-2=0时,x=2。
所以方程的解为x_1=1,x_2=2。
例5:解方程6x^2+x - 1=0解析:1. 对6x^2+x - 1进行因式分解,得到(2x + 1)(3x - 1)=0。
公式法解一元二次方程专项练习106题(有答案)1.2x2﹣7x+3=0(公式法)2.2t2﹣t﹣3=0,3.2x2﹣7x+4=0.4.2x2+2x=15.5y+2=3y2.6.x2+3x﹣4=07. 2x2﹣4x﹣1=08.2x2﹣x﹣2=0.9.2x2﹣5x+1=0.10.x2﹣1=4x.11.x2+3x﹣3=0 12.3x2﹣4x﹣2=0.13.x2+x﹣4=0.14.2x2﹣6x+3=0.15.2x2﹣3x﹣1=0.16.2x2﹣2x﹣1=017.3x2﹣4x﹣1=0.18.2x2﹣x﹣4=019.2x2+x﹣2=020.3x2+6x﹣4=021.x2﹣x﹣3=0.22.3x2+4x﹣4=0,23.(3x﹣1)(x+2)=11x﹣4.24.2x2﹣5x﹣1=0.25..26.3x2+4x+5=0.28.x2﹣x﹣4=0.29..30.2x2﹣2x﹣1=031.3x2+7x+10=1﹣8x.32.5x2﹣3x+2=0.33. 5x2﹣3x=x+1134.x2+3x+1=0,35.4x2=2x+136.5x2﹣3x=x+1.37.3x2+7x+4=038.2x2﹣3x﹣1=0(用公式法)39.3x2+5x+1=0;40.x2﹣4x+1=041. x2﹣4x+5=0 42. x2+5x+3=043.2x2﹣3x﹣6=0.44.3x2+4x+1=0 45.x2﹣4x﹣8=0 46.2x2﹣x﹣2=047.3x2+2(x﹣1)=0.48.x2﹣4x﹣7=049.y2﹣2y﹣4=050.x2﹣3x=2 51.2x2+x ﹣=0.52.x 2x+1=053.2x2﹣9x+8=0;54. x2﹣6x+1=0;55. x2+x﹣1=0;56. 2x2﹣6x+3=0;57.2x(x+4)=1 58.3x2+5(2x+1)=0.59.2x2﹣4x﹣1=060.3x2﹣6x﹣4=061.x2+2x﹣5=0 62.x2﹣4x﹣3=063.4x2﹣3x﹣1=063. x2+2x﹣2=0;64. y2﹣3y+1=0;65. x2+3=2x .66.x2﹣4x=﹣367. 3x2﹣2x﹣1=0;68.;69. 2x2﹣7x+5=0;70. 2x2﹣7x﹣18=0.71. (x+1)(x+3)=6x+4;73. x2﹣(2m+1)x+m=0.74. x(x+8)=16,75. x2﹣4x=4;76. 2x2﹣2x+1=0,77. 5x2+2x﹣1=078. 6y2+13y+6=079. 3•x2+6x+9=780. 2x2﹣3x+1=0;81. 2y(y﹣1)+3=(y+1)2.82. x2=3x+1;83. (t+1)(t﹣3)=﹣t(3﹣3t).84.x2﹣2ax﹣b2+a2=0.85. 3x2=2﹣5x;86. y2﹣4y=1;87. (x+1)(x﹣1)=2x.88.(2x﹣1)2﹣7=3(x+1);89.x2﹣6x+11=0 90 . 5x2﹣8x+2=0.91.x2﹣3x+1=0.92.x2=5﹣12x93. x2+x﹣1=0 94.3x2﹣4x﹣1=0 95.3x2+2(x﹣1)=0,96.97.3x2﹣4x﹣1=098.99. .101.2x2+5x﹣1=0.102.2x2﹣x﹣1=0.103..104.3x2+5x﹣1=0.105.5x2﹣8x+2=0,106.3x2+7x+10=1﹣8x,参考答案:1.2x2﹣7x+3=0(公式法)a=2,b=﹣7,c=3,∴b2﹣4ac=(﹣7)2﹣4×2×3=49﹣24=25>0,方程有两个不相等的实数根,即:,x1=3,2.2t2﹣t﹣3=0,∵a=2,b=﹣1,c=﹣3,∴x===,3.2x2﹣7x+4=0.∵a=2,b=﹣7,c=4,b2﹣4ac=49﹣32=17,∴x==,∴,∴x1=,x2=4.2x2+2x=1由原方程,得2x2+2x﹣1=0,∴该方程的二次项系数a=2,一次项系数b=2,常数项c=﹣1;∴x===,∴x1=,x2=5.5y+2=3y2.移项,3y2﹣5y﹣2=0,a=3,b=﹣5,c=﹣2,b2﹣4ac=(﹣5)2﹣4×3×(﹣2)=49>0,∴x=,∴x1=2,x2=﹣;6.x2+3x﹣4=0a=1,b=3,c=﹣4,△=9+4×1×4=25>0,∴x==,∴x1=﹣4,x2=1.7. 2x2﹣4x﹣1=0a=2,b=﹣4,c=﹣1,△=16+4×2=24>0,∴x==1±,∴x1=1+,x2=1﹣8.2x2﹣x﹣2=0.∵a=2,b=﹣1,c=﹣2,∴b2﹣4ac=17>0∴x=.即x1=,x2=9.2x2﹣5x+1=0.∵a=2,b=﹣5,c=1,∴b2﹣4ac=17,∴x=,∴x1=,x2=10.x2﹣1=4x.原方程化为一般式:x2﹣4x﹣1=0.∵a=1,b=﹣4,c=﹣1,∴△=b2﹣4ac=(﹣4)2﹣4×1×(﹣1)=20,∴x===2±,∴x1=2+,x2=2﹣11.x2+3x﹣3=0a=1,b=3,c=﹣3;∵b2﹣4ac=9+12=21>0∴=∴,12.3x2﹣4x﹣2=0.a=3,b=﹣4,c=﹣2,△=b2﹣4ac=(﹣4)2﹣4×3×(﹣2)=40>0,x==,x1=,x2=13.x2+x﹣4=0.∴x==,∵x1=﹣2,x2=.14.2x2﹣6x+3=0.∵a=2,b=﹣6,c=3∴x=∴x1=,x2=;15.2x2﹣3x﹣1=0.a=2,b=﹣3,c=﹣1,∴△=9+8=17,∴x=,x1=,x2=16.2x2﹣2x﹣1=0a=2,b=﹣2,c=﹣1,∴b2﹣4ac=12,∴x==,∴x1=,x2=17.3x2﹣4x﹣1=0.∵一元二次方程3x2﹣4x﹣1=0的二次项系数a=3,一次项系数b=﹣4,常数项c=﹣1,∴x===,∴x1=,x2=18.2x2﹣x﹣4=0∵2x2﹣x﹣4=0,∴=,∴x1=,19.2x2+x﹣2=0∵a=2,b=1,c=﹣2(1分)∵b2﹣4ac=12﹣4×2×(﹣2)=17>0(2分)∴(4分)∴,20.3x2+6x﹣4=0∵a=3,b=6,c=﹣4,∴b2﹣4ac=62﹣4×3×(﹣4)=84,∴x==,即x1=,x2=﹣21.x2﹣x﹣3=0.∵a=1,b=﹣1,c=﹣3,∴△=(﹣1)2﹣4×1×(﹣3)=13>0,∴x==,∴x1=,x2=.22.3x2+4x﹣4=0,这里a=3,b=4,c=﹣4,b2﹣4ac=42﹣4×3×(﹣4)=64,x=,x1=,x2=﹣223.(3x﹣1)(x+2)=11x﹣4.3x2+6x﹣x﹣2=11x﹣4,整理得3x2﹣6x+2=0,∵△=(﹣6)2﹣4×3×2=12,∴x==∴x1=,x2=24.2x2﹣5x﹣1=0.2x2﹣5x﹣1=0,∵b2﹣4ac=(﹣5)2﹣4×2×(﹣1)=33,∴x=,即x1=,x2=25..∵a=1,b=,c=﹣20,b2﹣4ac=()2﹣4×1×(﹣20)=100>0,∴x=,x=,解得x1=﹣+5,x2=﹣﹣5.26.3x2+4x+5=0.∵△=42﹣4×3×5=﹣44<0,∴方程没有实数根.27.x2﹣4x﹣2=0.∵a=1,b=﹣4,c=﹣2,∴△=(﹣4)2﹣4×1×(﹣2)=4×6,∴x===2±,∴x1=2+,x2=2﹣.28.x2﹣x﹣4=0.a=1,b=﹣1,c=﹣4.b2﹣4ac=1+16=17>0.∴=∴x1=,x2=29..由原方程,得t2+2t﹣2=0,这里a=1,b=2,c=2.则t===﹣,即t1=t2=﹣30.2x2﹣2x﹣1=0∵a=2,b=﹣2,c=﹣1,∴b2﹣4ac=(﹣2)2﹣4×2×(﹣1)=12,∴x===,∴x1=,x2=31.3x2+7x+10=1﹣8x.原方程可化为x2+5x+3=0,解得:32.5x2﹣3x+2=0.∵b2﹣4ac=(﹣3)2﹣4×5×2<0,∴此方程无解33. 5x2﹣3x=x+11(公式法)5x2﹣3x=x+11,整理得:5x2﹣4x﹣11=0,这里a=5,b=﹣4,c=﹣11,∵△=16+220=236,∴x==,则x1=,x2=34.x2+3x+1=0,这里a=1,b=3,c=1,∵△=b2﹣4ac=9﹣4=5,∴x=,则x1=,x2=35.4x2=2x+1移项得:4x2﹣2x﹣1=0,∵b2﹣4ac=(﹣2)2﹣4×4×(﹣1)=20,∴x==,∴x1=,x2=36.5x2﹣3x=x+1.方程化简为:5x2﹣4x﹣1=0,这里a=5,b=﹣4,c=﹣1,∵△=b2﹣4ac=(﹣4)2﹣4×5×(﹣1)=36>0,∴x==,∴x1=1,x2=﹣.37.3x2+7x+4=03x2+7x+4=0,∵a=3,b=7,c=4,∴b2﹣4ac=49﹣48=1>0,∴x=,∴x1=﹣1,x2=﹣.38.2x2﹣3x﹣1=0(用公式法)∵a=2,b=﹣3,c=﹣1,∴△=(﹣3)2﹣4×2×(﹣1)=17,∴x==,所以x1=,x2=39.3x2+5x+1=0;∵原方程的二次项系数a=3,一次项系数b=5,常数项c=1,∴原方程的根是:x==,即x=;40.x2﹣4x+1=0a=1,b=﹣4,c=1,∴x====2±;41. x2﹣4x+5=0a=1,b=﹣4,c=5,∵△=b2﹣4ac=16﹣20=﹣4<0,∴次方程无解.42. x2+5x+3=0a=1,b=5,c=3,∴x===43.2x2﹣3x﹣6=0.这里a=2,b=﹣3,c=﹣6,∵△=b2﹣4ac=9+48=57,∴x=,则x1=,x2=44.3x2+4x+1=0(用公式法)∵二次项系数a=3,一次项系数b=4,常数项c=1,∴△=b2﹣4ac=42﹣4×3×1=4>0∴x==∴x1=﹣1 x2=﹣;45.x2﹣4x﹣8=0(公式法)∵方程x2﹣4x﹣8=0的二次项系数a=1、一次项系数b=﹣4、常数项c=﹣8,∴x===2±2,∴x1=2+2,x2=2﹣2;46.2x2﹣x﹣2=0a=2,b=﹣1,c=﹣2,∵b2﹣4ac=(﹣1)2﹣4×2×(﹣2)=1+16=17>0,∴x==,∴x1=,x2=47.3x2+2(x﹣1)=0.整理得,3x2+2x﹣2=0,∵a=3,b=2,c=﹣2,△=b2﹣4ac=4+24=28,x==,解得x1=,x2=48.x2﹣4x﹣7=0∵x2﹣4x﹣7=0的二次项系数是a=1、一次项系数是b=﹣4、常数项是c=﹣7,∴x===2±,∴x1=2+,x2=2﹣49.y2﹣2y﹣4=0(公式法)由原方程知,二次项系数a=1,一次项系数b=﹣2,常数项c=﹣4,∴x==,∴,∴x1=1+,x2=1﹣;50.x2﹣3x=2x2﹣3x﹣2=0,∵a=1,b=﹣3,c=﹣2,∴x===,∴x1=,x2=51.2x2+x ﹣=0.∵关于x的一元二次方程2x2+x ﹣=0的二次项系数a=2,一次项系数b=1,常数项c=﹣,∴原方程的根是:=,即x=52.x 2x+1=0这里a=1,b=﹣2,c=1,∵△=8﹣4=4,∴x==±1,则x1=+1,x2=﹣153.2x2﹣9x+8=0;∵a=2,b=﹣9,c=8∴x=,x1=,x2=;54. x2﹣6x+1=0;∵a=1,b=﹣6,c=1∴x=,∴x1=3+2,x2=3﹣2;55. x2+x﹣1=0;∵a=1,b=1,c=﹣1,∴x==;56. 2x2﹣6x+3=0;∵a=2,b=﹣6,c=3,∴x===;57.2x(x+4)=12x2+8x﹣1=0,∵a=2,b=8,c=﹣1,△=b2﹣4ac=64+8=72,∴x===.即x1=,x2=58.3x2+5(2x+1)=0.3x2+5(2x+1)=0,整理得:3x2+10x+5=0,∵a=3,b=10,c=5,∴b2﹣4ac=100﹣60=40>0,∴x==,则原方程的解为x1=,x2=59.2x2﹣4x﹣1=0(公式法)解:这里a=2,b=﹣4,c=﹣1,∵b2﹣4ac=(﹣4)2﹣4×2×(﹣1)=24,∴x==,∴x1=,x2=60.3x2﹣6x﹣4=0(公式法)3x2﹣6x﹣4=0,这里a=3,b=﹣6,c=﹣4,∵b2﹣4ac=36+48=84>0,∴x==,则x1=,x2=61.x2+2x﹣5=0∵a=1,b=2,c=﹣5,b2﹣4ac=24,∴x==﹣1,即x1=,x2=﹣1.62.x2﹣4x﹣3=0由题意得:a=1,b=﹣4,c=﹣3,∴x====2±63.4x2﹣3x﹣1=0a=4,b=﹣3,c=﹣1,△=9+16=25x==∴x1=1,x2=﹣.63. x2+2x﹣2=0;这里a=1,b=2,c=﹣2,∵b2﹣4ac=22﹣4×1×(﹣2)=12>0,∴x==﹣1,∴x1=﹣1+,x2=﹣1﹣;64. y2﹣3y+1=0;这里a=1,b=﹣3,c=1.∵b2﹣4ac=(﹣3)2﹣4×1×1=5>0,∴y=,∴y1=,y2=;65. x2+3=2x .移项,得x2﹣2x+3=0,这里a=1,b=﹣2,c=3.∵b2﹣4ac=(﹣2)2﹣4×1×3=﹣4<0.∴原方程没有实数根66.x2﹣4x=﹣3移项,得x2﹣4x+3=0.∵a=1,b=﹣4,c=3,∴b2﹣4ac=(﹣4)2﹣4×1×3=4>0,∴x==,∴x1=1,x2=367. 3x2﹣2x﹣1=0;∵a=3,b=﹣2,c=﹣1,∴b2﹣4ac=(﹣2)2﹣4×3×(﹣1)=16,∴x===,∴x1=1,x2=﹣.68.;∵a=2,b=﹣1,c=﹣,∴b2﹣4ac=(﹣1)2﹣4×2×(﹣)=5,∴x==,∴x1=,x2=.69. 2x2﹣7x+5=0;∵a=2,b=﹣7,c=5,∴b2﹣4ac=(﹣7)2﹣4×2×5=9,∴x==,∴x1=,x2=1.70. 2x2﹣7x﹣18=0.∵a=2,b=﹣7,c=﹣18,∴b2﹣4ac=(﹣7)2﹣4×2×(﹣18)=193,∴x==,∴x1=,x2=71. (x+1)(x+3)=6x+4;去括号,移项方程化为一般式为:x2﹣2x﹣1=0,∵a=1,b=﹣2,=﹣1,∴b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8 ∴x===1±,∴x1=1+,x2=1﹣;72. x2+2(+1)x+2=0;∵a=1,b=2(+1),c=2,∴b2﹣4ac=[2(+1)]2﹣4×1×2=16,∴x===﹣(+1)±2,∴x1=﹣﹣3,x2=﹣+1;73. x2﹣(2m+1)x+m=0.∵a=1,b=﹣(2m+1),c=m,∴b2﹣4ac=[﹣(2m+1)]2﹣4×1×m=4m2+1,∴x=,∴x1=,x2=74. x(x+8)=16,x2+8x﹣16=0,a=1,b=8,c=﹣16,b2﹣4ac=82﹣4×1×(﹣16)=128>0,x=,x1=﹣4+4,x2=﹣4﹣4;75. x2﹣4x=4;x2﹣4x﹣4=0;a=,b=﹣4,c=﹣4,b2﹣4ac=(﹣4)2﹣4××(﹣4)=48>0,x==±,x1=+,x2=﹣;76. 2x2﹣2x+1=0,a=2,b=﹣2,c=1,b2﹣4ac=(﹣2)2﹣4×2×1=0,x1=x2=.77. 5x2+2x﹣1=0∵a=5,b=2,c=﹣1,∴△=b2﹣4ac=4+4×5×1=24>0∴x1•x2=∴x1=.78. 6y2+13y+6=0∵a=6,b=13,c=6,∴△=b2﹣4ac=169﹣4×6×6=25>0∴x=∴x1=﹣,x2=﹣.79. 3•x2+6x+9=7整理,得:x2+6x+2=0∴a=1,b=6,c=2∴△=b2﹣4ac=36﹣4×1×2=28>0∴x1•2==﹣3±∴x1=﹣3+,x2=﹣3﹣.80. 2x2﹣3x+1=0;根据原方程,得a=2,b=﹣3,c=1,∵b2﹣4ac=9﹣4×2×1=1>0,∴x=,x==.∴x1=1,x2=;81. 2y(y﹣1)+3=(y+1)2.由原方程,得2y2﹣2y+3=y2+2y+1,即y2﹣4y+2=0,∴a=1,b=﹣4,c=2.b2﹣4ac=(﹣4)2﹣4×1×2=8>0.∴x=x==∴x1=2+,x2=2﹣.82. x2=3x+1;方程化为x2﹣3x﹣1=0,∴a=1,b=﹣3,c=﹣1,b2﹣4ac=(﹣3)2﹣4×1×(﹣1)=13.∴x1=.83. (t+1)(t﹣3)=﹣t(3﹣3t).方程化为2t2﹣t+3=0,a=2,b=﹣1,c=3b2﹣4ac=1﹣4×2×3=﹣23<0,∴原方程无实数根84.x2﹣2ax﹣b2+a2=0.∵a=1,b=﹣2a,c=﹣b2+a2∴b2﹣4ac=4a2+4b2﹣4a2=4b2∴x==a±|b|.85. 3x2=2﹣5x;a=3,b=5,c=﹣2 b2﹣4ac=52﹣4×3×(﹣2)=25+24=49>0.x==.所以x1=﹣2,x2=.86. y2﹣4y=1;原方程变形为:3y2﹣8y﹣2=0.a=3,b=﹣8,c=﹣2.b2﹣4ac=(﹣8)2﹣4×3×(﹣2)=64+24=88.x==.所以x1=,x2=.87. (x+1)(x﹣1)=2x.原方程变形x2﹣2x﹣1=0.a=1,b=﹣2,c=﹣1.b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8+4=12>0.所以x==.故x1=+,x2=﹣.88.(2x﹣1)2﹣7=3(x+1);整理,得4x2﹣7x﹣9=0,因为a=4,b=﹣7,c=﹣9.所以x=89.x2﹣6x+11=0由原方程,知a=,b=﹣6,c=11将其代入求根公式x=,得x=,∴原方程的根是:x1=4,x2=90 . 5x2﹣8x+2=0.这里a=5,b=﹣8,c=2,∵b2﹣4ac=64﹣40=24>0,∴x==,则x1=,x2=.91.x2﹣3x+1=0.x2﹣3x+1=0,这里a=1,b=﹣3,c=1,∵b2﹣4ac=(﹣3)2﹣4×1×1=9﹣4=5>0,∴x==,则x1=,x2=92.x2=5﹣12x方程化为一般形式为:x2+12x﹣5=0,∴a=1,b=12,c=﹣5,∴△=122﹣4×1×(﹣5)=4×41>0,∴x===﹣6±,所以x1=﹣6+,x2=﹣6﹣.93. x2+x﹣1=0解:x2+x﹣1=0,b2﹣4ac=12﹣4×1×(﹣1)=5,∴x=,∴x1=,x2=.94.3x2﹣4x﹣1=0解:3x2﹣4x﹣1=0,这里a=3,b=﹣4,c=﹣1,b2﹣4ac=(﹣4)2﹣4×3×(﹣1)=28,∴x==,∴原方程的解是:x1=,x2=,这里a=2,b=﹣2,c=1,∴b2﹣4ac=﹣4×2×1=4,∴x==,∴x1=,x2=,∴原方程的解是x1=,x2=95.3x2+2(x﹣1)=0,整理得:3x2+2x﹣2=0,这里a=3,b=2,c=﹣2,∵△=b2﹣4ac=4+24=28,∴x==,则x1=,x2=96.方程整理得:x2﹣2x+1=0,这里a=1,b=﹣2,c=1,∵△=8﹣4=4,∴x==±1,则x1=+1,x2=﹣1.97.3x2﹣4x﹣1=03x2﹣4x﹣1=0,这里a=3,b=﹣4,c=﹣1,∵b2﹣4ac=(﹣4)2﹣4×3×(﹣1)=16+12=28>0,∴x==,则x1=,x2=98.2x2﹣x+1=0a=2,b=﹣,c=1△=10﹣8=2x=∴x1=,x2=99. .解:整理得:x2﹣2x﹣1=0,∴b2﹣4ac=﹣4×1×(﹣1)=12,∴x==±,∴x1=+,x2=﹣100.3x2﹣4x﹣1=0.3x2﹣4x﹣1=0,a=3,b=﹣4,c=﹣1,b2﹣4ac=(﹣4)2﹣4×3×(﹣1)=28,∴x==,∴x1=,x2=101.2x2+5x﹣1=0.∵a=2,b=5,c=﹣1,△=b2﹣4ac=25+8=33,∴x===.即x1=,x2=102.2x2﹣x﹣1=0.∵原方程的二次项系数a=2,一次项系数b=﹣1,常数项c=﹣1,∴x===,∴x1=1,x2=﹣.103..∵a=2,b=﹣,c=﹣,∴△=(﹣)2﹣4×2×(﹣)=6>0,x==.104.3x2+5x﹣1=0.∵一元二次方程3x2+5x﹣1=0的二次项系数a=3,一次项系数b=5,常数项c=﹣1,∴x===,∴x1=,x2=.105.5x2﹣8x+2=0,a=5,b=﹣8,c=2,b2﹣4ac=(﹣8)2﹣4×5×2=24>0,x==,x1=,x2=.106.3x2+7x+10=1﹣8x,整理得:x2+5x+3=0,解得:x==,即:x1=,x2=;。
解一元二次方程专项练习题(带答案)1、用配方法解以下方程:( 1)x2+12 x+25=0(2)x2+4x=10( 3)x2-6x=11(4)x 2-2x-4=02、用配方法解以下方程:( 1)6x 2- 7x+1=0(2)5x2-18=9x( 3)4x 2- 3x=52(4)5x2=4-2x3、用公式法解以下方程:( 1)2x 2-9x+8=0(2)9x 2+6x+1=0( 3)16x2+8x=3(4)2x2-4x-1=04、运用公式法解以下方程:(1)5x2+2x-1=0(2)x 2+ 6x+9=7( 3)5x+ 2=3x 2(4)( x- 2)(3x-5)=15、用分解因式法解以下方程:( 1)9x2+6x+1=0(2)3x( x-1)=2-2x( 3)(2x+3)2=4(2 x+3)(4)2(x-3)2=x2-96、用适合方法解以下方程:(1)(3 x)2x25(2)x2 2 3x 30 ( 3)(3x 11)( x 2) 2 ;(4) x(x 1) 1 ( x 1)( x 2)3 4 7、解以下对于x 的方程:(1)x2+2x-2=0(2) 3x2+4x-7=(3) ( x+3)( x-1)=522 x=0 ( 4) ( x-2 ) +48、解以下方程( 12 分)( 1)用开平方法解方程:( x 1)2 4 (2)用配方法解方程:x2— 4x+1=0( 3)用公式法解方程:3x2+5(2 x+1)=0(4)用因式分解法解方程:3( x-5) 2=2(5- x)9、用适合方法解以下方程:( 1)x( x-14)=0(2)x2+12x+27=0( 3)x2=x+56(4)x(5x+4)=5x+4( 5)4x2-45=31x(6)-3x2+22 x-24=0( 7)( x+8)( x+1)=-12(8)(3x+2)( x+3)=x+14解一元二次方程专项练习题答案1、【答案】( 1)-6 11 ;(2)-2 14 ;(3)3 2 5 ;(4)15 2、【答案】( 1)x1=1,x2=1(2)x1=3,x2=-6 6 5( 3)x1=4,x2=-13(4)x=-121 4 53、【答案】() x=917 ()x1=x 2=-11 42 3( 3)x1=1,x2=-3( 4)x=26 4 4 24、【答案】(1)x1= 16, x2 1 6 (2). x1=-3+7, x2=-3-7 5 5( 3)x=2,x=-1( 4)x=11131 2 3 6 5、【答案】( 1)x1=x2=-1(2)x1=1,x2=-23 3( 3)x1=-3,x2=1(4)x1=3,x2=9 2 26、【答案】(1)x1=1,x2=2 ( 2)x1=x2=- 3( 3) x 15, x 2 4;( 4) x 1 2, x 2337、【答案】(1) x =- 1± 3 ;(2)x =1, x =-7123(3) x 1=2, x 2=- 4;(4)=x 2=-28、【答案】解:( 1) x 1 3, x 21( 2) x 1 23, x 2 235 105 10( 4) x 1 5, x 213 ( 3) x 13, x 23。
10道公式法解一元二次方程练习题公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二
?b?2?4ac2次方程ax?bx?c?0的求根公式:x?。
公式法2a2
的步骤:就是把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项为c
1.一般地,对于一元二次方程ax2+bx+c=0,当b2-4ac≥0时,
它的根是_____ 当b-4ac 2.方程ax2+bx+c=0有两个相等的实数根,则有____ ____ ,?若有
两个不相等的实数根,则有_____ ____,若方程无解,则有__________.
3.不解方程,判断方程:①x2+3x+7=0;②x2+4=0;
③x2+x-1=0中,有实数根的方程有个
4.已知一个矩形的长比宽多2cm,其面积为8cm,则此长方形的周长为________.
1?x2x2?x?15.当x=_____ __时,代数式与的值互为相反数.42
6.若方程x-4x+a=0的两根之差为0,则a的值为________.
7.若方程3x2+bx+1=0无解,则b应满足的条件是
________.
8.用公式法解方程x2=-8x-15,其中b2-4ac=_______,x1=_____,x2=________.
9.一元二次方程x2-2x-m=0可以用公式法解,则m=. A.0B.1C.-1D.±1
10.用公式法解方程4y2=12y+3,得到
A.
B.
y= C.
D.
11.已知a、b、c是△ABC的三边长,且方程a+2bx-c=0的两
根相等,则△ABC为
A.等腰三角形 B.等边三角形 C.直角三角形 D.任意三角形
12. 用公式法解下列方程:
112x2-3x-5=02t2+3=7t x2+x-=03
222x??2?0 x?6x?12?0 x=4x+2
22-3x+22x-24=0 x=x- x+5=0
2=44x-2=0x+x-35=0
13. 若规定两数a、b通过“※”运算,得到4ab,即a※b=4ab,例如2※6=4?×2?×6=48
求3※5的值;
求x※x+2※x-2※4=0中x的值;
若无论x是什么数,总有a※x=x,求a的值.
用公式法解一元二次方程练习题姓名______________
一.填空题。
1.一般地,对于一元二次方程ax2+bx+c=0,当b2-4ac≥0时,它的根是_____,当b-4ac 2.方程ax2+bx+c=0有两个相等的实数根,则有________,?若有两个不相等的实数根,则有_________,若方程无解,则有__________.
3.若方程3x2+bx+1=0无解,则b应满足的条件是________.
4.用公式法解方程x2=-8x-15,其中b2-4ac=_______,x1=_____,x2=________.
5.已知一个矩形的长比宽多2cm,其面积为8cm2,则此长方形的周长为________.
二.选择题。
6.用公式法解方程4y2=12y+3,得到
A.
.
.
D.
7.不解方程,判断所给方程:①x2+3x+7=0;②x2+4=0;
③x2+x-1=0中,有实数根的方程有
A.0个 B.1个 C.2个D.3个
8.关于x的一元二次方程kx+2x-1=0有两个不相等的实数根,则k的取值范围是
A、k>-1
B、k>1
C、k≠0
D、k>-1且k≠0
9.下列方程中有两个相等的实数根的是
A、3x-x-1=0;
B、x-2x-1=0;
C、9x=4;
D、x+7x+15=0.
10.-8=0,则m-n的值是.
A.或- B. -4或C.D.-2
11.用公式法解方程
22x+15x=-3x;x+x-6=0;
3x-6x-2=0;4x-6x=0
2222222222222
12.如图,是一个正方体的展开图,标注了字母A的面是正方体的正面,?如果正方体的左面与右面所标注代数式的值相等,求x的值.
13. 已知等腰三角形的底边长为9,腰是方程x?10x?24?0的一个根,求这个三角形的周长。
14. 已知一元二次方程x-4x?k?0有两个不相等的实
求k的取值范围;
如果k是符合条件的最大整数,且一元二次方程x+mx-1?0与x-4x?k?0有一个相同的根,求此m的值。
2222
课题一元二次方程的解法
[学习目标]
1、会用公式法解一元二次方程。
2、了解一元二次方程根的判别式。
3、灵活运用一元二次方程的各种解法解方程.
[学习流程]
·流程一·
1、我们已经学习了一元二次方程的哪些解法?
2、用配方法解一般形式的一元二次方程:ax2?bx?c?0
3、一元二次方程的求根公式:
·平行训练·
用公式法解下列方程:
x2+x-6=0; x?2x?4?0;
5x2-4x-12=0;4x2+4x+10=1-8x.
·合作探究·
用公式法解方程:3x =2 .
·流程二·
4、一元二次方程的根的判别式
关于x的一元二次方程ax2?bx?c?0的根的判别式是: 5、性质
当b-4ac>0时,;
当b-4ac=0时,;
当b-4ac<0时,
·平行训练·
1、不解方程,判别方程5x?7x?5?0的根的情况。
2、若关于x的一元二次方程x?x?1?0有两个不相等的实数根,求m的取值范围。
·合作探究·
解方程:2x2-x-3=0观察它的两个根,并计算两根之和,两根之积分别等于多少?你能得到什么结论吗?
·流程三·
现在,你学会了几种解一元二次方程的方法了?你能灵活的选择合适的方法来解一元二次方程吗?下面我们来试一试
·平行训练·
用适当的方法解下列方程:22222
3x2-4x=2x;
12=1;
x2+x=0;x=2;
=22x;x=16;
·合作探究·
已知y1=2x+7x-1,y2=6x+2,当x取何值时y1=y2?
学校课外生物小组的试验园地是一块长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道,要使种植面积为600平方米,求小道的宽.
2
达标测评
1.用公式法解下列方程:
x?2x?2?0;x?4x?7?0;
22
2y2?8y?1?0;x?3x?
2.用适当的方法解下列方程:
2?3;2?3;
x?3x?2?0; ?5.
[我的收获—我快乐]________________________________________
[我的不足—我改正] 你有做错的题吗?请你记录下来并更正到错题记录本!____________________________________21?0.。