【高中数学】第2讲 命题及其关系、充分条件与必要条件
- 格式:doc
- 大小:675.69 KB
- 文档页数:12
考点二命题及其关系、充分条件与必要条件知识梳理1.命题的概念可以判断真假、用文字或符号表述的语句,叫作命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及相互关系(1) 四种命题命题表述形式原命题若p,则q逆命题若q,则p否命题若非p,则非q逆否命题若非q,则非p(2) 四种命题间的逆否关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.4.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件;(2)如果p⇒q,q⇒p,则p是q的充要条件.(3) 如果p q,q p,那么称p是q的充分不必要条件.(4) 如果q p,p q,那么称p是q的必要不充分条件.(5) 如果p q,且q p,那么称p是q的既不充分也不必要条件.典例剖析题型一四种命题及其相互关系例1命题“若一个数是负数,则它的平方是正数”的逆命题是()A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”答案 B解析将原命题的条件与结论互换即得逆命题,故原命题的逆命题为“若一个数的平方是正数,则它是负数”.变式训练命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数答案 C解析由于“x,y都是偶数”的否定表达是“x,y不都是偶数”,“x+y是偶数”的否定表达是“x +y不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x,y不都是偶数”,故选C.解题要点 1.写一个命题的其他三种命题时,需注意:①对于不是“若p,则q”形式的命题,需先改写;②若命题有大前提,写其他三种命题时需保留大前提.2.一些常见词语的否定例2有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是________.答案②③解析①原命题的否命题为“若a≤b,则a2≤b2”,错误.②原命题的逆命题为:“若x,y互为相反数,则x+y=0”,正确.③原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”,正确.变式训练下列有关命题的说法正确的是________.(填序号)①命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”;②若一个命题是真命题,则其逆命题也是真命题;③命题“存在x∈R,使得x2+x+1<0”的否定是“对任意x∈R,均有x2+x+1<0”;④命题“若x=y,则sin x=sin y”的逆否命题为真命题.答案 ④解析 命题“若x 2=1,则x =1”的否命题为“若x 2≠1,则x ≠1”,所以①不正确;原命题与逆命题不等价,所以②不正确;命题“存在x ∈R ,使得x 2+x +1<0”的否定是“对任意x ∈R ,均有x 2+x +1≥0”,所以③不正确;命题“若x =y ,则sin x =sin y ”是真命题,所以逆否命题为真命题,④正确.解题要点 1.判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.2.根据“原命题与逆否命题是等价的,逆命题与否命题也是等价的”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.题型二 充分条件与必要条件例3 已知p :“a ,b ,c 成等比数列”,q :“b =ac ”,那么p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 D解析 若a ,b ,c 成等比数列,则有b 2=ac ,所以b =±ac ,所以充分性不成立.当a =b =c =0时,b =ac 成立,但此时a ,b ,c 不成等比数列,所以必要性不成立,所以p 是q 的既不充分也不必要条件.变式训练 在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的( )A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件答案 A解析 由正弦定理,知a ≤b ⇔2R sin A ≤2R sin B (R 为△ABC 外接圆的半径)⇔sin A ≤sinB . 例4 设函数f (x )=log 2x ,则“a >b ”是“f (a )>f (b )”的________(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)条件.答案 必要不充分解析 因为f (x )=log 2x 在区间(0,+∞)上是增函数,所以当a >b >0时,f (a )>f (b );反之,当f (a )>f (b )时,a >b .故“a >b ”是“f (a )>f (b )”的必要不充分条件.变式训练 设x ∈R ,则“x >1”是“220x x +->”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案 A解析 由不等式220x x +->得(2)(1)0x x +->,即2x <-或1x >,所以由1x >可以得到不等式220x x +->成立,故充分性成立;但由220x x +->不一定得到1x >,所以必要性不成立,即“x >1”是“220x x +->”的充分而不必要条件.解题要点 1.充要条件问题应首先弄清问题中条件是什么,结论是什么,再进一步判断条件与结论的关系,解题过程分为三步:①确定条件是什么,结论是什么;②尝试从条件推结论,从结论推条件;③确定条件和结论是什么关系.2.充要条件的三种判断方法(1) 定义法:根据p q ,q p 进行判断; (2) 集合法:根据p 、q 成立的对象的集合之间的包含关系进行判断;(3) 等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.当堂练习1. 设p :1<x <2,q :2x >1,则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.设,a b ∈R , 则 “2()0a b a -<”是“a b <”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A .若α,β垂直于同一平面,则α与β平行B .若m ,n 平行于同一平面,则m 与n 平行C .若α,β不平行,则在α内不存在与β平行的直线D .若m ,n 不平行,则m 与n 不可能垂直于同一平面4.已知i 是虚数单位,a ,b ∈R ,得“a =b =1”是“(a +b i)2=2i ”的 条件.5.U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅” 条件.课后作业一、 选择题1.下列语句中命题的个数是( )①2<1;②x <1;③若x <2,则x <1;④函数f (x )=x 2是R 上的偶函数.A.0B.1C.2D.32.“x =1”是“x 2-2x +1=0”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件3.“1<x <2”是“x <2”成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.设p :x <3,q :-1<x <3,则p 是q 成立的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5.下列结论错误的是( )A .命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”B .“x =4”是“x 2-3x -4=0”的充分条件C .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”6.若m ∈R, 命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是( )A .若方程x 2+x -m =0有实根,则m >0B .若方程x 2+x -m =0有实根,则m ≤0C .若方程x 2+x -m =0没有实根,则m >0D .若方程x 2+x -m =0没有实根,则m ≤07.已知命题p :若x =-1,则向量a =(1,x )与b =(x +2,x )共线,则在命题p 的原命题、逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .2C .3D .48.设α,β是两个不同的平面,m 是直线且m ⊂α.“m ∥β”是“α∥β”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件二、填空题9.x ≠3或y ≠5是x +y ≠8的____________条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)10.“若a ≤b ,则ac 2≤bc 2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.11.(1)“x >y >0”是“1x <1y”的________条件. (2) 设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的________条件.12.下列命题:①“若k >0,则方程x 2+2x +k =0有实根”的否命题;②“若1a >1b,则a <b ”的逆命题;③“梯形不是平行四边形”的逆否命题,其中是假命题的是________.13.“m <14”是“一元二次方程x 2+x +m =0有实数解”的____________条件.当堂练习答案1. 答案 A解析 当1<x <2时,2<2x <4,∴p ⇒q ;但由2x >1,得x >0,∴q p ,故选A.2答案 A解析 由(a -b )a 2<0⇒a ≠0且a <b ,∴充分性成立;由a <b ⇒a -b <0,当0=a <b 时 (a -b )·a 2<0,必要性不成立;故选A.3.答案 D解析 对于A ,α,β垂直于同一平面,α,β关系不确定,A 错;对于B ,m ,n 平行于同一平面,m ,n 关系不确定,可平行、相交、异面,故B 错;对于C ,α,β不平行,但α内能找出平行于β的直线,如α中平行于α,β交线的直线平行于β,故C 错;对于D ,若假设m ,n 垂直于同一平面,则m ∥n ,其逆否命题即为D 选项,故D 正确.4.答案 充分不必要条件解析 当a =b =1时,(a +b i)2=(1+i)2=2i ;当(a +b i)2=2i 时,得⎩⎪⎨⎪⎧a 2-b 2=0,ab =1, 解得a =b =1或a =b =-1,所以“a =b =1”是“(a +b i)2=2i ”的充分不必要条件.5.答案 充要条件解析 若存在集合C 使得A ⊆C ,B ⊆∁U C ,则可以推出A ∩B =∅;若A ∩B =∅,由Venn 图(如图)可知,存在A =C ,同时满足A ⊆C ,B ⊆∁U C .故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.课后作业答案二、 选择题1.答案 D2.答案 A解析 解x 2-2x +1=0得x =1,所以“x =1”是“x 2-2x +1=0”的充要条件.3.答案 A4.答案 C解析 ∵x <3-1<x <3,但-1<x <3⇒x <3,∴p 是q 的必要不充分条件,故选C.5.答案 C解析 C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”.若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0.所以不是真命题,故选C. 6.答案 D解析 原命题为“若p ,则q ”,则其逆否命题为“若q ,则p ”.∴所求命题为“若方程x 2+x -m =0没有实根,则m ≤0”.7.答案 B解析 向量a ,b 共线⇔x -x (x +2)=0⇔x =0或x =-1,∴命题p 为真,其逆命题为假,故在命题p 的原命题、逆命题、否命题、逆否命题中,真命题的个数为2.8.答案 B解析 m ⊂α,m ∥βα∥β,但m ⊂α,α∥β⇒m ∥β,∴m ∥β是α∥β的必要而不充分条件. 二、填空题9.答案 必要不充分解析 设p :x =3且y =5,q :x +y =8,显然p 是q 的充分不必要条件,∴p 是q 的必要不充分条件,即x ≠3或y ≠5是x +y ≠8的必要不充分条件.10.答案 2解析 其中原命题和逆否命题为真命题,逆命题和否命题为假命题.11.答案 (1)充分不必要 (2)充要解析 (1)1x <1y⇒xy ·(y -x )<0, 即x >y >0或y <x <0或x <0<y .所以x >y >0 ⇒1x <1y ,但反过来1x <1y, 所以是充分不必要条件.(2) 构造函数f (x )=x |x |,则f (x )在定义域R 上为奇函数.因为f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,所以函数f (x )在R 上单调递增,所以a >b ⇔f (a )>f (b )⇔a |a |>b |b |. 所以是充要条件.12.答案 ①②解析 对于①其否命题为“若k ≤0,则方程x 2+2x +k =0无实根”,为假命题;②的逆命题为“若a <b ,则1a >1b”,为假命题;③中原命题为真命题,故其逆否命题也为真命题. 13.答案 充分不必要解析 x 2+x +m =0有实数解等价于Δ=1-4m ≥0,即m ≤14,因为m <14⇒m ≤14,反之不成立. 故“m <14”是“一元二次方程x 2+x +m =0有实数解”的充分不必要条件.。
第2讲命题及其关系、充分条件与必要条件1.命题(1)命题的概念:数学中把用语言、符号或式子表达的,能够判断的陈述句叫作命题.其中的语句叫作真命题, 的语句叫作假命题.(2)四种命题及其相互关系图1-2-1特别提醒:若两个命题互为逆否命题,则它们有相同的真假性.2.充分条件、必要条件与充要条件(1)如果p⇒q,则p是q的条件.(2)如果q⇒p,则p是q的条件.(3)如果既有p⇒q,又有q⇒p,记作p⇔q,则p是q的条件.常用结论1.充要条件的两个结论:(1)若p是q的充分不必要条件,q是r的充分不必要条件,则p是r的充分不必要条件;(2)若p是q的充分不必要条件,则q是p的充分不必要条件.2.题组一常识题1.[教材改编]对于下列语句:①垂直于同一直线的两条直线必平行吗?②作△ABC∽△A'B'C'.③x2+2x-3<0.④四边形的内角和是360°.其中是命题的是.(填序号)2.[教材改编]有下面4个命题:①集合N中最小的数是1;②若-a不属于N,则a 属于N;③若a∈N,b∈N,则a+b的最小值为2;④x2+1=2x的解集可表示为{1,1}.其中真命题的个数为.3.[教材改编]命题“若整数a不能被2整除,则a是奇数”的逆否命题是.4.[教材改编]“点P(x,y)在第一象限”是“x+y>1”的条件. 题组二常错题◆索引:命题的条件与结论不明确;含有大前提的命题的否命题易出现否定大前提的情况;真、假命题的推理考虑不全面;对充分必要条件判断错误.5.命题“若a2+b2=0,a,b∈R,则a=b=0”的逆否命题是.6.已知命题“对任意a,b∈R,若ab>0,则a>0”,则它的否命题是.7.若命题“ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是.8.条件p:x>a,条件q:x≥2.①若p是q的充分不必要条件,则a的取值范围是;②若p是q的必要不充分条件,则a的取值范围是.9.已知p是r的充分不必要条件,s是r的必要条件,q是s的必要条件,那么p是q 的条件.探究点一四种命题及其相互关系例1 (1)对于命题“单调函数不是周期函数”,下列说法正确的是( )A.逆命题为“周期函数不是单调函数”B.否命题为“单调函数是周期函数”C.逆否命题为“周期函数是单调函数”D.以上都不正确(2)给出以下四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤-1,则x2+x+q=0有实根”的逆否命题;④若ab是正整数,则a,b都是正整数.其中为真命题的是.(写出所有真命题的序号)[总结反思](1)求一个命题的其他三种命题时,需注意:①对于不是“若p,则q”形式的命题,需先改写为“若p,则q”的形式;②若命题有大前提,写其他三种命题时需保留大前提.(2)判断一个命题为真命题,要给出推理证明;判断一个命题为假命题,只需举出反例.(3)当不易直接判断一个命题的真假时,根据互为逆否命题的两个命题同真同假,可转化为判断其等价命题的真假.变式题(1)已知命题p:正数a的平方不等于0,命题q:若a不是正数,则它的平方等于0,则q是p的( )A.逆命题B.否命题C.逆否命题D.否定(2)以下关于命题的说法正确的是.(填写所有正确说法的序号)①“若log2(a+1)>1,则函数f(x)=logax(a>0,a≠1)在其定义域内是增函数”是真命题;②命题“若a≠0,则a(b+1)≠0”的否命题是“若a=0,则a(b+1)=0”;③命题“若x,y都是偶数,则(x+1)(y+1)是偶数”的逆命题为真命题;④命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”等价.探究点二充分、必要条件的判定例2 (1)[2018·北京卷]设a,b均为单位向量,则“|a-3b|=|3a+b|”是“a⊥b”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件(2)“函数f(x)=a+ln x(x≥e)存在零点”是“a<-1”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[总结反思]充分条件、必要条件的判定方法有定义法、集合法和等价转化法.三种不同的方法适用于不同的类型:定义法适用于定义、定理的判断问题;集合法多适用于命题中涉及参数的取值范围的推断问题;等价转化法适用于条件和结论中带有否定性词语的命题.变式题(1)[2018·深圳一模]已知数列{a n}是等比数列,则“a2>a1”是“数列{a n}为递增数列”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件(2)“α=”是“sin 2α-cos 2α=1”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件探究点三充分、必要条件的应用例3 方程ax2+2x+1=0至少有一个负实根的充要条件是( )A.0<a≤1B.a<1C.a≤1D.0<a≤1或a<0[总结反思]充分条件、必要条件的应用一般表现在参数问题的求解上,解题时通常把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.解题过程中要注意检验区间端点值.变式题(1)下面四个条件中,使a>b成立的必要而不充分条件是( )A.a-1>bB.a+1>bC.|a|>|b|D.a3>b3(2)[2018·衡阳4月调研]已知p:实数m满足m2+12a2<7am(a>0),q:方程-+-=1表示焦点在y轴上的椭圆,且p是q的充分不必要条件,则a的取值范围为.第2讲命题及其关系、充分条件与必要条件考试说明 1.理解命题的概念;2.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系;3.理解必要条件、充分条件与充要条件的含义.【课前双基巩固】知识聚焦1.真假判断为真判断为假2.(1)充分(2)必要(3)充要对点演练1.④[解析]①是疑问句,不是命题;②是祈使句,不是命题;③不能判断真假,不是命题;④是命题.2.0[解析]①为假命题,集合N中最小的数是0;②为假命题,如a=不满足;③为假命题,如a=0,b=1,则a+b=1,比2小;④为假命题,所给集合中的元素不满足互异性.3.若整数a不是奇数,则a能被2整除[解析]以原命题结论的否定作条件、原命题条件的否定作结论得出逆否命题.4.既不充分也不必要[解析]取x=,y=,知充分性不成立;取x=-1,y=3,知必要性不成立.故为既不充分也不必要条件.5.若a≠0或b≠0,a,b∈R,则a2+b2≠0[解析]“若p,则q”的逆否命题为“若q,则p”,又a=b=0的实质为a=0且b=0,故其否定为a≠0或b≠0.6.对任意a,b∈R,若ab≤0,则a≤0[解析]“对任意a,b∈R”是大前提,在否命题中不变,又因为ab>0,a>0的否定分别为ab≤0,a≤0,所以原命题的否命题为“对任意a,b∈R,若ab≤0,则a≤0”.7.[-3,0] [解析]由已知可得ax2-2ax-3≤0恒成立.当a=0时,-3≤0恒成立;当a≠0时,得解得-3≤a<0.故-3≤a≤0.8.①a≥2②a<2[解析]①因为p是q的充分不必要条件,所以{x|x>a}⫋{x|x≥2},则a的取值范围是a≥2.②因为p是q的必要不充分条件,所以{x|x≥2}⫋{x|x>a},则a的取值范围是a<2.9.充分不必要[解析]依题意有p⇒r,r⇒s,s⇒q,∴p⇒r⇒s⇒q.又∵r⇒/ p,∴q⇒/ p.故p是q的充分不必要条件.【课堂考点探究】例1[思路点拨](1)根据四种命题的构成判断即可.(2)对于①②,按照要求写出相应的逆命题、否命题,再判断真假;对于③,可直接利用原命题与逆否命题的等价性判断原命题的真假;对于④,直接判断.(1)D(2)①③[解析](1)根据四种命题的构成可知,选项A,B,C均不正确.故选D.(2)①“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,显然为真命题;②否命题为“不全等的三角形的面积不相等”,而不全等的三角形的面积也可能相等,故为假命题;③原命题为真,所以它的逆否命题也为真,故③为真命题;④ab是正整数,但a,b不一定都是正整数,例如a=-1,b=-2,故④为假命题.所以答案是①③.变式题(1)B(2)①②④[解析](1)“正数a的平方不等于0”即“若a是一个正数,则它的平方不等于0”,其否命题为“若a不是正数,则它的平方等于0”,所以选B.(2)①正确,由log2(a+1)>1,得a+1>2,所以a>1,所以f(x)=log a x在其定义域内是增函数.②正确,由命题的否命题的定义知,该说法正确.③不正确,原命题的逆命题为“若(x+1)(y+1)是偶数,则x,y都是偶数”,是假命题,如(3+1)×(4+1)=20为偶数,但x=3,y=4.④正确,两者互为逆否命题,因此两命题等价.例2[思路点拨](1)将已知等式两边同时平方,可得出向量a,b的关系,从而得出结论;(2)通过研究单调性,求出函数存在零点的充要条件为a≤-1,从而得出结论.(1)C(2)B[解析](1)将|a-3b|=|3a+b|两边平方,得a2-6a·b+9b2=9a2+6a·b+b2.∵a,b均为单位向量,∴a·b=0,即a⊥b.反之,由a ⊥b可得|a-3b|=|3a+b|.故为充分必要条件.(2)因为f'(x)=>0,所以若函数f(x)=a+ln x(x≥e)存在零点,则f(e)≤0,即a≤-1,因此“函数f(x)=a+ln x(x≥e)存在零点”是“a<-1”的必要不充分条件,故选B.变式题(1)B(2)A[解析](1)当a1=-1,a2=2,公比q=-2时,虽然有a1<a2,但是数列{a n}不是递增数列,所以充分性不成立;反之,当数列{a n}是递增数列时,必有a1<a2,因此必要性成立.故选B.(2)由sin 2α-cos 2α=1得sin-=,所以2α-=2kπ+,k∈Z或2α-=2kπ+,k∈Z,即α=kπ+,k∈Z或α=kπ+,k∈Z,所以“α=”是“sin 2α-cos 2α=1”的充分而不必要条件,故选A.例3[思路点拨]直接法,分情况讨论;特例法,结合选项取特殊值验证.C[解析]方法一(直接法):当a=0时,x=-,符合题意.当a≠0时,若方程的两根为一正一负,则-⇒ ⇒a<0;若方程的两根均为负,则--⇒ ⇒0<a≤1.综上所述,所求充要条件是a≤1.方法二(排除法):当a=0时,原方程有一个负实根,可以排除A,D;当a=1时,原方程有两个相等的负实根,可以排除B.所以选C.变式题(1)B(2)[解析](1)“a>b”不能推出“a-1>b”,故选项A不是“a>b”的必要条件,不满足题意;“a>b”能推出“a+1>b”,但“a+1>b”不能推出“a>b”,故满足题意;“a>b”不能推出“|a|>|b|”,故选项C不是“a>b”的必要条件,不满足题意;“a>b”能推出“a3>b3”,且“a3>b3”能推出“a>b”,故是充要条件,不满足题意.故选B.(2)由a>0,m2-7am+12a2<0,得3a<m<4a,即p:3a<m<4a,a>0.由方程-+-=1表示焦点在y轴上的椭圆,可得2-m>m-1>0,解得1<m<,即q:1<m<.因为p是q的充分不必要条件,所以或解得≤a≤,所以实数a的取值范围是.【备选理由】例1考查对命题真假的判断,是一个开放式命题,答案不唯一,有利于学生发散思维;例2强化了充分、必要条件的判断方法和余弦定理、基本不等式的应用;例3主要考查了充要条件的判断;例4是以简单不等式的方式考查充分、必要条件的应用.例1[配合例1使用][2018·北京通州区三模]能够说明“设a,b,c是任意实数,若a>b>c,则a2>ab>c2”是假命题的一组整数a,b,c的值依次为.[答案] 1,0,-1(此题答案不唯一)[解析]当a=1,b=0,c=-1时,满足a>b>c,不满足a2>ab>c2,∴命题是假命题.故答案可以为1,0,-1.例2[配合例2使用][2018·武汉4月调研]在△ABC中,内角A,B,C的对边分别为a,b,c.已知条件p:a≤,条件q:A≤,那么p是q成立的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件[解析] A由条件p:a≤,知cos A=-≥-=-≥-=,当且仅当b=c=a时取等号,又A∈(0,π),∴0<A≤,∴A≤,即q成立.取A=,C=,B=,满足条件q,但是a>.∴p是q成立的充分而不必要条件.故选A.例3[配合例2使用][2018·莆田六中三模]在等比数列{a n}中,a2=-2,则“a4,a12是方程x2+3x+1=0的两根”是“a8=-1”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件[解析] C因为a4,a12是方程x2+3x+1=0的两根,所以a4a12=1,因此=1,又因为a2=-2<0,所以a8<0,即a8=-1.从而“a4,a12是方程x2+3x+1=0的两根”是“a8=-1”的充要条件,故选C.例4[配合例3使用][2018·南昌模拟]在实数范围内,使得不等式>1成立的一个充分而不必要条件是( )A.x>0B.x<1C.0<x<1D.0<x<[解析]D∵>1,∴-<0,∴0<x<1.∵ ⫋(0,1),∴0<x<为不等式>1成立的一个充分而不必要条件,故选D.。
第2讲命题及其关系、充分条件与必要条件一、知识梳理1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.3.充分条件、必要条件与充要条件的概念若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且q⇒/pp是q的必要不充分条件p⇒/q且q⇒pp是q的充要条件p⇔qp是q的既不充分也不必要条件p⇒/q且q⇒/p真命题时,才有“p⇒q”,即“p⇒q”⇔“若p,则q”为真命题.常用结论1.充要条件的两个结论(1)若p是q的充分不必要条件,q是r的充分不必要条件,则p是r的充分不必要条件.(2)若p是q的充分不必要条件,则綈q是綈p的充分不必要条件.2.一些常见词语及其否定词语是都是都不是等于大于否定不是不都是至少一个是不等于不大于1.(选修1-1P8A组T2改编)命题“若x2>y2,则x>y”的逆否命题是() A.“若x<y,则x2<y2”B.“若x>y,则x2>y2”C.“若x≤y,则x2≤y2”D.“若x≥y,则x2≥y2”解析:选C.根据原命题和逆否命题的条件和结论的关系得命题“若x2>y2,则x>y”的逆否命题是“若x≤y,则x2≤y2”.故选C.2.(选修1-1P10练习T3(2)改编)“(x-1)(x+2)=0”是“x=1”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.若x=1,则(x-1)(x+2)=0显然成立,但反之不成立,即若(x -1)(x+2)=0,则x的值也可能为-2.故选B.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)“x2+2x-3<0”是命题.()(2)命题“若p,则q”的否命题是“若p,则綈q”.()(3)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真.()(4)当q是p的必要条件时,p是q的充分条件.()(5)q不是p的必要条件时,“p⇒/q”成立.()答案:(1)×(2)×(3)√(4)√(5)√二、易错纠偏常见误区(1)不明确命题的条件与结论;(2)对充分必要条件判断错误;(3)含有大前提的命题的否命题易出错.1.命题“若△ABC有一内角为π3,则△ABC的三个内角成等差数列”的逆命题()A.与原命题同为假命题B.与原命题的否命题同为假命题C.与原命题的逆否命题同为假命题D.与原命题同为真命题解析:选D.原命题显然为真,原命题的逆命题为“若△ABC的三个内角成等差数列,则△ABC有一内角为π3”,它是真命题.2.已知p:a<0,q:a2>a,则綈p是綈q的________条件(填:充分不必要、必要不充分、充要、既不充分也不必要).解析:綈p:a≥0;綈q:a2≤a,即0≤a≤1,故綈p是綈q的必要不充分条件.答案:必要不充分3.已知命题“对任意a,b∈R,若ab>0,则a>0”,则它的否命题是____________.答案:对任意a,b∈R,若ab≤0,则a≤0.四种命题的相互关系及其真假判断(师生共研)(2020·长春质量检测(二))命题“若x2<1,则-1<x<1”的逆否命题是()A.若x2≥1,则x≥1或x≤-1B.若-1<x<1,则x2<1C.若x>1或x<-1,则x2>1D.若x≥1或x≤-1,则x2≥1【解析】命题的形式是“若p,则q”,由逆否命题的知识,可知其逆否命题为“若綈q,则綈p”的形式,所以“若x2<1,则-1<x<1”的逆否命题是“若x≥1或x≤-1,则x2≥1”.故选D.【答案】 D(1)判断命题真假的两种方法(2)由原命题写出其他三种命题的方法由原命题写出其他三种命题,关键要分清原命题的条件和结论,将原命题的条件与结论互换即得逆命题,将原命题的条件与结论同时否定即得否命题,将原命题的条件与结论互换的同时进行否定即得逆否命题.1.命题“若a2+b2=0,则a=0且b=0”的逆否命题是()A.若a2+b2≠0,则a≠0且b≠0B.若a2+b2≠0,则a≠0或b≠0C.若a=0且b=0,则a2+b2≠0D.若a≠0或b≠0,则a2+b2≠0解析:选D.“若a2+b2=0,则a=0且b=0”的逆否命题是“若a≠0或b≠0,则a2+b2≠0”,故选D.2.(2020·甘肃酒泉敦煌中学一诊)有下列四个命题,其中真命题是()①“若xy=1,则lg x+lg y=0”的逆命题;②“若a·b=a·c,则a⊥(b-c)”的否命题;③“若b≤0,则方程x2-2bx+b2+b=0有实根”的逆否命题;④“等边三角形的三个内角均为60°”的逆命题.A.①②B.①②③④C.②③④D.①③④解析:选B.①“若xy=1,则lg x+lg y=0”的逆命题为“若lg x+lg y=0,则xy=1”,该命题为真命题;②“若a·b=a·c,则a⊥(b-c)”的否命题为“若a·b≠a·c,则a不垂直(b-c)”,由a·b≠a·c可得a(b-c)≠0,据此可知a不垂直(b-c),该命题为真命题;③若b≤0,则方程x2-2bx+b2+b=0的判别式Δ=(-2b)2-4(b2+b)=-4b≥0,方程有实根,为真命题,则其逆否命题为真命题;④“等边三角形的三个内角均为60°”的逆命题为“三个内角均为60°的三角形为等边三角形”,该命题为真命题.综上可得,真命题是①②③④.故选B.充分条件、必要条件的判断(师生共研)(1)(2019·高考天津卷)设x∈R,则“x2-5x<0”是“|x-1|<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件(2)(2019·高考北京卷)设函数f(x)=cos x+b sin x(b为常数),则“b=0”是“f(x)为偶函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解析】(1)由x2-5x<0可得0<x<5,由|x-1|<1可得0<x<2.由于区间(0,2)是(0,5)的真子集,故“x2-5x<0”是“|x-1|<1”的必要而不充分条件.(2)b=0时,f(x)=cos x,显然f(x)是偶函数,故“b=0”是“f(x)是偶函数”的充分条件;f(x)是偶函数,则有f(-x)=f(x),即cos(-x)+b sin(-x)=cos x+b sin x,又cos(-x)=cos x,sin(-x)=-sin x,所以cos x-b sin x=cos x+b sin x,则2b sin x=0对任意x∈R恒成立,得b=0,因此“b=0”是“f(x)是偶函数”的必要条件.因此“b=0”是“f(x)是偶函数”的充分必要条件,故选C.【答案】(1)B(2)C充分条件、必要条件的三种判断方法(1)定义法:根据p⇒q,q⇒p进行判断.(2)集合法:根据p,q成立的对应的集合之间的包含关系进行判断.(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题.1.设U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁U C”是“A∩B=∅”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.由A⊆C,B⊆∁U C,易知A∩B=∅,但A∩B=∅时未必有A⊆C,B⊆∁U C,如图所示,所以“存在集合C使得A⊆C,B⊆∁U C”是“A∩B=∅”的充分不必要条件.2.设x∈R,则“2-x≥0”是“(x-1)2≤1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.2-x≥0,则x≤2,(x-1)2≤1,则-1≤x-1≤1,即0≤x≤2,据此可知,“2-x≥0”是“(x-1)2≤1”的必要不充分条件.3.已知p:x+y≠-2,q:x,y不都是-1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.因为p:x+y≠-2,q:x≠-1或y≠-1,所以綈p:x+y=-2,綈q:x=-1且y=-1,因为綈q⇒綈p但綈p⇒/綈q,所以綈q是綈p的充分不必要条件,即p是q 的充分不必要条件.故选A.充分条件、必要条件的应用(典例迁移)已知条件p:集合P={x|x2-8x-20≤0},条件q:非空集合S={x|1-m ≤x ≤1+m }.若p 是q 的必要条件,求m 的取值范围.【解】 由x 2-8x -20≤0,得-2≤x ≤10, 所以P ={x |-2≤x ≤10}, 由p 是q 的必要条件,知S ⊆P .则⎩⎨⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,所以0≤m ≤3. 所以当0≤m ≤3时,p 是q 的必要条件, 即所求m 的取值范围是[0,3].【迁移探究1】 (变结论)若本例条件不变,问是否存在实数m ,使p 是q 的充要条件.解:若p 是q 的充要条件,则P =S , 所以⎩⎨⎧1-m =-2,1+m =10,所以⎩⎨⎧m =3,m =9,即不存在实数m ,使p 是q 的充要条件.【迁移探究2】 (变结论)本例条件不变,若綈p 是綈q 的必要不充分条件,求实数m 的取值范围.解:由例题知P ={x |-2≤x ≤10},因为綈p 是綈q 的必要不充分条件, 所以p ⇒q 且q ⇒p .所以[-2,10][1-m ,1+m ]. 所以⎩⎨⎧1-m ≤-2,1+m >10或⎩⎨⎧1-m <-2,1+m ≥10.所以m ≥9,即m 的取值范围是[9,+∞).已知充分、必要条件求参数取值范围的解题策略(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合的包含、相等关系,然后列出有关参数的不等式(组)求解.(2)涉及参数问题,直接解决较为困难时,可用等价转化思想,将复杂、生疏的问题转化为简单、熟悉的问题来解决,如将綈p ,綈q 之间的关系转化成p ,q 之间的关系来求解.[注意] (1)注意对区间端点值的处理;(2)注意条件的等价变形.设p :-m +12<x <m -12(m >0);q :x <12或x >1,若p 是q 的充分不必要条件,则实数m 的取值范围为______.解析:因为p 是q 的充分不必要条件,又m >0,所以m -12≤12,所以0<m ≤2. 答案:(0,2]思想方法系列1 等价转化思想在充要条件中的应用等价转化思想就是对原问题换一个方式、换一个角度、换一个观点加以考虑,把要解决的问题通过某种转化,再转化,化归为一类已经解决或比较容易解决的问题,从而使问题得到圆满解决的思维方式.已知条件p :|x -4|≤6;条件q :(x -1)2-m 2≤0(m >0).若綈p 是綈q 的充分不必要条件,则m 的取值范围为______.【解析】 条件p :-2≤x ≤10,条件q :1-m ≤x ≤1+m ,又綈p 是綈q的充分不必要条件,则q 是p 的充分不必要条件.故有⎩⎨⎧m >0,1-m ≥-21+m ≤10,,所以0<m ≤3.【答案】 (0,3]本例涉及参数问题,直接解决较为困难,先用等价转化思想,将复杂、生疏的问题化归为简单、熟悉的问题来解决.一般地,在涉及字母参数的取值范围的充分、必要条件问题中,常常要利用集合的包含、相等关系来考虑,这是解此类问题的关键.1.如果x ,y 是实数,那么“x ≠y ”是“cos x ≠cos y ”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件解析:选C.法一:设集合A ={(x ,y )|x ≠y },B ={(x ,y )|cos x ≠cos y },则A的补集C={(x,y)|x=y},B的补集D={(x,y)|cos x=cos y},显然C D,所以B A,于是“x≠y”是“cos x≠cos y”的必要不充分条件.法二(等价转化法):因为x=y⇒cos x=cos y,而cos x=cos y⇒/x=y,所以“cos x=cos y”是“x=y”的必要不充分条件,故“x≠y”是“cos x≠cos y”的必要不充分条件.2.(2020·宁夏银川一中模拟)王昌龄的《从军行》中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,其中后一句中“攻破楼兰”是“返回家乡”的() A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件解析:选B.“攻破楼兰”不一定“返回家乡”,但“返回家乡”一定是“攻破楼兰”,故“攻破楼兰”是“返回家乡”的必要非充分条件.故选B.[基础题组练]1.已知命题p:若x≥a2+b2,则x≥2ab,则下列说法正确的是() A.命题p的逆命题是“若x<a2+b2,则x<2ab”B.命题p的逆命题是“若x<2ab,则x<a2+b2”C.命题p的否命题是“若x<a2+b2,则x<2ab”D.命题p的否命题是“若x≥a2+b2,则x<2ab”解析:选C.命题p的逆命题是“若x≥2ab,则x≥a2+b2”,故A,B都错误;命题p的否命题是“若x<a2+b2,则x<2ab”,故C正确,D错误.2.已知p:a≠0,q:ab≠0,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.a≠0⇒/ab≠0,但ab≠0⇒a≠0,因此p是q的必要不充分条件.3.已知a,b,c是实数,下列结论正确的是()A.“a2>b2”是“a>b”的充分条件B.“a2>b2”是“a>b”的必要条件C.“ac2>bc2”是“a>b”的充分条件D.“|a|>|b|”是“a>b”的充要条件解析:选C.对于A ,当a =-5,b =1时,满足a 2>b 2,但是a <b ,所以充分性不成立;对于B ,当a =1,b =-2时,满足a >b ,但是a 2<b 2,所以必要性不成立;对于C ,由ac 2>bc 2得c ≠0,则有a >b 成立,即充分性成立,故正确;对于D ,当a =-5,b =1时,|a |>|b |成立,但是a <b ,所以充分性不成立,当a =1,b =-2时,满足a >b ,但是|a |<|b |,所以必要性也不成立,故“|a |>|b |”是“a >b ”的既不充分也不必要条件.故选C.4.已知命题α:如果x <3,那么x <5;命题β:如果x ≥3,那么x ≥5;命题γ:如果x ≥5,那么x ≥3.关于这三个命题之间的关系中,下列说法正确的是( )①命题α是命题β的否命题,且命题γ是命题β的逆命题;②命题α是命题β的逆命题,且命题γ是命题β的否命题;③命题β是命题α的否命题,且命题γ是命题α的逆否命题.A .①③B .②C .②③D .①②③解析:选 A.本题考查命题的四种形式,逆命题是把原命题中的条件和结论互换,否命题是把原命题中的条件和结论都加以否定,逆否命题是把原命题中的条件与结论先都否定然后互换所得,故①正确,②错误,③正确.5.“(x +1)(y -2)=0”是“x =-1且y =2”的________条件.解析:因为(x +1)(y -2)=0,所以x =-1或y =2,所以(x +1)(y -2)=0⇒/ x =-1且y =2,x =-1且y =2⇒(x +1)(y -2)=0,所以是必要不充分条件.答案:必要不充分6.已知命题p :x ≤1,命题q :1x <1,则綈p 是q 的______.解析:由题意,得綈p :x >1,q :x <0或x >1,故綈p 是q 的充分不必要条件.答案:充分不必要条件7.若命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是________.解析:由题意知ax 2-2ax -3≤0恒成立,当a =0时,-3≤0成立;当a ≠0时,得⎩⎨⎧a <0,Δ=4a 2+12a ≤0, 解得-3≤a <0,故-3≤a ≤0.答案:[-3,0]8.已知命题p :(x +3)(x -1)>0;命题q :x >a 2-2a -2.若綈p 是綈q 的充分不必要条件,求实数a 的取值范围.解:已知p :(x +3)(x -1)>0,可知p :x >1或x <-3,因为綈p 是綈q 的充分不必要条件,所以q 是p 的充分不必要条件,得a 2-2a -2≥1,解得a ≤-1或a ≥3,即a ∈(-∞,-1]∪[3,+∞).[综合题组练]1.(创新型)(2020·抚州七校联考)A ,B ,C 三个学生参加了一次考试,A ,B 的得分均为70分,C 的得分为65分.已知命题p :若及格分低于70分,则A ,B ,C 都没有及格.则下列四个命题中为p 的逆否命题的是( )A .若及格分不低于70分,则A ,B ,C 都及格B .若A ,B ,C 都及格,则及格分不低于70分C .若A ,B ,C 至少有一人及格,则及格分不低于70分D .若A ,B ,C 至少有一人及格,则及格分高于70分解析:选C.根据原命题与它的逆否命题之间的关系知,命题p 的逆否命题是若A ,B ,C 至少有一人及格,则及格分不低于70分.故选C.2.(2020·辽宁丹东质量测试(一))已知x ,y ∈R ,则“x +y ≤1”是“x ≤12且y ≤12”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选B.当“x +y ≤1”时,如x =-4,y =1,满足x +y ≤1,但不满足“x ≤12且y ≤12”.当“x ≤12且y ≤12”时,根据不等式的性质有“x +y ≤1”.故“x +y ≤1”是“x ≤12且y ≤12”的必要不充分条件.故选B.3.(2020·湖南雅礼中学3月月考)若关于x 的不等式|x -1|<a 成立的充分条件是0<x <4 ,则实数a 的取值范围是( )A .a ≤1B .a <1C .a >3D .a ≥3解析:选D.|x -1|<a ⇒-a <x -1<a ⇒1-a <x <1+a ,因为不等式|x -1|<a 成立的充分条件是0<x <4,所以(0,4)⊆(1-a ,1+a ),所以⎩⎨⎧1-a ≤0,1+a ≥4⇒⎩⎨⎧a ≥1,a ≥3⇒a ≥3.故D 正确.4.下列命题中为真命题的序号是______.①若x ≠0,则x +1x ≥2;②命题:若x 2=1,则x =1或x =-1的逆否命题为:若x ≠1且x ≠-1,则x 2≠1;③“a =1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件; ④命题“若x <-1,则x 2-2x -3>0”的否命题为“若x ≥-1,则x 2-2x -3≤0”.解析:当x <0时,x +1x ≤-2,故①是假命题;根据逆否命题的定义可知,②是真命题;“a =±1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件,故③是假命题;根据否命题的定义知④是真命题.答案:②④。