汽车噪声分析与控制概述
- 格式:ppt
- 大小:542.00 KB
- 文档页数:60
汽车车身噪声与振动控制技术汽车在行驶过程中会产生各种各样的噪声和振动,这些噪声和振动不仅会影响驾驶者的舒适性,还有可能导致车辆的损坏以及对周围环境造成污染。
因此,控制汽车车身噪声和振动成为了汽车制造商和工程师们的重要任务之一。
随着科技的进步,汽车车身噪声与振动控制技术也得到了长足的发展。
1. 汽车噪声和振动的来源在了解和掌握噪声和振动控制技术之前,我们首先需要了解噪声和振动的来源。
汽车车身噪声和振动主要来自于以下几个方面:1.1 发动机噪声和振动:汽车的发动机是噪声和振动产生的主要源头之一。
机械运转和爆炸过程会产生很大的噪声和振动。
1.2 路面噪声和振动:汽车在行驶过程中,轮胎和地面的摩擦会产生噪声和振动。
1.3 车辆空气动力学噪声和振动:汽车在高速行驶时,车身与空气的相互作用也会产生噪声和振动。
1.4 车辆骨架噪声和振动:车辆的车架、车身等部件之间的连接和振动也会引起噪声和振动。
2. 噪声和振动控制技术为了降低汽车车身噪声和振动,汽车制造商采用了许多控制技术。
以下是一些常见的噪声和振动控制技术:2.1 降噪材料的应用:制造商在汽车的车身、座椅和地毯等区域采用吸音材料和隔音材料,以吸收和隔离噪声。
2.2 噪声和振动的隔离:通过改善车辆的悬挂系统和减震系统,阻止噪音和振动传递到车身。
2.3 发动机和排气系统的优化:优化发动机和排气系统的设计,减少机械运转和爆炸过程中产生的噪声和振动。
2.4 车身结构的优化:改善车身结构和连接方式,降低车辆骨架噪声和振动。
3. 新技术在噪声和振动控制方面的应用随着科技的不断发展,还有一些新的技术在汽车车身噪声和振动控制方面得到了应用。
3.1 主动噪声和振动控制技术:该技术使用传感器和控制器,对车辆的噪声和振动进行实时监测和控制,以达到降低噪声和振动的效果。
3.2 振动能量回收技术:该技术利用车辆行驶时产生的振动能量,将其转化为电能并储存起来,从而减少能量浪费和噪声产生。
汽车发动机噪声产生的原因及控制对策研究发动机噪声就是指直接从发动机机体及其主要附件向空间传出的声音,这种噪声随发动机机型和转速等情况的不同而不同。
一、汽车发动机噪声产生的原因分析(一)发动机气缸内的气体燃烧会产生燃烧噪声。
汽车发动机气缸内周期变化的气体压力发生相互作用后就会产生燃烧噪声,气体燃烧的方式和燃烧的速度决定了燃烧噪声的大小。
在汽油发动机中如果发生爆燃或其他不正常燃烧时就会产生较大的燃烧噪声,而如果在柴油发动机燃烧室内气压上升过快,引起发动机各部件振动也会产生噪声。
但是通常来说,柴油发动机机噪声比汽油发动机的噪声要大很多。
(二)汽车发动机机械本身运动产生机械噪声。
机械噪声主要是由于发动机的各运动件之间以及运动件与固定件之间周期性变化而产生的,主要有活塞敲击噪声和气门机械噪声等几大类。
首先是活塞敲击噪声。
汽车发动机运转时,活塞在不停的上下止横向移动形成活塞对缸壁的不断敲击,这个敲击声就是活塞敲击噪声。
其次是传动齿轮噪声。
汽车发动机传动齿轮的噪声是发动机内部的齿轮啮合过程中齿与齿之间的撞击和摩擦产生的。
再次就是曲轴的扭转振动也会破坏齿轮的正常啮合而产生出机械噪声。
最后是配气机构噪声。
汽车发动机的配气机构中零件众多,众多的零件在运动中很容易会引起振动和噪声,包括气门和气门座的撞击,由气门间隙引起的传动撞击和高速时气门不规则运动引起的机械噪声。
(一)对发动机气缸内的气体燃烧产生的燃烧噪声的控制对策。
一是采用隔热活塞装置以便能有效提高燃烧室壁温度,有效缩短滞燃期,从而降低燃烧噪声。
二是通过提高压缩比和采用废气再循环技术可大大降低柴油发动机的燃烧噪声。
三是可以采用双弹簧喷油阀实现预喷功能,也就是说将原需要一个循环一次喷完的燃油分两次来喷,这样可大大减少滞燃期内积聚的可燃混合气数量,有效抑制空气和燃料混合气的形成,从而可以有效抑制燃烧噪声。
四是采用增压措施。
如果是柴油发动机,在增压后可以有效改善混合气的着火条件,可以使着火延迟期缩短,从而使柴发动机油机运转平稳,最终实现噪声降低的目的。
整车噪音知识点总结归纳一、整车噪音的来源1. 发动机噪音发动机是整车噪音的主要来源之一。
发动机在燃烧过程中产生的爆发声音以及机械运动时的摩擦噪音都会成为整车噪音的一部分。
2. 车辆风噪车辆在高速行驶时,车身与空气之间的摩擦力产生的风噪是整车噪音的主要来源之一。
尤其是在高速公路上行驶,车辆前风挡玻璃和车身之间的气流会产生较大的风噪。
3. 轮胎和路面噪声车辆行驶时,轮胎与路面的摩擦不仅会产生振动,还会产生噪音,尤其是在不平整的路面上行驶时,轮胎与路面的碰撞会产生较大的噪音。
4. 排气系统噪音汽车排气管的设计和材料会直接影响排气系统的噪音水平。
排气系统的设计不当或者老化损坏都会增加整车噪音。
5. 悬挂系统和传动系统噪音汽车的悬挂系统和传动系统在行驶过程中会受到颠簸和振动的影响,产生噪音。
6. 车身及内饰噪音车身的结构、密封性以及内饰材料的隔音效果都会影响整车噪音的水平。
以上就是整车噪音的主要来源,接下来将介绍整车噪音的影响因素和控制方法。
二、整车噪音的影响因素1. 车速车速是影响整车噪音水平的重要因素。
一般来说,车速越高,整车噪音就越大。
这主要是因为高速时车辆与空气之间的摩擦力增加,同时车轮与路面的摩擦也会产生更大的噪音。
2. 路面情况路面的平整程度和质地会影响整车噪音的大小。
在崎岖不平的路面上行驶,车辆会产生较大的振动和噪音。
3. 车辆质量车辆质量的大小会直接影响整车噪音的水平。
车辆质量越大,其结构和零部件的质量越高,其整车噪音一般会更小。
4. 内部隔音设计车辆的内部隔音设计会直接影响乘客舒适度。
良好的内部隔音设计可以显著降低车内噪音,提高驾驶舒适度。
5. 发动机和排气系统设计发动机和排气系统的设计会影响整车噪音。
合理的发动机和排气系统设计能够降低发动机噪音,减小整车噪音。
以上是主要的整车噪音的影响因素,下面将介绍如何控制整车噪音。
三、整车噪音的控制方法1. 发动机优化通过对发动机结构和材料的优化设计,减少发动机内部摩擦和振动,降低发动机噪音。
汽车发动机的燃烧噪声与振动控制在现代社会,汽车已经成为人们生活中不可或缺的一部分。
然而,汽车的发动机燃烧噪声和振动给人们的驾驶体验带来了一定的困扰。
为了提高汽车的舒适性和安静性,对汽车发动机的燃烧噪声和振动进行控制是至关重要的。
本文将从发动机噪声和振动的原因入手,探讨一些常见的噪声和振动控制技术。
一、噪声的来源和控制1.1 燃烧噪声燃烧噪声指的是发动机在燃烧过程中产生的噪声。
这种噪声主要源于燃烧室内的高温高压气体和燃油的燃烧不完全。
燃烧噪声可以通过以下控制手段来减少:(1)改善燃烧室设计:优化燃烧室结构和燃烧室内的气流分布,提高燃烧效率,减少噪声的产生。
(2)提高燃油的喷射技术:采用先进的燃油喷射技术,如直接喷射和多点喷射等,可以使燃油燃烧更充分,减少噪声的产生。
(3)降低排气温度:通过增加散热器的面积和改进冷却系统,有效降低排气温度,减少噪声的散发。
1.2 机械噪声机械噪声是指发动机内部机械零部件运动时产生的噪声。
这种噪声的主要来源有曲轴、连杆、凸轮轴等部件的运动和摩擦声。
机械噪声可以通过以下控制手段来减少:(1)优化零部件的材料和制造工艺:选择高强度、低噪声的材料,并采用精密加工工艺,降低摩擦噪声。
(2)加装隔音材料:在发动机的关键部位加装隔音材料,如凸轮轴盖、曲轴箱等,有效降低机械噪声。
(3)减震措施:采用减震器和隔振装置,减少机械振动,进而降低机械噪声。
二、振动的来源和控制2.1 内燃机的振动内燃机的振动主要来自于排气脉动和不平衡力。
由于内燃机的工作过程是不连续的,燃烧的脉动力会给发动机带来一定的振动。
此外,由于内燃机各零部件的质量分布和工作时的力分布不均匀,也会导致发动机的振动。
内燃机的振动可以通过以下控制手段来减少:(1)改善配气系统:通过优化进气和排气系统的设计,使排气脉动减小,有助于降低内燃机的振动。
(2)平衡旋转部件:对内燃机旋转部件进行平衡处理,减少不平衡力,降低振动的产生。
整车噪音知识点总结一、噪音来源1. 发动机噪音发动机是汽车的动力来源,其内部燃烧过程会产生较大的机械噪音和排气噪音。
2. 轮胎噪音轮胎与路面摩擦会产生噪音,尤其是在高速行驶时,轮胎噪音会显著增加。
3. 风噪音汽车行驶时,车身与空气摩擦也会产生噪音,尤其是在高速行驶时,风噪音会成为主要的噪音来源之一。
4. 车身噪音汽车的车身结构和密封性不佳会导致车内外噪音传递增加。
5. 悬挂系统噪音悬挂系统的零部件在行驶时会产生摩擦噪音,对于车辆的舒适性和静音性有一定影响。
6. 制动系统噪音刹车时产生的摩擦声、刹车盘与刹车片之间的摩擦声等均属于制动系统噪音。
以上是整车噪音的主要来源,了解噪音来源有助于对整车噪音进行评价和控制。
二、噪音评价指标1. A声级A声级是一种用于描述人耳灵敏度的声级,广泛用于对各种噪音的评价与控制。
在汽车领域,A声级常被用来描述整车噪音强度,通过A声级评价指标可以较为准确地描述整车噪音对人体的影响。
2.频谱分析频谱分析是一种常用的噪音分析方法,通过对不同频率段的噪音进行分析,可以更加准确地描述整车噪音的性质和来源。
频谱分析对于噪音控制有着重要的指导作用。
3.声学全频人偶模拟(Overall Sound Pressure Level,即净声压级)净声压级是描述整车噪音强度的重要参数,通过对汽车不同速度下的净声压级进行测试与分析,可以全面了解整车噪音水平。
4.声学全频人偶模拟(Overall Sound Pressure Level,即车内外噪声水平,OASPL)车内外噪声水平是衡量车辆静音性能的重要指标,对于提高车辆乘坐舒适度有着重要的影响。
以上是整车噪音的评价指标,通过对整车噪音进行准确的评价,可以有针对性地进行噪音控制。
三、噪音控制技术1. 发动机噪音控制通过改进发动机结构和降低内部燃烧噪音可以有效降低发动机噪音水平。
2. 轮胎噪音控制选用低噪音轮胎、优化轮胎花纹设计等技术可以有效降低轮胎噪音。
汽车转向系统噪声分析及优化汽车转向系统噪声分析及优化汽车转向系统是车辆行驶过程中非常重要的部件之一。
随着汽车功率的增加,汽车转向系统的设计也越来越重要。
在汽车转向系统中,噪声是一个很大的问题,在许多情况下,这个噪声声音非常大,非常令人不耐烦。
由于许多车辆在高速行驶时都会产生转向系统噪声,因此需要对此进行分析和优化。
首先要分析转向系统中噪声产生的原因。
转向系统噪声的产生主要与以下几点有关:1. 转向泵:因为转向泵是转向系统的心脏部分,因此在高速行驶时非常容易产生噪声。
由于泵的气泡,缺气,油尘以及泵的疲劳等缺陷,会导致泵的转动出现自由度变化,从而形成噪声。
2. 车辆悬挂系统:车辆悬挂系统在高速行驶时也会产生噪声。
这是由于汽车行驶时悬挂系统存在衰减与振动两个因素影响。
当车辆行驶在路面上时,悬挂系统与车轮产生接触,所以在高速行驶时就需要保证悬挂系统与车轮的接触畅顺,并且要避免产生噪声。
3. 随动泵:随动泵是转向系统中较为重要的元件,其运行质量直接影响转向系的质量。
高速行驶时随动泵受到削减,产生噪声是因为泵面和内壁的磨擦。
根据上面的分析,可以得出汽车转向系统噪声产生的原因涵盖数个方面,而其处理方式也是有以下几种:1. 换用降噪材料:汽车制造商可以使用降噪材料来减轻或消除转向系统的噪音。
降噪材料有许多种,如降噪材料、降噪涂料、降噪树脂等,在汽车制造过程中混入上述材料可以减少或消除噪音产生。
2. 采用精度高的制造方法:为了提高转向系统的质量以及减少噪音,汽车制造商可以通过采用更精确、更高效的制造方法来控制转向系统的制造。
这些精度高的制造方法可以包括采用CAD技术、数控机床或成型机来制造零件和装配设备。
3. 优化转向系统设计:在转向系统的设计过程中,除了选择降噪材料和精确的制造方法外,还应优化转向系统的设计。
汽车制造商可以通过改进和优化转向系统的孔径、材料、配件等来提高转向系统的性能,并减少噪音产生。
4. 调整悬挂系统:悬挂系统的设置直接影响悬挂系统与车轮之间的接触,因此要想减少噪音产生,也可以对悬挂系统进行调整。