直线方程的练习题
- 格式:doc
- 大小:109.50 KB
- 文档页数:2
直线与方程练习题及答案详解一、选择题1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ) A .1=+b aB .1=-b aC .0=+b aD .0=-b a2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行, 则m 的值为( )A .0B .8-C .2D .104.已知0,0ab bc <<,则直线ax by c +=通过( ) A .第一、二、三象限 B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限5.直线1x =的倾斜角和斜率分别是( )A .045,1 B .0135,1- C .090,不存在 D .0180,不存在6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( ) A .0≠m B .23-≠m C .1≠m D .1≠m ,23-≠m ,0≠m 二、填空题1.点(1,1)P - 到直线10x y -+=的距离是________________.2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________;若3l 与1l 关于x 轴对称,则3l 的方程为_________;若4l 与1l 关于x y =对称,则4l 的方程为___________; 3.若原点在直线l 上的射影为)1,2(-,则l 的方程为____________________。
4.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________. 5.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________。
直线方程练习题一、选择题1. 已知直线l过点A(2,3)且与直线3x-4y+5=0平行,求直线l的方程。
A. 3x-4y-1=0B. 3x-4y+13=0C. 4x-3y+6=0D. 4x-3y-6=02. 直线l1: ax+by+c=0与直线l2: cx+dy+e=0平行,那么以下哪个条件是正确的?A. ad-bc=0B. ac-bd=0C. a/c=b/dD. a/c≠b/d3. 已知直线l的方程为y=kx+b,若该直线过点(1,0)且斜率为1,则k 的值为:A. 0B. -1C. 1D. 24. 直线方程x+y-2=0与x-y+2=0的交点坐标是:A. (0,2)B. (2,0)C. (-2,0)D. (0,-2)5. 已知直线l1: 2x-3y+4=0与直线l2: x+y-2=0,求它们之间的距离。
A. 1B. 2C. 3D. 4二、填空题1. 若直线方程为ax+by=c,且a、b不全为0,则直线的斜率k=______。
2. 直线方程y=2x+3与x轴的交点坐标为______。
3. 若直线l过点(-1,2)且斜率为-2,则直线l的方程为______。
4. 已知直线方程为x-2y+4=0,求与该直线垂直的直线方程。
5. 已知直线方程为3x+4y-5=0,求直线上点(1,-1)到该直线的距离。
三、解答题1. 已知直线l1: 2x-y+3=0与直线l2: x+y+1=0,求它们所围成的三角形的顶点坐标。
2. 已知直线l1: ax+by+c1=0与直线l2: cx+dy+c2=0相交,求交点坐标。
3. 已知直线l1: 3x+4y-7=0与直线l2: 6x-8y+15=0,判断它们是否平行或重合,并说明理由。
4. 已知直线l: y=-2x+5与x轴相交于点A,与y轴相交于点B,求点A和点B的坐标。
5. 已知直线l1: 2x-y+1=0与直线l2: x-2y+2=0,求它们所成的角的正切值。
四、证明题1. 证明:若直线l1: ax+by+c1=0与直线l2: cx+dy+c2=0垂直,则有ad+bc=0。
直线与方程练习题一、选择题1.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( )A .0≠mB .23-≠m C .1≠m D .1≠m ,23-≠m ,0≠m 2.下列说法的正确的是( )A .经过定点()P x y 000,的直线都可以用方程()y y k x x -=-00表示B .经过定点()b A ,0的直线都可以用方程y kx b =+表示C .不经过原点的直线都可以用方程x ayb+=1表示 D .经过任意两个不同的点()()222111y x P y x P ,、,的直线都可以用方程()()()()y y x x x x y y --=--121121表示3.若()()P a b Q c d ,、,都在直线y mx k =+上,则PQ 用a c m 、、表示为( )A .()a c m ++12B .()m a c -C .a c m-+12D . a c m -+124.△ABC 中,点(4,1)A -,AB 的中点为(3,2)M ,重心为(4,2)P ,则边BC 的长为( )A .5B .4C .10D .85.若动点P 到点(1,1)F 和直线340x y +-=的距离相等,则点P 的轨迹方程为( )A .360x y +-=B .320x y -+=C .320x y +-=D .320x y -+=6.直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( )A.[]2,2- B.(][)+∞⋃-∞-,22,C.[)(]2,00,2⋃- D.()+∞∞-,7.直线x -2y +1=0关于直线x =1对称的直线方程是( )A .x +2y -1=0B .2x +y -1=0C .2x +y -3=0D .x +2y -3=08.若y =a |x |的图象与直线y =x +a (a >0)有两个不同交点,则a 的取值范围是( )A .0<a <1B .a >1C .a >0且a ≠1D .a =19.直线xcos θ+y +m =0的倾斜角范围是( )A. 3,44ππ⎡⎤⎢⎥⎣⎦B. 30,,44πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭C.0,4π⎡⎤⎢⎥⎣⎦D.3,,4224ππππ⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦10已知点)2,1(-A ,)2,2(-B ,)3,0(C ,若点),(b a M )0(≠a 是线段AB 上的一点,则直线CM 的斜率的取值范围是( ) (A)[-25,1] (B)[-25,0]∪(0,1) (C)[-1,25] (D) ][)+∞⋃--∞,125,(11.已知直线l 过点P(-2,1),且倾斜角α满足sin α+cos α=-51,则l 的方程是( )(A)3x +4y +2=0 (B)3x -4y -2=0 (C)3x -4y +2=0或3x +4y +2=0 (D)3x +4y -10=0 12.点P (x ,y )在直线x +2y +1=0上移动,函数f(x ,y )=2x +4y 的最小值是 ( )(A)22(B) 2 (C)22(D)4213.若动点),(),(2211y x B y x A 、分别在直线1l :07=-+y x 和2l :05=-+y x 上移动,则AB 中点M 到原点距离的最小值为( )A .23B .32C .33D .24 14.点A (1,3),B (5,-2),点P 在x 轴上使|AP |-|BP |最大,则P 的坐标为( )A. (4,0)B. (13,0)C. (5,0)D. (1,0)15.设a,b,c 分别是△ABC 中,角A ,B ,C 所对边的边长,则直线sinA ·x+ay+c =0与bx-sinB ·y+sinC =0的位置关系是( )A.平行B.重合C.垂直D.相交但不垂直16过点P (1,2)且与原点O 距离最大的直线l 的方程( ).A.250x y +-= B. 240x y +-= C.370x y +-= D.350x y +-=二、填空题1.光线从点(2,1)A 出发射入y 轴上点Q , 再经y 轴反射后过(4,3)B , 则点Q 的坐标是2.已知ABC ∆的顶点(2,1),(6,3)B C -,其垂心为(3,2)H -,则顶点A 的坐标是 .3.已知直线31y kx k =++.(33x -≤≤)上的点都在x 轴上方,则实数k 的取值范围是 .4.将直线1y x =绕它上面一点(115°得到的直线方程是 .5.已知直线l 在y 轴上的截距为-3,且它与两坐标轴围成的三角形的面积为6,则直线l 的方程 .6.直线1l :220x my m +--=,2l :10mx y m +--=,当m = 时,12l l ⊥7.(1)若a b c -+=,则直线ax by c ++=必经过一个定点是 .(2)已知直线方程为(2+λ)x +(1-2λ)y +4-3λ=0必过定点 .8.(1)已知1122234,234x y x y -=-=,则过点1122(,),(,)A x y B x y 的直线l 的方程是(2)一直线被两直线1l :460x y ++=,2l :3560x y --=截得的线段的中点恰好是坐标原点,则该直线方程是9.已知直线l 过点(3,-1),且与两轴围成一个等腰直角三角形,则l 的方程为 .10.已知点(3,8)A -、(2,2)B ,点P 是x 轴上的点,当AP PB+最小时点P的坐标是 . 11.若y =kx2x +3y -6=0的交点位于第一象限,直线l 的倾斜角的取值范围 .12.已知(1,0)(1,0)M N -、,点P 为直线210x y --=上的动点.则22PM PN +的最小值 . 13.已知函数()f x =,设,a b R ∈,且a b ≠,则|()()|f a f b -,||a b -的大小关系 .14.直线2x -y -4=0上一点P 与两定点A (4,-1),B (3,4)的距离之差的最大值是 15.在函数24y x =的图象上一点P 到直线45y x =-的最短的距离是 .16.直线30x y +=上一点P 到原点的距离与到直线320x y +-=的距离相等.则点P 的坐标 17.△ABC 中,(3,3),(2,2),(7,1)A B C --. 则∠A的平分线AD 所在直线的方程是 .18.已知点P 到两个定点M (-1,0)、N (1,0,点N 到直线PM 的距离为1.则直线PN 的方程 .19.光线从A (-3,4)点射出,到x 轴上的B 点后,被x 轴反射到y 轴上的C 点,又被y 轴反射,这时反射线恰好过点D (-1,6),则BC 所在直线的方程是 .20.已知直线,32:1+=x y l若2l 与1l 关于y 轴对称,则2l 的方程为__________ ;若3l 与1l 关于x 轴对称,则3l 的方程为_________ . 若4l 与1l 关于x y =对称,则4l 的方程为___________ ;22.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________.23.直线l 过原点,且平分□ABCD 的面积,若B (1, 4)、D (5, 0),则直线l 的方程是 .24.方程1=+y x 所表示的图形的面积为_________。
直线的方程练习题1.若直线过点(1,2),(4,2,则此直线的倾斜角是( )A.030 B.045 C.060 D.0902、已知点(x ,-4)在点(0,8)和(-4,0)的连线上,则x 的值为 (A)-2 (B)2 (C)-8 (D)-63、已知直线方程y -3=3(x -4),则这条直线经过的已知点,倾斜角分别是A 、(4,3);π/ 3B 、(-3,-4);π/ 6C 、(4,3);π/ 6D 、(-4,-3);π/ 34、直线方程可表示成点斜式方程的条件是A 、直线的斜率存在B 、直线的斜率不存在C 、直线不过原点D 、不同于上述答案5. 如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a= A 、 -3 B 、-6 C 、23- D 、326.点P (-1,2)到直线8x-6y+15=0的距离为( ) A 2 B 21 C 1 D 27 7、直线(m +2)x +(2-m)y=2m 在x 轴上的截距为3,则m 的值是 (A) (B)- (C)6 (D)-68. 点M(4,m )关于点N(n, - 3)的对称点为P(6,-9),则( )A m =-3,n =10 B m =3,n =10 C m =-3,n =5 D m =3,n =59.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是( )A 3x-y-8=0 B 3x+y+4=0 C 3x-y+6=0 D 3x+y+2=010. 直线mx-y+2m+1=0经过一定点,则该点的坐标是A (-2,1)B (2,1)C (1,-2)D (1,2)11. 直线0202=++=++n y x m y x 和的位置关系是(A )平行 (B )垂直 (C )相交但不垂直 (D )不能确定12. 如图1,直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则必有A. k 1<k 3<k 2B. k 3<k 1<k 2C. k 1<k 2<k 3D. k 3<k 2<k 113.已知A (1,2)、B (-1,4)、C (5,2),则ΔABC 的边AB 上的中线所在的直线方程为( )(A )x+5y-15=0 (B)x=3 (C) x-y+1=0 (D)y-3=014.若动点P 到点(1,1)F 和直线340x y +-=的距离相等,则点P 的轨迹方程为( )A .360x y +-=B .320x y -+=C .320x y +-=D .320x y -+=15、直线x+6y+2=0在x 轴和y 轴上的截距分别是( )A. B. C. D.-2,-316、已知直线012)4()4(2=++++--m y m x m m 的倾斜角为 135,则m 的值是( )A 、2-或4B 、4-或2C 、4或0D 、0或2-17.已知点(5,4)A -和(3,2)B 则过点(1,2)C -且与A,B 的距离相等的直线方程为 .18.过点P(1,2)且在x 轴,y 轴上截距相等的直线方程是 .19.直线5x+12y+3=0与直线10x+24y+5=0的距离是 .20、若平行四边形三个顶点的坐标为(1,0),(5,8),(7,-4),则第四个顶点坐标为 。
直线与方程练习题一、填空题1. 直线斜率为2,过点(-1, 3),则直线方程为__________。
2. 直线过点(2, -5)和点(4, 1),则直线方程为__________。
3. 直线过点(-3, 4)且与x轴垂直,则直线方程为__________。
4. 直线过点(0, 7)且平行于y轴,则直线方程为__________。
5. 直线过点(3, -2)且平行于直线2x + 3y = 1,则直线方程为__________。
二、选择题1. 斜率为3,过点(1, 2)的直线方程可能是:A. y = 3x + 1B. y = 3x - 1C. y = -3x + 1D. y = -3x - 12. 过原点(0, 0)且垂直于直线2x + 3y = 6的直线方程可能是:A. x = 2B. x = -2C. y = 2D. y = -23. 过点(2, -5)且平行于直线3x - 2y = 9的直线方程可能是:A. 3x - 2y = 19B. 3x - 2y = -19C. 3x - 2y = 4D. 3x - 2y = -44. 过点(3, 4)且平行于x轴的直线方程可能是:A. x = 3B. x = -3C. y = 3D. y = -35. 过点(-2, 1)且与直线4x + 5y = 10垂直的直线方程可能是:A. 5x - 4y = 10B. 5x - 4y = -10C. 4x + 5y = 2D. 4x + 5y = -2三、应用题1. 设直线L过点(1, 2)和点(4, 7),求直线L的斜率和截距,并写出直线L的方程。
2. 已知直线L过点(-3, 5)且与x轴垂直,求直线L的方程。
3. 直线L过点(1, -4)且平行于直线2x - 3y = 6,求直线L的方程。
4. 直线L过点(-2, -1)且平行于y轴,求直线L的方程。
5. 直线L过点(3, 2)且与直线3x - 4y = 5垂直,求直线L的方程。
第1讲 直线的倾斜角与斜率及直线方程★知识梳理★1、直线的倾斜角与斜率:对于一条与x 轴相交的直线,把x 轴所在直线绕着它与直线的交点按照逆时针方向旋转到和直线重合时,所转过的最小正角叫倾斜角;倾斜角的取值范围是[00,1800)直线的倾斜角α与斜率k 的关系:当α090≠时, k 与α的关系是αtan =k ;α090=时,直线斜率不存在;经过两点P 1(x 1,y 1)P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式是1212x x y y k --=;三点C B A ,,共线的充要条件是AC AB k k = 2.直线方程的五种形式:点斜式方程是()y y k x x -=-00;不能表示的直线为垂直于x 轴的直线 斜截式方程为b kx y +=;不能表示的直线为垂直于x 轴的直线两点式方程为121121x x x x y y y y --=--;不能表示的直线为垂直于坐标轴的直线截距式方程为1=+bya x ;不能表示的直线为垂直于坐标轴的直线和过原点的直线. 一般式方程为0=++c by ax . 3.几种特殊直线的方程:①过点),(b a P 垂直于x 轴的直线方程为x=a;过),(b a P 垂直于y 轴的直线方程为y=b ②已知直线的纵截距为b ,可设其方程为b kx y +=; ③已知直线的横截距为a ,可设其方程为a my x +=; ④过原点的直线且斜率是k 的直线方程为y=kx★重难点突破★重点: 理解倾斜角与斜率的对应关系,熟练利用五种形式求直线方程 难点:在求直线方程时,条件的转化和设而不求的运用重难点:结合图形,把已知条件转化为确定直线位置的要素,从而顺利求出直线方程★热点考点题型探析★考点1 直线的倾斜角和斜率题型1 :已知倾斜角(或范围)求斜率(或范围)或已知斜率(或范围)求倾斜角(或范围) [例1 ]已知经过),12,(),2,(--m m B m A 的直线的倾斜角为α,且o o 13545<<α,试求实数m 的取值范围。
直线与方程习题(带答案)直线与方程题(带答案)一、选择题1.若直线x=1的倾斜角为α,则α().A。
等于0B。
等于π/2C。
等于πD。
不存在斜率2.图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则().A。
k1<k2<k3B。
k3<k1<k2C。
k3<k2<k1D。
k1<k3<k23.已知直线l1经过两点(-1,-2)、(-1,4),直线l2经过两点(2,1)、(x,6),且l1∥l2,则x=().A。
2B。
-2C。
4D。
14.已知直线l与过点M(-3,2),N(2,-3)的直线垂直,则直线l的倾斜角是().A。
π/3B。
2π/3C。
π/4D。
3π/45.如果AC<0,且BC<0,那么直线Ax+By+C=0不通过().A。
第一象限B。
第二象限C。
第三象限D。
第四象限6.设A,B是x轴上的两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程为x-y+1=0,则直线PB的方程是().A。
x+y-5=0B。
2x-y-1=0C。
2y-x-4=0D。
2x+y-7=07.过两直线l1:x-3y+4=0和l2:2x+y+5=0的交点和原点的直线方程为().A。
19x-9y=0,19y=0B。
9x+19y=0C。
19x-3y=0D。
3x+7y=08.直线l1:x+a2y+6=0和直线l2:(a-2)x+3ay+2a=0没有公共点,则a的值是().A。
3B。
-3C。
1D。
-19.将直线l沿y轴的负方向平移a(a>0)个单位,再沿x轴正方向平移a+1个单位得直线l',此时直线l'与l重合,则直线l'的斜率为().A。
a/(a+1)B。
-a/(a+1)C。
(a+1)/aD。
-(a+1)/a10.点(4,5)关于直线5x+4y+21=0的对称点是().A。
(-6,8)B。
(6,-8)C。
(-6,-8)D。
(6,8)二、填空题11.已知直线l1的倾斜角α1=15°,直线l1与l2的交点为A,把直线l2绕着点A按逆时针方向旋转到和直线l1重合时所转的最小正角为60°,则直线l2的斜率k2的值为tan(75°)或2+√3.12.若三点A(-2,3),B(3,-2),C(1,m)共线,则m的值为-1.13.已知长方形ABCD的三个顶点的坐标分别为A(0,1),B(1,0),C(3,2),求第四个顶点D的坐标为D(2,3)。
直线方程练习题一、选择题1. 下列哪个方程表示经过点(2, 3)且斜率为2的直线?A. y = 2x + 1B. y = 2x 1C. y = 2x + 3D. y = 2x 3A. y = 3B. x = 3C. y = xD. y = 2x + 13. 两条直线y = 2x + 1和y = 2x + 3的关系是:A. 平行B. 相交C. 重合D. 垂直二、填空题1. 经过点(1, 2)和点(3, 4)的直线方程是______。
2. 斜率为1,y轴截距为3的直线方程是______。
3. 两条直线y = 2x + 1和y = 2x 3的交点坐标是______。
三、解答题1. 已知直线l经过点A(2, 3)和B(4, 5),求直线l的方程。
2. 设直线l的斜率为k,且经过点(1, 1)和点(3, 5),求k的值。
3. 已知直线l1:2x + 3y + 1 = 0和直线l2:3x 2y 6 = 0,求这两条直线的交点坐标。
4. 证明:若直线l1和直线l2的斜率分别为k1和k2,且k1k2 = 1,则直线l1垂直于直线l2。
5. 设直线l1:y = 2x + 1,直线l2:y = x + 3,求这两条直线的夹角。
四、综合题1. 已知直线l1:y = 2x + 1,直线l2:y = 2x + 3,求直线l1和直线l2的对称轴方程。
2. 在平面直角坐标系中,求过点(1, 2)、(3, 4)和(5, 6)的直线方程。
3. 已知直线l1:2x + 3y + 1 = 0和直线l2:3x 2y 6 = 0,求这两条直线的平行线方程。
4. 设直线l1:y = kx + b经过点(1, 2)和点(3, 4),求k和b的值。
5. 在平面直角坐标系中,求过点(2, 3)、斜率为1的直线与x轴、y轴围成的三角形面积。
五、判断题1. 若直线l的方程为y = mx + b,则m表示直线l的截距,b表示直线l的斜率。
()2. 两条直线的斜率相等,则这两条直线一定平行。
练习题----直线的方程一.选择题(共18小题)1.下列命题中真命题为()A.过点P(x0,y0)的直线都可表示为y﹣y0=k(x﹣x0)B.过两点(x1,y1),(x2,y2)的直线都可表示为(x﹣x1)(y2﹣y1)=(y﹣y1)(x2﹣x1)C.过点(0,b)的所有直线都可表示为y=kx+bD.不过原点的所有直线都可表示为2.已知点M是直线l:2x﹣y﹣4=0与x轴的交点,过M点作直线l的垂线,得到的垂线的直线方程是()A.x﹣2y﹣2=0 B.x﹣2y+2=0 C.x+2y﹣2=0 D.x+2y+2=03.直线l只经过第一、三、四象限,则直线l的斜率k()A.大于零B.小于零 C.大于零或小于零 D.以上结论都有可能4.已知两点O(0,0),A(1,0),直线l:x﹣2y+1=0,P为直线l上一点.则|PO|+|PA|最小值为() A. B.C.D.5.直线x+a2y+6=0和(a﹣2)x+3ay+2a=0无公共点,则a的值是()A.3 B.0 C.﹣1 D.0或﹣16.平行于直线l:x+2y﹣3=0,且与l的距离为2的直线的方程为()A.x+2y+7=0 B.x+2y﹣13=0或x+2y+7=0C.x+2y+13=0 D.x+2y+13=0或x+2y﹣7=07.已知三条直线2x﹣3y+1=0,4x+3y+5=0,mx﹣y﹣1=0不能构成三角形,则实数m的取值集合为()A.{﹣,} B.{,﹣} C.{﹣,,} D.{﹣,﹣,}8.经过点A(1,2)并且在两个坐标轴上的截距的绝对值相等的直线方程为()A.y=2x或x﹣y+1=0 B.y=2x,x+y﹣3=0C.x+y﹣3=0,或x﹣y+1=0 D.y=2x,或x+y﹣3=0,或x﹣y+1=09.点A(1,3)关于直线y=kx+b对称的点是B(﹣2,1),则直线y=kx+b在x轴上的截距是()A.﹣ B.C.﹣ D.10.经过点A(2,3)且与直线2x﹣y+1=0垂直的直线方程为()A.2x﹣y﹣1=0 B.x+2y﹣8=0 C.x+2y﹣1=0 D.x﹣2y﹣8=011.在同一平面直角坐标系中,直线l1:ax+y+b=0和直线l2:bx+y+a=0有可能是()A.B.C. D.12.若直线l1:mx+2y+1=0与直线l2:x+y﹣2=0互相垂直,则实数m的值为()A.2 B.﹣2 C.D.﹣13.若直线y=﹣2mx﹣6与直线y=(m﹣3)x+7平行,则m的值为()A.﹣1 B.1或﹣1 C.1 D.314.方程(1+4k)x﹣(2﹣3k)y+(2﹣14k)=0所确定的直线必经过点()A.(2,2)B.(﹣2,2)C.(﹣6,2)D.()15.已知A(﹣3,8)和B(2,2),在x轴上有一点M,使得|AM|+|BM|为最短,那么点M的坐标为()A.(﹣1,0)B.(1,0)C.()D.()16.已知实数x,y满足2x+y+5=0,那么的最小值为()A.B. C.2 D.217.动点P在直线x+y﹣4=0上,动点Q在直线x+y=8上,则|PQ|的最小值为()A. B.2 C.D.218.直线l过P(1,2),且A(2,3),B(4,﹣5)到l的距离相等,则直线l的方程是()A.4x+y﹣6=0 B.x+4y﹣6=0C.3x+2y﹣7=0或4x+y﹣6=0 D.2x+3y﹣7=0或x+4y﹣6=0二.填空题(共4小题)19.若直线l1:ax+2y+6=0与直线l2:x+(a﹣1)y+(a2﹣1)=0平行且不重合,则a的值是.20.若过点P(1﹣a,1+a)和Q(3,2a)的直线的倾斜角α为钝角,则实数a的取值范围为.21.如果AC<0,BC>0,那么直线Ax+By+C=0不通过第象限.22.已知点A(1,1),B(4,2),若直线l:mx﹣y﹣1=0与线段AB相交,则实数m的取值范围为.练习题----直线的方程参考答案与试题解析一.选择题(共18小题)1.下列命题中真命题为()A.过点P(x0,y0)的直线都可表示为y﹣y0=k(x﹣x0)B.过两点(x1,y1),(x2,y2)的直线都可表示为(x﹣x1)(y2﹣y1)=(y﹣y1)(x2﹣x1)C.过点(0,b)的所有直线都可表示为y=kx+bD.不过原点的所有直线都可表示为【解答】解:当直线不过原点且直线和x轴垂直时,直线的斜率k不存在,如直线 x=3 等,选项A、C、D不正确,过两点(x1,y1),(x2,y2)的直线,当直线斜率存在且不等于0时,方程为,即(x﹣x1)(y2﹣y1)=(y﹣y1)(x2﹣x1).当直线斜率不存在时,x1=x2 ,方程为 x=x1,可以写成(x﹣x1)(y2﹣y1)=(y﹣y1)(x2﹣x1)的形式.当直线斜率等于0时,y1=y2 ,方程为 y=y1,可以写成(x﹣x1)(y2﹣y1)=(y﹣y1)(x2﹣x1)的形式.综上,只有选项B正确,故选 B.2.已知点M是直线l:2x﹣y﹣4=0与x轴的交点,过M点作直线l的垂线,得到的垂线的直线方程是()A.x﹣2y﹣2=0 B.x﹣2y+2=0 C.x+2y﹣2=0 D.x+2y+2=0【解答】解:在2x﹣y﹣4=0中,令y=0,解得x=2,∴M(2,0).∵k l=2,∴所求的垂线所在的直线的斜率k=﹣,故所求的垂线所在的直线方程是:y=﹣(x﹣2),整理,得x+2y﹣2=0.故选C.3.直线l只经过第一、三、四象限,则直线l的斜率k()A.大于零B.小于零C.大于零或小于零D.以上结论都有可能【解答】解:设直线l方程为y=kx+b,∵直线l只经过第一、三、四象限,∴直线交x轴于点(﹣,0),交y轴于(0,b)且﹣>0,b<0,解之得k>0,即直线的斜率k是一个大于0的数故选:A4.已知两点O(0,0),A(1,0),直线l:x﹣2y+1=0,P为直线l上一点.则|PO|+|PA|最小值为()A.B.C.D.【解答】解:设O(0,0)关于直线l的对称点为B(a,b),则由图中位置关系可得⇒,∴B(﹣,),当点P在直线AB上时,|PO|+|PA|最小,且最小值为|AB|==.故选B.5.直线x+a2y+6=0和(a﹣2)x+3ay+2a=0无公共点,则a的值是()A.3 B.0 C.﹣1 D.0或﹣1【解答】解:当a=0时,两直线方程分别为x+6=0和x=0,显然无公共点;当a≠0时,,解得a=﹣1.所以a=0或﹣1.故选D.6.平行于直线l:x+2y﹣3=0,且与l的距离为2的直线的方程为()A.x+2y+7=0 B.x+2y﹣13=0或x+2y+7=0C.x+2y+13=0 D.x+2y+13=0或x+2y﹣7=0【解答】解:设与直线l:x+2y﹣3=0平行的直线方程为x+2y+m=0,由,解得:m=﹣13或m=7.∴所求直线方程为x+2y﹣13=0或x+2y+7=0.故选:B.7.已知三条直线2x﹣3y+1=0,4x+3y+5=0,mx﹣y﹣1=0不能构成三角形,则实数m的取值集合为()A.{﹣,}B.{,﹣}C.{﹣,,}D.{﹣,﹣,}【解答】解:∵三条直线不能围成一个三角形,∴(1)l1∥l3,此时m=;l2∥l3,此时m=﹣;(2)三点共线时也不能围成一个三角形2x﹣3y+1=0与4x+3y+5=0交点是(﹣1,﹣)代入mx﹣y﹣1=0,则m=﹣.故选:D.8.经过点A(1,2)并且在两个坐标轴上的截距的绝对值相等的直线方程为()A.y=2x或x﹣y+1=0 B.y=2x,x+y﹣3=0C.x+y﹣3=0,或x﹣y+1=0 D.y=2x,或x+y﹣3=0,或x﹣y+1=0【解答】解:经过点A(1,2)并且在两个坐标轴上的截距的绝对值相等的直线:当截距为0时,直线过原点:y=2x;当斜率为1时,直线方程:x﹣y+1=0;当斜率为﹣1时,直线方程:x+y﹣3=0.综上所述,直线方程为y=2x或x+y﹣3=0或x﹣y+1=0.故选D.9.点A(1,3)关于直线y=kx+b对称的点是B(﹣2,1),则直线y=kx+b在x轴上的截距是()A.﹣ B.C.﹣ D.【解答】解:由题意知,解得k=﹣,b=,∴直线方程为y=﹣x+,其在x轴上的截距为﹣×(﹣)=.故选D.10.经过点A(2,3)且与直线2x﹣y+1=0垂直的直线方程为()A.2x﹣y﹣1=0 B.x+2y﹣8=0 C.x+2y﹣1=0 D.x﹣2y﹣8=0【解答】解:设与直线2x﹣y+1=0垂直的直线方程为x+2y+m=0,把点A(2,3)代入可得:2+6+m=0,解得m=﹣8.∴要求的直线方程为:x+2y﹣8=0.故选:B.11.在同一平面直角坐标系中,直线l1:ax+y+b=0和直线l2:bx+y+a=0有可能是()A.B.C. D.【解答】解:直线l1:ax+y+b=0和直线l2:bx+y+a=0分别化为:l1:y=﹣ax﹣b,l2:y=﹣bx﹣a.由方程看到:l1的斜率﹣a与l2的截距相同,l1的截距﹣b与l2的斜率相同.据此可判断出:只有B满足上述条件.故选:B.12.若直线l1:mx+2y+1=0与直线l2:x+y﹣2=0互相垂直,则实数m的值为()A.2 B.﹣2 C.D.﹣【解答】解:∵直线l1:mx+2y+1=0与直线l2:x+y﹣2=0互相垂直,∴m×1+2×1=0,解得m=﹣2.故选:B.13.若直线y=﹣2mx﹣6与直线y=(m﹣3)x+7平行,则m的值为()A.﹣1 B.1或﹣1 C.1 D.3【解答】解:若直线y=﹣2mx﹣6与直线y=(m﹣3)x+7平行,则﹣2m=m﹣3,解得:m=1,故选:C.14.方程(1+4k)x﹣(2﹣3k)y+(2﹣14k)=0所确定的直线必经过点()A.(2,2) B.(﹣2,2)C.(﹣6,2)D.()【解答】解:方程(1+4k)x﹣(2﹣3k)y+(2﹣14k)=0,化为(x﹣2y+2)+k(4x+3y ﹣14)=0解得故选A.15.已知A(﹣3,8)和B(2,2),在x轴上有一点M,使得|AM|+|BM|为最短,那么点M的坐标为()A.(﹣1,0)B.(1,0) C.()D.()【解答】解:找出点B关于x轴的对称点B′,连接AB′,与x轴的交于M点,连接BM,此时|AM|+|BM|为最短,由B与B′关于x轴对称,B(2,2),所以B′(2,﹣2),又A(﹣3,8),则直线AB′的方程为y+2=(x﹣2)化简得:y=﹣2x+2,令y=0,解得x=1,所以M(1,0)故选B16.已知实数x,y满足2x+y+5=0,那么的最小值为()A.B. C.2 D.2【解答】解:求的最小值,就是求2x+y+5=0上的点到原点的距离的最小值,转化为坐标原点到直线2x+y+5=0的距离,.故选A.17.动点P在直线x+y﹣4=0上,动点Q在直线x+y=8上,则|PQ|的最小值为()A. B.2 C.D.2【解答】解:|PQ|的最小值为两条平行线间的距离,即d==2,故选B.18.直线l过P(1,2),且A(2,3),B(4,﹣5)到l的距离相等,则直线l的方程是()A.4x+y﹣6=0 B.x+4y﹣6=0C.3x+2y﹣7=0或4x+y﹣6=0 D.2x+3y﹣7=0或x+4y﹣6=0【解答】解设所求直线为l,由条件可知直线l平行于直线AB或过线段AB的中点,…(2分)(1)AB的斜率为=﹣4,当直线l∥AB时,l的方程是y﹣2=﹣4(x﹣1),即4x+y﹣6=0.…(6分)(2)当直线l经过线段AB的中点(3,﹣1)时,l的斜率为=,l的方程是y﹣2=(x﹣1),即3x+2y﹣7=0.…(10分)故所求直线的方程为3x+2y﹣7=0或4x+y﹣6=0.…(12分)故选C.二.填空题(共4小题)19.若直线l1:ax+2y+6=0与直线l2:x+(a﹣1)y+(a2﹣1)=0平行且不重合,则a的值是﹣1.【解答】解:若直线l1:ax+2y+6=0与直线l2:x+(a﹣1)y+(a2﹣1)=0平行则a(a﹣1)﹣2=0,即a2﹣a﹣2=0解得:a=2,或a=﹣1又∵a=2时,l1:x+y+3=0与l2:x+y+3=0重合故a=﹣1故答案为:﹣120.若过点P(1﹣a,1+a)和Q(3,2a)的直线的倾斜角α为钝角,则实数a的取值范围为(﹣2,1).【解答】解:∵过点P(1﹣a,1+a)和Q(3,2a)的直线的倾斜角α为钝角,∴直线的斜率小于0,即<0,即<0,解得﹣2<a<1,故答案为(﹣2,1).21.如果AC<0,BC>0,那么直线Ax+By+C=0不通过第二象限.【解答】解:由题意直线Ax+By+C=0可化为.∵AC<0,BC>0,若C>0,则A<0,B>0,∴,,∴直线经过第一、四、三象限.若C<0,则A>0,B<0,∴,,∴直线经过第一、四、三象限.综上可得:直线Ax+By+C=0经过第一、四、三象限,不通过第二象限.故答案为:二.22.已知点A(1,1),B(4,2),若直线l:mx﹣y﹣1=0与线段AB相交,则实数m的取值范围为[,2] .【解答】解:直线l:mx﹣y﹣1=0经过定点P(0,﹣1).k PA==2,k PB==.∵直线l:mx﹣y﹣1=0与线段AB相交,∴k PA≥m≥k PB.∴2≥m≥.∴实数m的取值范围为[,2],故答案为:[,2].11。
1、根据下列条件写出直线的方程
(1)斜率是3
3,经过点A (8,3) (2)过点B (-2,0),且与x 轴垂直;
(3)斜率为-4,在y 轴上的截距为7; (4)在y 轴上的截距为2,且与x 轴平行;
(5)经过两点A (-1,8)B (4,-2),求直线l 的方程。
2、一直线过点A (2,-3),其倾斜角等于直线y =
31x 的倾斜角的2倍,求这条直线的方程.
3、一条直线和y 轴相交于点P (0,2),它的倾斜角的正弦值为
5
4,求这条直线的方程。
这样的直线有几条?
4、直线)(23R a a ax y ∈+-=必过定点 。
5、已知点M 是直线l :042=--y x 与x 轴的交点,把直线l 绕点M 逆时针旋转︒45,求所得直线的方程。
6、在同一坐标系下,直线1:l y mx n =+及直线2:l y nx m =+的图象可能是( )
7、求过点(2,1)且在两坐标轴上截距相等的直线方程。
8、(1)已知三角形的顶点是A(8,5)、B (4,-2)、C(-6,3),求经过每两边中点的三条直线的方程.
(2)△ABC 的顶点是A (0,5),B (1,-2),C (-6,4),求BC 边上的中线所在的直线的方程.
9、求过点P (2,3),并且在两轴上的截距绝对值相等的直线的方程。
10、过点P(2,1)作直线l 交y x ,正半轴于AB 两点,当||||PB PA ⋅取到最小值时,求直线l 的方程
11、已知直线:0l ax by c ++= 且0,0ab bc <<,则l 不通过的象限是第__ _象限
12、求过点(2,-1),倾斜角是直线4340x y -+=倾斜角的一半的直线方程。
13、设直线l 的方程为y m m x m m )12()32(22-++--062=+-m ,试根据下列条件,分别求出m 的值:
(1)l 在x 轴上的截距为3-; (2)l 的斜率为1。
14、已知直线l 与直线0743=-+y x 的倾斜角相等,并且与两坐标轴围成的三角形的面积为24,求直线l 的方程。
15、直线(0,0)bx ay ab a b +=<<的倾斜角是_________;
16、已知两点A)0,3(、B)4,0(,动点P),(y x 在线段AB上运动,则xy 的最大值为( ) A、2 B、3 C、4 D、5
17、直线043=+-k y x 在两坐标轴上截距之和为2,则k 为( )
A、12 B、24- C、10 D、24
18、求过点P (-5,-4)且与x 轴,y 轴分别交于A 、B 两点,且
||3||5AP PB =,求直线的方程。
19、已知:点A 是直线:3l y x =在第一象限内的点,定点B (3,2),直线AB 交x 轴正半轴于点C ,求OAC ∆面积的最小值,并求此时A 点的坐标。
20、过点P(4,3)作直线l ,直线l 与y x ,轴的正半轴交于A、B两点,当OB OA +最小时,求直线l 方程。