传动轴角度
- 格式:ppt
- 大小:4.99 MB
- 文档页数:18
万向传动轴径向全跳动计算万向传动轴是一种常见的机械传动装置,用于将动力从一个位置传递到另一个位置。
它通常由两个万向节和一根轴组成,可以在不同的角度和位置上传递扭矩。
在传动轴的运行过程中,径向全跳动是一个重要的参数。
径向全跳动是指万向传动轴在转动过程中,两个万向节之间的径向距离的变化。
这种跳动会对传动轴的运行稳定性和传动效率产生影响,因此需要进行准确的计算和分析。
要计算万向传动轴的径向全跳动,我们首先需要了解万向节的结构和工作原理。
万向节通常由两个十字形的轴头和一个十字形的中心轴组成。
当传动轴转动时,轴头和中心轴之间会产生一定的相对角度,从而引起径向距离的变化。
为了准确计算万向传动轴的径向全跳动,我们需要确定一些关键参数。
首先是万向节的角度范围,即两个轴头之间可以扭转的最大角度。
其次是轴头的尺寸和形状,这会影响径向全跳动的大小和特性。
还需要考虑传动轴的转速和扭矩,以及传动轴的工作环境和使用条件。
根据这些参数,我们可以进行径向全跳动的计算。
一种常用的计算方法是基于几何关系和角度的变化。
首先,我们可以利用几何关系确定轴头之间的初始径向距离。
然后,根据转动角度和轴头的尺寸,计算出转动过程中径向距离的变化量。
最后,将初始径向距离和变化量相加,得到最终的径向全跳动。
除了几何计算,还可以使用数值模拟和计算机辅助设计软件进行径向全跳动的分析。
这些方法可以更准确地模拟和预测传动轴的运行情况,以及不同参数对径向全跳动的影响。
通过这些分析,我们可以优化传动轴的设计和参数选择,使其在工作过程中具有更好的性能和稳定性。
在实际应用中,径向全跳动的控制是非常重要的。
过大的跳动会导致传动轴的不稳定性和振动,甚至可能导致传动系统的故障。
因此,在设计和制造传动轴时,需要合理选择材料、加工工艺和装配精度,以控制径向全跳动的大小和变化范围。
万向传动轴径向全跳动的计算是传动系统设计和分析的重要内容。
通过准确计算和分析,可以优化传动轴的设计和参数选择,提高传动效率和稳定性。
传动轴基本知识(图)一、传动轴总成简介传动轴总成图传动轴,英文PROPELLER(DRIVING)SHAFT。
在不同轴心的两轴间甚至在工作过程中相对位置不断变化的两轴间传递动力。
传动轴按其重要部件万向节的不同,可有不同的分类。
如果按万向节在扭转的方向是否有明显的弹性可分为刚性万向节传动轴和挠性万向节传动轴。
前者是靠零件的铰链式联接传递动力的,后者则靠弹性零件传递动力,并具有缓冲减振作用。
刚性万向节又可分为不等速万向节(如十字轴式万向节)、准等速万向节(如双联式万向节、三销轴式万向节)和等速万向节(如球笼式万向节、球叉式万向节)。
等速与不等速,是指从动轴在随着主动轴转动时,两者的转动角速率是否相等而言的,当然,主动轴和从动轴的平均转速是相等的。
主、从动轴的角速度在两轴之间的夹角变动时仍然相等的万向节,称为等速万向节或等角速万向节。
它们主要用于转向驱动桥、断开式驱动桥等的车轮传动装置中,主要用于轿车中的动力传递。
当轿车为后轮驱动时,常采用十字轴式万向节传动轴,对部分高档轿车,也有采用等速球头的;当轿车为前轮驱动时,则常采用等速万向节,等速万向节也是一种传动轴,只是称谓不同而已。
在发动机前置后轮驱动(或全轮驱动)的汽车上,由于汽车在运动过程中悬架变形,驱动轴主减速器输入轴与变速器(或分动箱)输出轴间经常有相对运动,此外,为有效避开某些机构或装置(无法实现直线传递),必须有一种装置来实现动力的正常传递,于是就出现了万向节传动。
万向节传动必须具备以下特点:a、保证所连接两轴的相对位置在预计范围内变动时,能可靠地传递动力;b、保证所连接两轴能均匀运转。
由于万向节夹角而产生的附加载荷、振动和噪声应在允许范围内;c、传动效率要高,使用寿命长,结构简单,制造方便,维修容易。
对汽车而言,由于一个十字轴万向节的输出轴相对于输入轴(有一定的夹角)是不等速旋转的,为此必须采用双万向节(或多万向节)传动,并把同传动轴相连的两个万向节叉布置在同一平面,且使两万向节的夹角相等。
传动轴基本知识一、传动轴总成简介(结合具体总成图)传动轴,英文PROPELLER(DRIVING) SHAFT。
在不同轴心的两轴间甚至在工作过程中相对位置不断变化的两轴间传递动力。
传动轴按其重要部件——万向节的不同,可有不同的分类。
如果按万向节在扭转的方向是否有明显的弹性可分为刚性万向节传动轴和挠性万向节传动轴。
前者是靠零件的铰链式联接传递动力的,后者则靠弹性零件传递动力,并具有缓冲减振作用。
刚性万向节又可分为不等速万向节(如十字轴式万向节)、准等速万向节(如双联式万向节、三销轴式万向节)和等速万向节(如球笼式万向节、球叉式万向节)。
等速与不等速,是指从动轴在随着主动轴转动时,两者的转动角速率是否相等而言的,当然,主动轴和从动轴的平均转速是相等的。
主、从动轴的角速度在两轴之间的夹角变动时仍然相等的万向节,称为等速万向节或等角速万向节。
它们主要用于转向驱动桥、断开式驱动桥等的车轮传动装置中,主要用于轿车中的动力传递。
当轿车为后轮驱动时,常采用十字轴式万向节传动轴,对部分高档轿车,也有采用等速球头的;当轿车为前轮驱动时,则常采用等速万向节——等速万向节也是一种传动轴,只是称谓不同而已。
在发动机前置后轮驱动(或全轮驱动)的汽车上,由于汽车在运动过程中悬架变形,驱动轴主减速器输入轴与变速器(或分动箱)输出轴间经常有相对运动,此外,为有效避开某些机构或装置(无法实现直线传递),必须有一种装置来实现动力的正常传递,于是就出现了万向节传动。
万向节传动必须具备以下特点:a 、保证所连接两轴的相对位置在预计范围内变动时,能可靠地传递动力;b 、保证所连接两轴能均匀运转。
由于万向节夹角而产生的附加载荷、振动和噪声应在允许范围内;c 、传动效率要高,使用寿命长,结构简单,制造方便,维修容易。
对汽车而言,由于一个十字轴万向节的输出轴相对于输入轴(有一定的夹角)是不等速旋转的,为此必须采用双万向节(或多万向节)传动,并把同传动轴相连的两个万向节叉布置在同一平面,且使两万向节的夹角相等。
十字轴式万向节传动轴总成设计规范十字轴式万向节传动轴总成设计规范1 范围本标准规定了十字轴式万向节传动轴总成技术规范。
本标准适用于发动机、变速器纵置后轮及四轮驱动传动轴的设计。
2规范性引用文件下列文件对于本文件的应用是必不可少的.凡是注日期的引用文件,仅注日期的版本适用于本文件。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
QC/T 523 《汽车传动轴总成台架试验方法》QC/T 29082《汽车传动轴总成技术条件》3术语和定义3.1 传动轴:由一根或多根实心轴或空心轴管将二个或多个十字轴式万向节连接起来,用来将变速器的输出扭矩和旋转运动传递给驱动桥的装置。
3.2 传动轴临界转速:传动轴失去稳定性的最低转速。
传动轴在该转速下工作易发生共振,造成轴的严重弯曲变形,甚至折断。
3.3 当量夹角:多万向节传动轴的各个万向节输入、输出轴夹角等效转换成单万向节的夹角。
4目标性能4.2传动轴带万向节总成所连接的两轴相对位置在设计范围内变动时,能可靠地传递动力;4.2所连接两轴接近等速运转,由万向节夹角产生的附加载荷、振动和噪声应在允许范围内;4.3传动效率高,使用寿命长,结构简单,制造方便,维修容易等。
5 设计方法5.1 设计计算涉及的参数具体参数见表(一)、表(二)表(一)计算参数轴的抗扭截面系数(mm3)W T轴的转速(r/min)n轴传递的功率(kW)P计算截面处轴的直径(mm) d许用扭转切应力(MPa)[τT]传动轴管的外径(mm)D c传动轴管的内径(mm)d c传动轴的长度(mm)L c传动轴实际最高转速(r/min)n max变速器最高档变速比i5轴管的许用扭转切应力(MPa)[τc]花键轴的花键内径d h花键处转矩分布不均匀系数K′花键外径D h花键的有效工作长L h花键齿数n0齿侧许用挤压应力(MPa)[σy]表(二)需校核的参数序号名称符号目标值1 传动轴临界转速(r/min)n k2 轴管扭转强度τc[τc]3 花键轴扭转强度τh[τ0]4 花键齿侧挤压应力σy[σy]5.2 传动轴的布置5.2.1 传动轴总成在整车上的布置,见图1图 1 传动轴在整车上的布置图如图1所示,万向传动轴用于在不同轴心的两轴间甚至在工作过程中相对位置不断变化的两轴间传递动力。
10.16638/ki.1671-7988.2021.03.015一款商用车动力总成的布置设计郭森怀,谭喜峰(陕西汽车集团有限责任公司技术中心,陕西西安710200)摘要:动力总成在底盘上的布置是汽车整车布置工作的一项重要内容,关系到驾驶室、悬架、货厢等周边零部件的安装位置,也影响传动系统的工作效率,合理地进行动力总成布置设计,决定车辆的最终使用效果。
文章通过对某车型动力总成的布置进行分析和设计,提出该类设计的方法步骤和应注意事项,确保达到理想的技术状态,同时,也帮助设计人员有效规避设计过程中可能出现的考虑不全面或参数选取不合理等问题。
关键词:动力总成布置;布置设计;传动效率中图分类号:U463 文献标识码:A 文章编号:1671-7988(2021)03-51-03Layout Design of a Commercial Vehicle PowertrainGuo Senhuai, Tan Xifeng( Technology Center of Shaanxi Automobile Group Co., Ltd., Shaanxi Xi'an 710200 )Abstract: The layout of the powertrain on the chassis is an important part of the layout of the entire vehicle. It is related to the installation position of the cab, suspension, cargo compartment and other peripheral components, and also affects the efficiency of the transmission system. Assembly layout design determines the final use effect of the vehicle. This paper analyzes and designs the layout of the powertrain of a certain vehicle model, puts forward the method steps and precautions of this type of design, to ensure that the ideal technical state is achieved, and at the same time, it also helps designers to effectively avoid possible considerations in the design process. Comprehensive or unreasonable selection of parameters. Keywords: Powertrain layout; Layout design; Transmission efficiencyCLC NO.: U463 Document Code: A Article ID: 1671-7988(2021)03-51-03前言动力总成是车辆的动力来源,在汽车的安装位置非常重要,动力总成布置是整车布置工作中很重要的一项内容。
传动轴设计1概述在汽车传动轴系或其它系统中,为了实现一些轴线相交或相对置经常变化的转轴之间的动力传递,必须采用万向传动装置。
万向传动装置一般由万向节和传动轴组成,当距离较远时,还需要中间支承。
在汽车行业中把连接发动机与前、后轴的万向传动装置简称传动轴。
传动轴设计应能满足所要传递的扭矩与转速。
现轻型载货汽车多采用不等速万向节传动轴。
2传动轴设计2.1传动轴万向节、花键、轴管型式的选择根据整车提供发动机的最高转速、最大扭矩及变速箱提供的一档速比,及由后轴负荷车轮附着力,计算得扭矩,由两者比较得出的最小扭矩来确定传动轴的万向节、花键、轴管型式。
a按最大附着力计算传动轴的额定负荷公式:Mψmax=G·r k·ψ/i oG满载时驱动轴上的负荷r k车轮的滚动半径ψ车轮与地面的附着系数i o主减速器速比b按发动机最大扭矩计算传动轴的额定负荷公式:Mψmax =M·i k1·i p/nM 发动机最大扭矩i k1变速器一档速比i p 分动器低档速比n 使用分动器时的驱动轴数按《汽车传动轴总成台架试验方法》中贯定选取以上二者较小值为额定负荷。
考虑到出现最大附着力时的工况是紧急制动工况此时的载荷转移系数为μ因此实际可利用最大附着力矩:M ψmaxo = M max ·μ传动轴的试验扭矩:由汽车设计丛书《传动轴和万向节》中得知:一般总成的检查扭矩为设计扭矩的1.5-2.0倍。
传动轴设计中轴管与万向节的设计扭矩也应选取1.5-2.0倍的计算扭矩,以满足整车使用中的冲击载荷。
轴管扭转应力公式:τ=16000DM π(D 4-d 4)<[τ] =120N/ mm2D 轴管直径; d 轴管内径;M 变速箱输出最大扭矩;花键轴的扭转应力:τ=16000M πD 23<[τ] =350N/ mm 2D 2花键轴花键底径;D 2=27.667mm 。
Z 花键齿数 m 花键模数M变速箱输出最大扭矩;传动轴花键齿侧的挤压应力:δ=2×TΨ×Z×m×L×Z×m在25-50N.mm2推荐范围内Ψ各齿载荷不均系数;Z花键齿数;L花键齿的最短工作长度长度;m花键模数;2.2传动轴的临界转速计算传动轴的临界转速。
万向传动轴设计说明书商用汽车万向传动轴设计摘要万向传动轴在汽车上应用比较广泛。
发动机前置后轮或全轮驱动汽车行驶时,由于悬架不断变形,变速器或分动器的输出轴与驱动桥输入轴轴线之间的相对位置经常变化,因而普遍采用可伸缩的十字轴万向传动轴。
本设计注重实际应用,考虑整车的总体布置,改进了设计方法,力求整车结构及性能更为合理。
传动轴是由轴管、万向节、伸缩花键等组成。
伸缩套能自动调节变速器与驱动桥之间距离的变化;万向节是保证变速器输出轴与驱动桥输入轴两轴线夹角发生变化时实现两轴的动力传输;万向节由十字轴、十字轴承和凸缘叉等组成。
传动轴的布置直接影响十字轴万向节、主减速器的使用寿命,对汽车的振动噪声也有很大影响。
在传动轴的设计中,主要考虑传动轴的临界转速,计算传动轴的花键轴和轴管的尺寸,并校核其扭转强度和临界转速,确定出合适的安全系数,合理优化轴与轴之间的角度。
关键字:万向传动轴、伸缩花键、十字轴万向节、临界转速、扭转强度目录一、概述 (04)二、货车原始数据及设计要求 (05)三、万向节结构方案的分析与选择 (06)四、万向传动的运动和受力分析 (08)五、万向节的设计计算 (11)六、传动轴结构分析与设计计算 (17)七、法兰盘的设计 (19)八、参考文献 (20)一、概述汽车上的万向传动轴一般是由万向节、轴管及其伸缩花键等组成。
主要是用于在工作过程中相对位置不断变化的两根轴间传递转矩和旋转运动。
在动机前置后轮驱动的汽车上,由于工作时悬架变形,驱动桥主减速器输入轴与变速器输出轴间经常有相对运动,普遍采用万向节传动(图1—1a、b)。
当驱动桥与变速器之间相距较远,使得传动轴的长度超过1.5m时,为提高传动轴的临界速度以及总布置上的考虑,常将传动轴断开成两段,万向节用三个。
此时,必须在中间传动轴上加设中间支承。
在转向驱动桥中,由于驱动桥又是转向轮,左右半轴间的夹角随行驶需要而变,这是多采用球叉式和球笼式等速万向节传动(图1—1c)。
车辆工程技术121机械电子0 概述 在汽车行驶过程中,传动轴高速运转,任何外部激励都有可能引起传动轴的振动和噪声,进而影响整车的NVH。
NVH 性能指标是消费者直观感知项目之一,控制好NVH 性能的传动轴,提升驾乘舒适性,由此可见传动轴设计和研究非常重要。
1 传动轴工作原理及设计要求1.1 传动轴工作原理 在汽车行业中把连接变速器和驱动桥的万向传动装置简称传动轴。
汽车传动轴总成一般由万向节、中间支撑、滑动花键、轴管及其两端的花键和万向节叉组成,常见结构示意图如图1所示。
汽车传动轴总成主要用于车辆行驶过程中,在相对位置不断改变的两个零部件间传递扭矩和旋转运动,其本身的长度和万向夹角在一定范围内不断变化。
图11.2 传动轴设计要求 (1)保证所连接的两根轴相对位置在预计范围内变动时,能可靠地传递动力。
(2)传动轴设计应能满足所要传递的扭矩与转速,保证所连接两轴尽可能等速运转。
(3)传动轴的长度和夹角及它们的变化范围,由汽车总布置设计决定。
设计时应保证在传动轴长度处在最大值时,花键套与花键轴有足够的配合长度,而在长度处于最小时,两者不顶死。
传动轴夹角大小会影响万向节十字轴和滚动轴承的寿命、万向传动效率和十字轴的不均匀性。
由于万向节夹角而产生的附加载荷、振动和噪声应在允许范围内。
(4)传动效率高,使用寿命长,结构简单,制造方便,维修容易等。
2 传动轴设计 (1)传动轴扭矩的选用,根据整车提供发动机的最高转速、最大扭矩和变速箱提供的一档速比、后轴负荷车轮附着力,通过理论公式计算得出。
(2)传动轴长度的确定。
1)多根传动轴传动时各传动轴长度的确定。
多根传动轴传动设计原则,与驱动桥分动器相连的传动轴为长度可变化的伸缩传动轴,其余传动轴为中间传动轴。
中间传动轴与变速器输出轴或中间传递轴之间夹角不能大于3°;伸缩传动轴两端的夹角,满载状态时不能大于5°,特殊情况最大不能大于8°。
设计过程中,在传动轴最高转速小于0.7倍传动临界转速前提下,尽可能选用较长的伸缩传动轴,以减小伸缩传动轴夹角。