基于openMP的并行计算实验
- 格式:docx
- 大小:209.68 KB
- 文档页数:14
一、实验模块计算机科学与技术二、实验标题并行计算实验三、实验目的1. 了解并行计算的基本概念和原理;2. 掌握并行编程的基本方法;3. 通过实验加深对并行计算的理解。
四、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 并行计算平台:OpenMP五、实验步骤1. 准备实验环境首先,在计算机上安装OpenMP库,并配置环境变量。
2. 编写并行计算程序编写一个简单的并行计算程序,实现以下功能:(1)计算斐波那契数列的第n项;(2)计算素数的个数;(3)计算矩阵乘法。
以下为斐波那契数列的并行计算程序示例:```cpp#include <omp.h>#include <iostream>using namespace std;int main() {int n = 30;int fib[31] = {0};fib[0] = 0;fib[1] = 1;#pragma omp parallel forfor (int i = 2; i <= n; i++) {fib[i] = fib[i - 1] + fib[i - 2];}cout << "斐波那契数列的第" << n << "项为:" << fib[n] << endl; return 0;}```3. 编译程序使用g++编译器编译程序,并添加OpenMP库支持。
```bashg++ -fopenmp -o fib fib.cpp```4. 运行程序在命令行中运行编译后的程序,观察结果。
5. 分析结果通过对比串行计算和并行计算的结果,分析并行计算的优势。
六、实验过程1. 准备实验环境,安装OpenMP库并配置环境变量;2. 编写并行计算程序,实现斐波那契数列的并行计算;3. 编译程序,并添加OpenMP库支持;4. 运行程序,观察结果;5. 分析结果,对比串行计算和并行计算的性能。
在fortran下进⾏openmp并⾏计算编程最近写⽔动⼒的程序,体系太⼤,必须⽤并⾏才能算的动,⽆奈只好找了并⾏编程的资料学习了。
我想我没有必要在博客⾥开⼀个什么并⾏编程的教程之类,因为⽹上到处都是,我就随⼿记点重要的笔记吧。
这⾥主要是openmp的~1 临界与归约在涉及到openmp的并⾏时,最需要注意的就是被并⾏的区域中的公共变量,对于需要reduce的变量,尤其要注意,⽐如这段代码:program mainimplicit noneinclude 'omp_lib.h'integer N,M,ireal(kind=8) tN=20000t=0.0!$OMP PARALLEL DOdo i=1,Nt=t+float(i);M=OMP_get_num_threads()enddowrite(*, "('t = ', F20.5, ' running on ', I3, ' threads.')") t,Mpausestopend串⾏代码可以很容易的得到正确结果:t = 200010000.00000 running on 1 threads.不幸的是,如果是并⾏的话,可能每次都得到⼀个不同的结果:t = 54821260.00000 running on 8 threads.t = 54430262.00000 running on 8 threads.....原因很简单,假设do被并⾏了两个线程,A1,A2,则每个线程都可以t,在其中⼀个线程访问t的时候,另⼀个线程修改了t,导致t的某些值“丢了”。
解决⽅法有两种,第⼀种就是“临界”,就是锁定t:!$OMP PARALLEL DOdo i = 1, N!$OMP CRITICALt = t+float(i)!$OMP END CRITICALM = OMP_get_num_threads()enddo这样每个时刻只有⼀个线程能访问这个变量。
实验名称:并行处理技术在图像识别中的应用实验目的:1. 了解并行处理技术的基本原理和应用场景。
2. 掌握并行计算环境搭建和编程技巧。
3. 分析并行处理技术在图像识别任务中的性能提升。
实验时间:2023年10月15日-2023年10月25日实验设备:1. 主机:****************************,16GB RAM2. 显卡:NVIDIA GeForce RTX 2080 Ti3. 操作系统:Windows 10 Professional4. 并行计算软件:OpenMP,MPI实验内容:本实验主要分为三个部分:1. 并行计算环境搭建2. 图像识别任务并行化3. 性能分析和比较一、并行计算环境搭建1. 安装OpenMP和MPI库:首先在主机上安装OpenMP和MPI库,以便在编程过程中调用并行计算功能。
2. 编写并行程序框架:使用C++编写一个并行程序框架,包括并行计算函数和主函数。
3. 编译程序:使用g++编译器编译程序,并添加OpenMP和MPI库的相关编译选项。
二、图像识别任务并行化1. 数据预处理:将原始图像数据转换为适合并行处理的格式,例如将图像分割成多个子图像。
2. 图像识别算法:选择一个图像识别算法,如SVM(支持向量机)或CNN(卷积神经网络),并将其并行化。
3. 并行计算实现:使用OpenMP或MPI库将图像识别算法的各个步骤并行化,例如将图像分割、特征提取、分类等步骤分配给不同的线程或进程。
三、性能分析和比较1. 实验数据:使用一组标准图像数据集进行实验,例如MNIST手写数字识别数据集。
2. 性能指标:比较串行和并行处理在图像识别任务中的运行时间、准确率等性能指标。
3. 结果分析:分析并行处理在图像识别任务中的性能提升,并探讨影响性能的因素。
实验结果:1. 并行处理在图像识别任务中显著提升了运行时间,尤其是在大规模数据集上。
2. 并行处理对准确率的影响较小,甚至略有提升。
OpenMP共享内存并⾏编程详解实验平台:win7, VS20101. 介绍并⾏计算机可以简单分为共享内存和分布式内存,共享内存就是多个核⼼共享⼀个内存,⽬前的PC就是这类(不管是只有⼀个多核CPU 还是可以插多个CPU,它们都有多个核⼼和⼀个内存),⼀般的⼤型计算机结合分布式内存和共享内存结构,即每个计算节点内是共享内存,节点间是分布式内存。
想要在这些并⾏计算机上获得较好的性能,进⾏并⾏编程是必要条件。
⽬前流⾏的并⾏程序设计⽅法是,分布式内存结构上使⽤MPI,共享内存结构上使⽤Pthreads或OpenMP。
我们这⾥关注的是共享内存并⾏计算机,因为编辑这篇⽂章的机器就属于此类型(普通的台式机)。
和Pthreads相⽐OpenMP更简单,对于关注算法、只要求对线程之间关系进⾏最基本控制(同步,互斥等)的我们来说,OpenMP再适合不过了。
本⽂对windows上Visual Studio开发环境下的OpenMP并⾏编程进⾏简单的探讨。
本⽂参考了wikipedia关于OpenMP条⽬、(有OpenMP Specification)、MSDM上关于OpenMP条⽬以及教材《MPI与OpenMP并⾏程序设计(C语⾔版)》:1.2.3.4. 《MPI与OpenMP并⾏程序设计(C语⾔版)》第17章,Michael J. Quinn著,陈⽂光等译,清华⼤学出版社,2004注意,OpenMP⽬前最新版本为4.0.0,⽽VS2010仅⽀持OpenMP2.0(2002年版本),所以本⽂所讲的也是OpenMP2.0,本⽂注重使⽤OpenMP获得接近核⼼数的加速⽐,所以OpenMP2.0也⾜够了。
2. 第⼀个OpenMP程序step 1:新建控制台程序step 2:项⽬属性,所有配置下“配置属性>>C/C++>>语⾔>>OpenMP⽀持”修改为是(/openmp),如下图:step 3:添加如下代码:1 #include<omp.h>2 #include<iostream>3int main()4 {5 std::cout << "parallel begin:\n";6#pragma omp parallel7 {8 std::cout << omp_get_thread_num();9 }10 std::cout << "\n parallel end.\n";11 std::cin.get();12return0;13 }step 4:运⾏结果如下图:可以看到,我的计算机是8核的(严格说是8线程的),这是我们实验室的⼩型⼯作站(⾄多⽀持24核)。
基于o p e n M P的并行计算实验文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]并行计算实验报告课程:并行计算姓名:郑波学号44班级:计算机科学与技术13-2班日期:2015年12月7日实验一:OpenMP基本使用一、实验目的1、熟悉OpenMP编程。
2、比较串行算法与并行算法在执行时间上的差别;3、考察线程数目使用不同对并行算法执行时间的影响;4、考察运算规模N对串、并行算法执行时间上的影响。
二、实验内容1、使用OpenMP进行两个矩阵A和B的加法,并分析串行、并行时间的差别以及问题规模对程序运行时间的影响三、实验步骤1、整个程序的设计流程①全局变量设置三个宏定义过的size×size的二维数组啊a,b,c。
②初始化a数组为全1,b数组为全2③通过omp_set_num_threads()库函数设置线程数④调用openMP库函数omp_get_wtime()获取当前时间start#pragma omp parallel for开始做并行区部分…结束后再次调用omp_get_wtime()获取时间end,end-start即为并行消耗时间⑤再次调用时间函数更新strat串行做一边矩阵相加更新end,end-start即为串行耗时代码如下:#include<iostream>#include<>#define size 10000using namespace std;int a[size][size],b[size][size],c[size][size];int main(){for(int i=0;i!=size;++i) //initial the matrixfor(int j=0;j!=size;++j){a[i][j]=1;b[i][j]=2;}double start=omp_get_wtime();omp_set_num_threads(4);#pragma omp parallel forfor(int i=0;i<size;++i)for(int j=0;j<size;++j)c[i][j]=a[i][j]+b[i][j];double end=omp_get_wtime();cout<<"并行运行时间:"<<end-start<<endl;start=omp_get_wtime();for(int i=0;i<size;++i)for(int j=0;j<size;++j)c[i][j]=a[i][j]+b[i][j];end=omp_get_wtime();cout<<"串行运行时间:"<<end-start<<endl;system("pause");}2、问题规模对串、并行程序时间的影响(A、B矩阵的大小为N*M)(1)通过不断增加问题规模,观察串行和并行程序的执行时间,得到如下表格的时间消耗数据:(2)可以发现,当矩阵规模较小时,串行算法仍然要比并行算法运行的快,当规模到达一定程度的时候,并行运行的速度较串行有了提升。
并行算法对各个CPU的调度也占用一定的时间,当问题规模很小的时候,这个调度时间占了很大的比重,而在规模较大的时候,这个调度时间就显得微乎其微了3、线程数目对并行程序的影响(这里假设问题规模为:N*M=10000*10000)(1)在使用OpenMP进行并行执行矩阵加法时,我们可以自由设置进行并行计算的并行线程数目。
(2)在并行区域中,通过函数int omp_set_num_threads(int)设置并行区域中要创建的线程数,分别设置为2、4、8、16,得到如下表格的时间消耗(3)观察发现,在问题规模不变的前提下,随着线程数目的增加,问题解决的时间也在相应的减少。
但是,问题消耗的时间并不会随着线程数目的增加而不断的减少,原因可能是因为,随着线程数目的增减,线程的额外准备时间开销也将扩大。
四、心得体会通过本次实验,了解了openMP库函数,掌握了openMP最基本的多线程程序编写。
通过分析比较串并行运行时间,体会了不同规模下串并行的使用效果。
实验二:使用OpenMP实现圆周率计算的并行算法一、实验目的1、考察问题规模N对圆周率计算精确度的影响;2、考察线程数目对圆周率计算执行时间的影响;3、比较串、并行算法在执行时间上的差别。
二、实验内容1、使用OpenMP和近似计算公式计算圆周率π的大小,并分析串行、并行时间的差别以及问题规模对程序运行时间的影响三、实验步骤1、整个程序的设计流程①全局变量设置宏size,用来描述计算范围②利用如下公式准备计算圆周率π的近似值③通过omp_set_num_threads()库函数设置线程数④调用openMP库函数omp_get_wtime()获取当前时间start#pragma ompparallel for reduction(+:sum)开始做并行区部分注意:其中sum是共享的,因为是个连续和的问题,采用reduction之后,每个线程根据reduction(+: sum)的声明算出自己的sum,然后再将每个线程的sum加起来。
避免各个线程共享sum资源时出现问题…结束后再次调用omp_get_wtime()获取时间end,end-start即为并行消耗时间⑤再次调用时间函数更新strat串行做一边矩阵相加更新end,end-start即为串行耗时代码如下:#include<iostream>#include<>#define sizeusingnamespace std;int main(){double sum=0,start,end;omp_set_num_threads(4);start=omp_get_wtime();#pragma ompparallel for reduction(+:sum)for(int i=0;i<size;++i){sum+=4/(1+(+i)/size)*(+i)/size))*1/size;}end=omp_get_wtime();cout<<"并行时间:"<<end-start<<endl;sum=0;start=omp_get_wtime();for(int i=0;i<size;++i){sum+=4/(1+(+i)/size)*(+i)/size))*1/size;}end=omp_get_wtime();cout<<"串行时间:"<<end-start<<endl;(20);cout<<"π:"<<sum<<endl;system("pause");}2、问题规模对串、并行程序时间的影响(N的大小影响时间)(1)通过不断增加问题规模,观察串行和并行程序的执行时间,得到如下表格的时间消耗数据:(2)可以发现,当规模较小时,串行算法仍然要比并行算法运行的快,当规模到达一定程度的时候,并行运行的速度较串行有了提升。
并行算法对各个CPU的调度也占用一定的时间,当问题规模很小的时候,这个调度时间占了很大的比重,而在规模较大的时候,这个调度时间就显得微乎其微了3、线程数目对并行程序的影响(这里假设问题规模为:N=100000)(1)在使用OpenMP进行并行执行运算时,我们可以自由设置进行并行计算的并行线程数目。
(2)在并行区域中,通过函数int omp_set_num_threads(int)设置并行区域中要创建的线程数,分别设置为2、4、8、16,得到如下表格的时间消耗(3)观察发现,在问题规模不变的前提下,随着线程数目的增加,问题解决的时间也在相应的减少。
但是,问题消耗的时间并不会随着线程数目的增加而不断的减少,原因可能是因为,随着线程数目的增减,线程的额外准备时间开销也将扩大。
四、心得体会通过本次实验,进一步深入了openMP的编程,对openMP各线程共享资源、各自拥有自己的资源有了初步认识。
再一次体会到了并行计算给大规模计算带来的便利性。
实验三:使用OpenMP求最大值一、实验目的1、掌握求最大值的并行算法2、比较串行算法与并行算法在执行时间上的差别;3、考察线程数目使用不同对并行算法执行时间的影响;二、实验内容1、使用OpenMP求一个乱序数列的最大值,并分析串行、并行时间的差别以及问题规模对程序运行时间的影响三、实验步骤1、整个程序的设计流程本程序实现了平衡树算法,但由于处理器数目有限,并行结果反而不如串行,不过当处理器足够多时(理想情况为数组长度的一半)时,并行会有大的提升。
这里只讲一下平衡树算法思路。
①全局变量设置num×size的二维数组,最后一维用来保存数列其中:num=log(size-1)/log(2)+1;表示平衡树的高度②初始化最后一维数组③通过omp_set_num_threads()库函数设置线程数④调用openMP库函数omp_get_wtime()获取当前时间start#pragma omp parallel for开始做并行区部分…结束后再次调用omp_get_wtime()获取时间end,end-start即为并行消耗时间⑤算法核心部分:算法先处理最后一层平衡树(假设个数为n),两个数据一组比较,取大的,生成新的一层平衡树(个数为n/2或者(n+1)/2),放在二维数组的上一维。
迭代处理每一层,最后使得新的一层个数为1,这个值就是最大值,即a[1][1];并行处理每一层平衡树代码如下:#include<iostream>#include<>#include<>const int size=10000;using namespace std;int a[size+1][size+1];int main(){int num=log(size-1)/log(2)+1;for(size_t i=1;i<=size;++i){ //初始化a[num][i]=i;}int m=0;double start=omp_get_wtime();for(size_t i=1;i<=size;++i) //串行if(a[num][i]>=m)m=a[num][i];double end=omp_get_wtime();cout<<"串行:"<<end-start<<endl;int amax=size;omp_set_num_threads(4);start=omp_get_wtime();for(int k=num-1;k>=0;k--){#pragma omp parallel forfor(int j=1;j<=(amax-1)/2+1;j++){if(2*j>amax)a[k][j]=a[k+1][amax];elsea[k][j]=a[k+1][2*j-1]>a[k+1][2*j]a[k+1][2*j-1]:a[k+1][2*j];}}end=omp_get_wtime();cout<<"并行:"<<end-start<<endl;system("pause");}2、问题规模对串、并行程序时间的影响(数列长度为N)(1)通过不断增加问题规模,观察串行和并行程序的执行时间,得到如下表格的时间消耗数据:(2)可以发现,并行总是比串行慢。