数学分析之数项级数
- 格式:ppt
- 大小:2.51 MB
- 文档页数:128
项级数的概念项级数是数学中的一个概念,指的是一个无穷序列的和。
在项级数中,每一项都是具有固定模式的数列中的某一项,而项级数的和就是这些数列中所有的项的总和。
项级数可以表示为:S = a1 + a2 + a3 + ... + an + ...其中,a1, a2, a3, ... 是一个数列的项,n 是一项的位置。
举个例子,如果项级数为:1 + 2 + 3 + 4 + ... ,那么a1 = 1,a2 = 2,a3 = 3,... ,n 表示数列中项的编号。
项级数可以分为两类:收敛项级数和发散项级数。
当项级数的和存在且有限时,我们称其为收敛项级数;当项级数的和不存在或为无穷大时,我们称其为发散项级数。
对于收敛项级数,我们常常使用极限的概念来表示。
如果项级数S具有有限的和S,则对于任意的正数ε,存在一个正整数N,使得当n>N时,Sn - S < ε。
其中,Sn 表示项级数的前n项和。
为了更好地理解项级数的概念,我们可以看一些经典的例子。
1. 等差数列:1, 2, 3, 4, ...这是一个常见的等差数列,每一项与前一项之差都相等。
项级数可以表示为:1 + 2 + 3 + 4 + ... ,它是一个发散项级数,和无穷大。
2. 等比数列:1, 1/2, 1/4, 1/8, ...这是一个等比数列,每一项都是前一项的1/2倍。
项级数可以表示为:1 + 1/2 + 1/4 + 1/8 + ... ,它是一个收敛项级数,和为2。
3. 调和级数:1, 1/2, 1/3, 1/4, ...这是一个调和级数,每一项是倒数数列。
项级数可以表示为:1 + 1/2 + 1/3 + 1/4 + ... ,它是一个发散项级数,和无穷大。
4. 幂级数:1, 1/2, 1/4, 1/8, ...这是一个幂级数,每一项都是前一项的1/2倍。
项级数可以表示为:1 + 1/2 + 1/4 + 1/8 + ... ,它是一个收敛项级数,和为2。
数项级数一致收敛(原创实用版)目录1.数项级数一致收敛的定义2.数项级数一致收敛的性质3.数项级数一致收敛的判定方法4.数项级数一致收敛的实际应用正文一、数项级数一致收敛的定义数项级数一致收敛是指,当级数的各项绝对值趋于 0 时,级数的和趋于一个确定的常数。
换句话说,如果一个级数的各项绝对值都小于某个正数ε,且级数的项数趋向于无穷,那么这个级数就是一致收敛的。
二、数项级数一致收敛的性质一致收敛的级数具有以下性质:1.有界性:级数的每一项都趋于 0,因此级数的和也有界。
2.有序性:当项数增加时,级数的和单调增加或单调减少。
3.极限存在:当级数的项数趋于无穷时,级数的和存在极限。
三、数项级数一致收敛的判定方法判断一个级数是否一致收敛,可以使用以下几种方法:1.ε-δ法:如果对于任意正数ε,总存在正数δ,使得当项数 n>δ时,级数的各项绝对值都小于ε,那么这个级数就是一致收敛的。
2.柯西准则:如果对于任意正数ε,总存在正数 N,使得当项数 n>N 时,级数的各项绝对值都小于ε,那么这个级数就是一致收敛的。
3.列恩哈德准则:如果对于任意正数ε,总存在正数 N,使得当项数n>N 时,级数的各项绝对值的倒数之和趋于 0,那么这个级数就是一致收敛的。
四、数项级数一致收敛的实际应用一致收敛的级数在数学分析中有广泛的应用,例如求和、求积分、求极限等。
在实数域、复数域以及更高级的数学领域,一致收敛的级数都是研究的重要对象。
同时,一致收敛的级数也是许多实际问题的数学模型,如求解数列的和、计算定积分等。
综上所述,数项级数一致收敛是数学分析中的一个基本概念,具有重要的理论和实际意义。
第十二章 数项级数2 一般项级数一、交错级数概念:若级数各项符号正负相间,即u 1-u 2+u 3-u 4+…+(-1)n+1u n +…(u n >0, n=1,2,…),则称它为交错级数.定理12.11:(莱布尼茨判别法)若交错级数∑∞=+1n n 1n u (-1)满足:(1)数列{u n }单调递减;(2)∞n lim +→u n =0,则该级数收敛.证:交错级数的部分和数列{S n }的奇数项和偶数项分别为: S 2m-1=u 1-(u 2-u 3)-…-(u 2m-2-u 2m-1),S 2m =(u 1-u 2)+(u 3-u 4)…+(u 2m-1-u 2m ). 由条件(1)知上述两式括号内的数皆非负,从而 数列{S 2m-1}递减,数列{S 2m }递增. 又由条件(2)知0<S 2m-1-S 2m =u 2m →0 (m →∞),从而{[S 2m ,S 2m-1]}形成一个区间套, 由区间套定理,存在唯一的一个数S ,使得∞m lim +→S 2m-1=∞m lim +→S 2m =S.∴数列{S n }收敛,即该交错级数收敛.推论:若交错级数满足莱布尼茨判别法的条件,则该收敛级数的余项估计式为|R n |≤u n+1.二、绝对收敛级数及其性质概念:若级数各项绝对值所组成的级数|u 1|+|u 2|+…+|u n |+…收敛, 则称它为绝对收敛级数. 若级数收敛,但不绝对收敛,则称该级数为条件收敛级数.定理12.12:绝对收敛级数一定收敛.证:若级数|u 1|+|u 2|+…+|u n |+…收敛,由柯西收敛准则知, 对任意ε>0,总存在正数N ,使得对n>N 和任意正整数r ,有 |u n+1|+|u n+2|+…+|u n+r |<ε,∴|u n+1+u n+2+…+u n+r |<ε, ∴u 1+u 2+…+u n +…收敛. 得证!例1:证明:级数∑!n a n收敛.证:∵n1n ∞n u u lim++→=1n alim ∞n ++→=0<1,∴原级数绝对收敛.性质1:级数的重排:正整数列{1,2,…,n,…}到它自身的一一映射 f:n →k(n)称为正整数列的重排,相应地对数列{u n }按映射F:u n →u k(n)所得到的数列{u k(n)}称原数列的重排;同样的,级数∑∞=1n k(n)u 也是级数∑∞=1n nu 的重排. 记v n =u k(n),即∑∞=1n k(n)u =v 1+v 2+…+v n +….定理12.13:若级数∑n u 绝对收敛,且其和等于S ,则任意重排后所得到的级数∑n v 也绝对收敛,且有相同的和数.证:不妨设∑n u 为正项级数,用S n 表示它的第n 个部分和, 记T m =v 1+v 2+…+v m 表示级数∑n v 的第m 个部分和.∵级数∑n v 是∑n u 的重排,∴对每一个v k 都等于某一ki u (1≤k ≤m).记n=max{i 1,i 2,…i m }, 则对任何m ,都存在n ,使T m ≤S n .由∞n lim +→S n =S 知,对任何正整数m 有T m ≤S, 即∑n v 收敛,其和T ≤S.又级数∑n u 也是∑n v 的重排,∴S ≤T ,推得T=S.若∑n u 为一般级数且绝对收敛,即正项级数∑n u 收敛,同理可推得 级数∑n v 收敛,∴级数∑n v 收敛. 令p n =2u u nn +,q n =2u u nn -;则当u n ≥0时,p n =u n ,q n =u n ;当u n <0时,p n =0,q n =-u n ≥0. 从而有 0≤p n ≤|u n |,0≤q n ≤|u n |,p n +q n =|u n |,p n -q n =u n . 又∑n u 收敛, ∴∑n p ,∑n q 都是正项的收敛级数,且S=∑n u =∑n p -∑n q .同理得:∑n v =∑'n p -∑'n q ,其中∑'n p ,∑'n q 分别是∑n p ,∑n q 的重排. ∴∑n v =∑'n p -∑'n q =∑n p -∑n q =S. 得证!性质2:级数的乘积:由a ∑n u =∑n au 可推得有限项和与级数的乘积:(a 1+a 2+…+a m )∑∞=1n n u =∑∑∞==1n n m1k k u a .继而可推广到无穷级数之间的乘积:设收敛级数∑n u =A, ∑nv=B.将两个级数中每一项所有可能的乘积列表如下:这些乘积u i v j按各种方法排成不同的级数,如按正方形顺序相加,得u1v1+u1v2+u2v2+u2v1+u1v3+u2v3+u3v3+u3v2+u3v1+…,如下表:或按对角线顺序相加,得u1v1+u1v2+u2v1+u1v3+u2v2+u3v1+…,如下表:定理12.14:(柯西定理) 设绝对收敛级数∑n u=A, ∑n v=B,则由它们中每一项所有可能的乘积u i v j按任意顺序排列所得到的级数∑n w绝对收敛,且其和等于AB.证:设级数∑n w,∑n u,∑n v的部分和分别为:S n =|w 1|+|w 2|+…+|w n |,A m =|u 1|+|u 2|+…+|u m |,B m =|v 1|+|v 2|+…+|v m |. 其中w k =kkj i v u (k=1,2,…,n),m=max{i 1,j 1,i 2,j 2,…,i n ,j n },则必有S n ≤A m B m .∵绝对收敛级数∑n u 与∑n v 的部分和数列{A m }和{B m }都有界, ∴{S n }有界,从而级数∑n w 绝对收敛. 利用绝对收敛级数的可重排性, 将绝对收敛级数∑n w 按正方形顺序重排如下: u 1v 1+(u 1v 2+u 2v 2+u 2v 1)+(u 1v 3+u 2v 3+u 3v 3+u 3v 2+u 3v 1)+…, 把每一括号作一项,得新级数:p 1+p 2+p 3+…+p m +…收敛, 且与∑n w 和数相同,其部分和P m =A m B m . 即有∞m lim +→P m =∞m lim +→A m B m =∞m lim +→A m ∞m lim +→B m =AB. 得证!例2:证明:级数1+2r+…+(n+1)r n +…(|r|<1)绝对收敛,并求其和.证:等比级数∑∞=0n n r =1+r+r 2+…+r n +…=r-11(|r|<1),绝对收敛. 将(∑∞=0n n r )2的所有可能的项按对角线顺序相加得:1+(r+r)+(r 2+r 2+ r 2)+…+(r n +…+r n )+… (括号内共有n+1个r n ) =1+2r+…+(n+1)r n +…=2r)-(11. ∴所求级数绝对收敛,其和为2r)-(11.二、阿贝尔判别法和狄利克雷判别法引理:(分部求和公式,也称阿贝尔变换)设εi ,v i (i=1,2,…,n)为两组实数, 若令T k =v 1+v 2+…+v k (k=1,2,…,n),则有如下分部求和公式成立:∑=n1i ii vε=(ε1-ε2)T 1+(ε2-ε3)T 2+…+(εn-1-εn )T n-1+εn T n .证:以v 1=T 1, v k =(T k -T k-1) (k=2,3,…,n)分别乘以εk (k=1,2,…,n),则∑=n1i ii vε=ε1v 1+ε2v 2+…+εn v n =ε1T 1+ε2(T 2-T 1)+…+εn (T n -T n-1)=(ε1-ε2)T 1+(ε2-ε3)T 2+…+(εn-1-εn )T n-1+εn T n .推论:(阿贝尔引理)若(1)ε1, ε2,…, εn 是单调数组;(2)对任一正整数k(1≤k ≤n)有|T k |=|v 1+v 2+…+v k |≤A ,记ε=kmax {|εk |},有∑=n1k k k v ε≤3εA.证:由(1)知ε1-ε2, ε2-ε3, …, εn-1-εn 同号,于是由分部求和公式及(2)有∑=n1k k kv ε=|(ε1-ε2)T 1+(ε2-ε3)T 2+…+(εn-1-εn )T n-1+εn T n |≤A|(ε1-ε2)+(ε2-ε3)+…+(εn-1-εn )|+A|εn |=A|(ε1-εn )|+ A|εn | ≤A(|ε1|+2|εn |)≤3εA.定理12.15:(阿贝尔判别法)若{a n }为单调有界数列,且级数∑n b 收敛, 则级数∑n n b a =a 1b 1+a 2b 2+…+a n b n +…收敛.证:由级数∑n b 收敛,依柯西准则,对任给正数ε, 存在正数N, 使 当n>N 时,对一切正整数p ,都有∑++=pn 1n k kb<ε.又数列{a n }单调有界,∴存在正数M ,使|a n |≤M ,根据阿贝尔引理有∑++=pn 1n k k kb a≤3εM. ∴级数∑n n b a 收敛.注:由阿贝尔判别法知,若级数∑n u 收敛,则下述两个级数:(1)∑p nn u (p>0);(2)∑+1n u n 都收敛.定理12.16:(狄利克雷判别法)若数列{a n }单调递减,且∞n lim +→a n =0,又且级数∑n b 的部分和数列有界,则级数∑n n b a 收敛.例3:证明:若数列{a n }单调递减,且∞n lim +→a n =0,则级数∑sinnx a n 和∑cosnx a n 对任何x ∈(0,2π)都收敛.证:2sin 2x (21+∑=n 1k coskx )=sin 2x +2sin 2x cosx+2sin 2x cos2x+…+2sin 2xcosnx= sin 2x +(sin 23x-sin 2x )+…+[sin(n+21)x-sin(n-21)x]=sin(n+21)x. 当x ∈(0,2π)时,sin 2x ≠0, cot 2x ≠+∞.∴∑=n1k coskx =2x 2sinx 21n sin ⎪⎭⎫ ⎝⎛+-21=21sinnxcot 2x +2cosnx -21.又-21cot 2x -1≤21sinnxcot 2x +2cosnx -21≤21cot 2x ,即当x ∈(0,2π)时,∑cosnx 的部分和数列有界,由狄利克雷判别法知级数∑cosnx an收敛.2sin 2x (∑=n 1k sinkx -21cot 2x )=2sin 2x sinx+2sin 2x sin2x+…+2sin 2x sinnx-cos 2x= (cos 2x-cos 23x) +…+[cos(n-21)x-cos(n+21)x]-cos 2x =-cos(n+21)x. 当x ∈(0,2π)时,sin 2x ≠0, cot 2x ≠+∞.∴∑=n1k sinkx =21cot 2x -2x 2sin x 21n cos ⎪⎭⎫ ⎝⎛+=2x 2sinx 21n cos -2x cos ⎪⎭⎫ ⎝⎛+.又- csc 2x =2x sin 1-≤2x 2sin x 21n cos -2x cos ⎪⎭⎫ ⎝⎛+≤2x sin1=csc 2x ,即当x ∈(0,2π)时,∑sinnx 的部分和数列有界,由狄利克雷判别法知级数∑sinnx an收敛.注:作为例3的特例,级数∑n sinnx 和∑ncosnx对一切x ∈(0,2π)都收敛.习题1、下列级数哪些是绝对收敛,条件收敛或发散的:(1)∑!n sinnx ;(2)∑+-1n n )1(n;(3)∑+n1p n n (-1);(4)∑-n 2sin )1(n ;(5)∑⎪⎪⎭⎫ ⎝⎛+n 1n (-1)n ;(6)∑++1n 1)ln(n (-1)n ;(7)n n 13n 1002n )1(∑⎪⎭⎫ ⎝⎛++-;(8)nn x !n ∑⎪⎭⎫ ⎝⎛. 解:(1)∵!n sinnx <2n 1(n>4);又级数∑2n1收敛,∴原级数绝对收敛. (2)∵1n n)1(limn ∞n +-+→=1≠0;∴原级数发散. (3)∵当p ≤0时,n1p n ∞n n(-1)lim++→≠0;∴原级数发散;当p>1时,n1p n n(-1)+≤p n 1;又级数∑p n1(p>1)收敛,∴原级数绝对收敛. 当0<p ≤1时,令u n =n1p n1+,则n1n u u +=1n 1p n 1p 1)(n n++++=1n 1pn1)1n (n 11n++⎪⎭⎫⎝⎛+<1n 1pn 1n n 11n+⎪⎭⎫ ⎝⎛+=p1)n(n 1n 11n⎪⎭⎫ ⎝⎛++,∵np ∞n n 11lim ⎪⎭⎫ ⎝⎛++→=e p>1, 1n 1∞n n lim ++→=1,∴当n 充分大时,npn 11⎪⎭⎫ ⎝⎛+>1n 1n +,即 p n 11⎪⎭⎫ ⎝⎛+>1)n(n 1n+,从而n1n u u +<1,即u n+1<u n ,∴{u n }在n 充分大后单调减. 又∞n lim +→u n =n1p ∞n n1lim++→=0(0<p ≤1),由莱布尼兹判别法知原级数条件收敛.(4)∵n2n2sin)1(limn ∞n -+→=1, 且级数∑n2发散,∴原级数不绝对收敛. 又{n2sin }单调减,且n2sin lim ∞n +→=0,由莱布尼兹判别法知原级数条件收敛. (5)∵级数∑n(-1)n收敛,而级数∑n1发散,∴原级数发散.(6)∵1n 1)ln(n (-1)n ++>1n 1+(n ≥2),且∑+1n 1发散,∴原级数不绝对收敛.又{1n 1)ln(n ++}单调减且1n 1)ln(n lim ∞n +++→=0,∴原级数条件收敛. (7)记u n =n13n 1002n ⎪⎭⎫⎝⎛++,则n ∞n u lim +→=13n 1002n lim ∞n +++→=32,∴原级数绝对收敛. (8)记u n =n n x !n ⎪⎭⎫ ⎝⎛,则n 1n ∞n u u lim ++→=n∞n 1n n x lim ⎪⎭⎫⎝⎛++→=|e x |, ∴当-e<x<e 时,n1n ∞n u u lim++→<1,原级数绝对收敛; 当x ≥e 或x ≤-e 时,n1n ∞n u u lim++→≥1,即当n 充分大时,|u n+1|≥|u n |>0,∴n ∞n u lim +→≠0,∴原级数发散.2、应用阿贝尔判别法或狄利克雷判别法判断下列级数的收敛性:(1)nn n x 1x n (-1)+⋅∑ (x>0); (2)∑a n sinnx, x ∈(0,2π) (a>0); (3)nnxcos )1(2n∑-, x ∈(0,π).解:(1)∵当x>0时,0<n n x 1x +<n n x x =1,且n n1n 1n x 1xx 1x ++++=1n 1n x 1x x ++++; 若0<x ≤1,则1n 1n x 1x x ++++≤1;若x>1,则1n 1n x1x x ++++>1, 即数列{n n x 1x +}单调有界. 又级数∑n(-1)n收敛,由阿贝尔判别法知原级数收敛. (2)∵当a>0时,数列{a n1}单调递减,且∞n lim +→a n 1=0, 又当x ∈(0,2π)时,∑=n1k sinkx ≤csc 2x,即∑sinnx 的部分和数列有界,由狄利克雷判别法知原级数收敛. (3)∵数列{n 1}单调递减,且∞n lim+→n1=0,又当x ∈(0,π), ∑=n1k 2kkx cos (-1)=∑=+n1k k21cos2kx (-1)≤∑=n 1k k 2(-1)+∑=n1k k 2cos2kx (-1)≤21+∑=n1k cos2kx 21.又由2sinx ∑=n 1k cos2kx =4sin(2n+1)x-4sinx ,得∑=n1k cos2kx =2sinx4sinx -1)x 4sin(2n +≤sinx 2+2, 即对任意x ∈(0,π),级数nx cos )1(2n ∑-有界, 根据狄利克雷判别法知原级数收敛.3、设a n >a n+1>0 (n=1,2,…)且∞n lim +→a n =0.证明:级数∑+⋯++na a a (-1)n211-n 收敛.证:由a n >a n+1>0 (n=1,2,…)且∞n lim +→a n =0知, {na a a n21+⋯++}单调减且趋于0,由莱布尼茨判别法知原级数收敛.4、设p n =2u u nn +,q n =2u u nn -.证明:若∑n u 条件收敛,则级数∑n p 与∑n q 都是发散的. 证:若∑n u 条件收敛,则∑n u 发散, ∴∑n p =∑+2u u nn =∑2u n +∑2u n,发散; ∑n q =∑-2u u nn =∑2u n -∑2u n,发散.5、写出下列级数的乘积:(1)⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=1n 1-n 1-n 1n 1-n nx (-1)nx ; (2)⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=0n n 0n n!(-1)n!1. 解:(1)当|x|<1时,两个级数均绝对收敛,乘积按对角线一般项为:w n =k-n k-n n1k 1-k 1)xk -(n (-1)·kx +∑==xn-1∑=+n1k k-n 1)k -k(n (-1), 从而有w 2m =x2m-1∑=+2m1k k-2m 1)k -k(2m (-1)=[-2m+…+(-1)m (m 2+m)+2m+…+(-1)m-1(m 2+m)]=0; w 2m+1=x 2m∑+=++12m 1k 1k -2m 2)k -k(2m (-1)=x 2m[∑+=++12m 1k 1k -2m 1)k -k(2m (-1)+∑+=+12m 1k 1k -2m k (-1)]=-x 2m∑+=+12m 1k k-2m 1)k -k(2m (-1)+x2m∑+=+12m 1k 1k -2m k (-1)=- w 2m +x2m∑+=-12m 1k 1k k (-1)=x2m∑+=-12m 1k 1k k (-1)=x 2m(1-2+3-4+…-2m+2m+1)=(m+1) x 2m.∴⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=1n 1-n 1-n 1n 1-n nx (-1)nx =∑∞=+0m 2m 1)x (m . (|x|<1).(2)两个级数均绝对收敛,其乘积按对角线一般项为:w 0=1, w n =k)!-(n (-1)·k!1k -n nk ∑==n!1∑=nk k -n k)!-(n k!n!(-1)=n!1)-(1n=0(n=1,2,…) ∴⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=0n n0n n!(-1)n!1=1.注:二项式n 次幂展开式:(1-1)n=∑=nk k -n k)!-(n k!n!(-1).6、证明级数∑∞=0n n n!a 与∑∞=0n n n!b 绝对收敛,且它们的乘积等于∑∞=+0n nn!b)(a .证:n!a 1)!(n a limn 1n ∞n +++→=1n alim ∞n ++→=0,∴∑∞=0n n n!a 绝对收敛. 同理∑∞=0n nn!b 绝对收敛. 按对角线顺序,其乘积各项为:C 0=1=!0b)(a 0+, ……,C n =k)!-(n b k!a k -n n1k k ⋅∑==n!∑=n 0k k -n k k)!-(n k!n!b a =n!b)(a n +. ∴∑∞=0n n n!a ·∑∞=0n n n!b =∑∞=+0n nn!b)(a .7、重排级数∑+-n1)1(1n ,使它成为发散级数. 解:∑+-n 1)1(1n =1-21+31-41+…+n 1)1(1n +-+…=∑∞=1k 1-2k 1-∑∞=1k 2k 1,∑∞=1k 1-2k 1∵∑∞=1k 2k 1和∑∞=1k 1-2k 1是发散的正项级数,∴存在n 1,使u 1=∑=1n 1k 1-2k 1-21>1,又∑∞+=1n k 11-2k 1发散,∴存在n 2>n 1,使u 2=∑+=21n 1n k 1-2k 1-41>21,同理存在n 3>n 2,使u 3=∑+=32n 1n k 1-2k 1-61>31,…,u i+1=∑++=1i i n 1n k 1-2k 1-1)2(i 1+>1i 1+,可得原级数的一个重排∑∞=1i i u . ∵u i >i 1,且∑i 1发散,∴∑∞=1i i u 必发散.8、证明:级数∑-n)1(]n [收敛.证:记A L ={n|[n ]=L}, L=1,2,…,显然A L 中元素n 满足L 2≤n<(L+1)2,且A L 中元素个数为2L+1. 记U L =∑∈-L A n ]n [n )1(,则有u L =∑∈-LA n Ln )1(=(-1)L V L , 其中V L =∑∈L A n n 1,则V L -V L+1=∑=+2L0s 2s L 1-∑+=++1)2(L 0s 2s)1(L 1=∑=++++2Ls 22s])1s)[(L (L 1L 2-1L 2)1(L 12+++-2L 2)1(L 12+++≥∑=+++2L0s 22L]2)1[(L 1L 2-L 2)1(L 22++=222L]2)1[(L L]2)12[(L -1)L 2(L 2+++++=2222L]2)1[(L L)2-1-L 2L -L L 2(2++-+=222L]2)1[(L 1)-3L L (2++->0(当L ≥4时). ∴当L ≥4时, { V L }是单调下降数列. 当n ∈A L 时,21)(L 1+<n 1≤2L 1, ∴21)(L 1L 2++<V L ≤2L 1L 2+,可见∞L lim +→V L =0,从而∑∞=1L L u =∑∞=1L L LV (-1)收敛. 设级数∑∞=-1n ]n [n )1(的部分和为S N ,记级数∑∞=1n n u 的部分和为U M ,则S N =∑=-N1n ]n [n )1(,U M =∑=M1n n u ,任一个S N 均被包含在某相邻两个部分和U M , U M+1之间,即有|S N -U M |≤|U M+1-U M |,由级数∑∞=1n n u 收敛,知∞M lim +→U M+1-U M =0,∴∞N lim +→S N -U M =0,即极限∞N lim +→S N =∞N lim +→U M =∑∞=1n n u 存在,∴级数∑-n)1(]n [收敛.。
数学分析数项级数数项级数是由一组数相加而成的序列。
数项级数在数学中有着非常重要的地位,常用于研究数学分析、微积分和数论等领域。
首先,我们来定义数项级数。
数项级数是由一组实数a1, a2,a3, ... 组成的序列,将其相加得到的序列表示为:S1 = a1, S2 = a1 + a2, S3 = a1 + a2 + a3, ... 一般地,第n个部分和Sn为Sn = a1 +a2 + ... + an。
我们首先来讨论数项级数的部分和序列。
部分和序列是数项级数中非常重要的概念。
如果部分和序列Sn收敛于一个实数S,即lim(n→∞)Sn = S,那么我们称该数项级数是收敛的,并称S为该数项级数的和。
如果部分和序列Sn不收敛,我们称该数项级数是发散的。
接下来,我们来研究一些收敛数项级数的性质。
首先是数项级数的有界性。
如果数项级数收敛,那么它的部分和序列一定是有界的。
这是因为收敛数列的定义就包含了它的部分和序列是有界的。
其次,我们来看数项级数的比较判别法。
这是判断数项级数的敛散性的一种常用方法。
如果对于一个正数b来说,数项级数绝对值的部分和序列Sn满足Sn≤b,那么我们称该数项级数是收敛的。
该方法常用于判定数项级数在无穷大时的敛散性。
再次,我们来看数项级数的比值判别法。
如果数项级数的部分和序列Sn满足lim(n→∞) ,Sn+1 / Sn, = L,那么我们有下面的结论:1)当L<1时,数项级数是收敛的;2)当L>1时,数项级数是发散的;3)当L=1时,该方法无法判定数项级数的敛散性。
最后,我们来看数项级数的积分判别法。
对于一个连续递减的正函数f(x),如果数项级数的部分和序列Sn与函数f(x)的积分∫(n→∞) f(x) dx之间存在以下关系:1)当∫(n→∞) f(x) dx收敛时,数项级数也是收敛的;2)当∫(n→∞) f(x) dx发散时,数项级数也是发散的。
以上是数项级数的一些基本概念和性质。
第十二章 数项级数 ( 1 4 时 )§1 级数的收敛性( 3 时 )一. 概念:1.级数:级数,无穷级数;通项 (一般项, 第n 项), 前n 项部分和等概念 (与中学的有关概念联系).级数常简记为∑nu.2. 级数的敛散性与和:介绍从有限和入手, 引出无限和的极限思想.以在中学学过的无穷等比级数为蓝本, 定义敛散性、级数的和、余和以及求和等概念 . 例1 讨论几何级数∑∞=0n nq的敛散性.解 当1||<q 时, ) ( , 11110∞→-→--==∑=n q q q q S n nk kn . 级数收敛;当1||>q 时, , =n S 级数发散 ;当1=q 时, +∞→+=1n S n , ) (∞→n , 级数发散 ; 当1-=q 时, ()n n S )1(121-+=, ) (∞→n , 级数发散 . 综上, 几何级数∑∞=0n n q 当且仅当 1||<q 时收敛, 且和为q-11( 注意n 从0开始 ). 例2 讨论级数∑∞=+1)1(1n n n 的敛散性. 解 用链锁消去法求. 例3 讨论级数∑∞=12n n n的敛散性. 解 设 ∑=-+-++++==nk n n k n n n k S 11322212322212, =n S 211432221 232221++-++++n n nn ,1322212121212121+-++++=-=n n n n n n S S S12211211211→--⎪⎭⎫ ⎝⎛-=+n n n , ) (∞→n .⇒ n S →2, ) (∞→n .因此, 该级数收敛. 例4 讨论级数∑∞=-1352n n n的敛散性. 解52, 5252352⋅>⇒=>-n S n n n n n →∞+, ) (∞→n . 级数发散.3. 级数与数列的关系:⑴设∑nu对应部分和数列{n S }, 则∑nu收敛 ⇔ {n S }收敛;⑵对每个数列{n x },对应级数∑∞=--+211)(n n nx xx ,对该级数,有n S =n x .于是,数列{n x }收敛⇔级数 ∑∞=--+211)(n n nx xx 收敛.可见,级数与数列是同一问题的两种不同形式. 4. 级数与无穷积分的关系:⑴⎰∑⎰+∞∞=+==111)(n n nf dx x f ∑∞=1n nu, 其中 ⎰+=1n nn f u . 无穷积分可化为级数;⑵对每个级数, 定义函数 , 2 , 1 , 1 , )(=+<≤=n n x n u x f n , 易见有∑∞=1n nu=⎰+∞1)(dx x f . 即级数可化为无穷积分.综上所述,级数和无穷积分可以互化,它们有平行的理论和结果.可以用其中的一个研究另一个.二 级数收敛的充要条件 —— Cauchy 准则 :把部分和数列{n S }收敛的Cauchy 准则翻译成级数的语言,就得到级数收敛的Cauchy 准则.Th1 ( Cauchy 准则 )∑nu收敛⇔N n N >∀∃>∀ , , 0ε和∈∀p N ⇒ε | |21<++++++p n n n u u u .由该定理可见,去掉或添加上或改变(包括交换次序) 级数的有限项, 不会影响级数的敛散性. 但在收敛时, 级数的和将改变.去掉前 k 项的级数表为∑∞+=1k n nu或∑∞=+1n kn u.推论 (级数收敛的必要条件)∑nu收敛⇒ 0lim =∞→n n u .例5 证明2-p 级数∑∞=121n n 收敛 . 证 显然满足收敛的必要条件.令 21nu n =, 则当 2≥n 时,有 ∑∑==+++<+-=+-+<+=+++pk pk p n n n n p n n k n k n k n u u u 11221 ,111))(1(1 )(1 | | 注: 应用Cauchy 准则时,应设法把式 |∑=+pk kn u1|不失真地放大成只含n 而不含p 的式子,令其小于ε,确定N . 例6 判断级数∑∞=11sinn nn 的敛散性. (验证 0→/n u . 级数判敛时应首先验证是否满足收敛的必要条件)例7 证明调和级数∑∞=11n n发散. 证法一 (用Cauchy 准则的否定进行验证) 证法二 (证明{n S }发散.利用不等式n nn ln 1 1211 )1ln(+<+++<+ . 即得+∞→n S ,) (∞→n . )注: 此例为0→n u 但级数发散的例子.三. 收敛级数的基本性质:(均给出证明)性质1∑nu收敛,a 为常数⇒∑nau收敛,且有∑nau=a∑nu(收敛级数满足分配律)性质2∑nu和∑nv收敛⇒)(n nv u±∑收敛,且有)(n n v u ±∑=∑n u ±∑nv.问题:∑nu、∑nv、)(n nv u±∑三者之间敛散性的关系.性质3 若级数∑nu收敛, 则任意加括号后所得级数也收敛, 且和不变.(收敛数列满足结合律)例8 考查级数 ∑∞=+-11)1 (n n 从开头每两项加括号后所得级数的敛散性. 该例的结果说明什么问题 ?Ex [1]P 5—7 1 — 7.§2 正项级数( 3 时 )一. 正项级数判敛的一般原则 :1.正项级数: n n S u , 0>↗; 任意加括号不影响敛散性.2. 基本定理: Th 1 设0≥n u .则级数∑nu收敛⇔)1(0=n S .且当∑nu发散时,有+∞→n S ,) (∞→n . ( 证 )正项级数敛散性的记法 . 3. 正项级数判敛的比较原则: Th 2 设∑nu和∑nv是两个正项级数, 且N n N >∃ , 时有n n v u ≤, 则 ⅰ> ∑nv <∞+ , ⇒ ∑nu<∞+ ;ⅱ>∑nu=∞+, ⇒∑nv=∞+ . ( ⅱ> 是ⅰ>的逆否命题 )例1 考查级数∑∞=+-1211n n n 的敛散性 .解 有 , 2 11 012222nn n n n <+-⇒>+- 例2 设)1( 0π><<q q p . 判断级数∑∞=+111sin n n n q p 的敛散性.推论1 (比较原则的极限形式) 设∑n u 和∑n v 是两个正项级数且l v u nnn =∞→lim,则ⅰ> 当∞+<< 0l 时,∑nu和∑nv共敛散 ; ⅱ> 当0=l 时 ,∑nv<∞+⇒∑nu<∞+ ;ⅲ> 当+∞=l 时,∑nv=∞+⇒∑nu=∞+ . ( 证 )推论2 设∑nu和∑nv 是两个正项级数,若n u =)(0n v ,特别地,若 n u ~n v ,) (∞→n , 则∑nu<∞+⇔∑nv=∞+.例3 判断下列级数的敛散性:⑴∑∞=-121n n n ; ( n n -21~ n 21) ; ⑵ ∑∞=11sin n n ; ⑶ ∑∞=+12) 11 ln(n n .二 正项级数判敛法:1.比值法:亦称为 D ’alembert 判别法.用几何级数作为比较对象,有下列所谓比值法. Th 3 设∑nu为正项级数, 且0 N ∃ 及 0 , ) 10 ( N n q q ><<时ⅰ> 若11<≤+q u u nn ⇒∑n u <∞+; ⅱ> 若11≥+nn u u ⇒∑n u =∞+ . 证 ⅰ> 不妨设 1≥n 时就有11<≤+q u u nn 成立, 有, , , , 12312q u u q u u q u u n n ≤≤≤- 依次相乘⇒11-≤n n q u u , 即 11-≤n n qu u . 由 10<<q , 得∑<nq∞+⇒∑n u <∞+.ⅱ> 可见}{n u 往后递增⇒ , 0→/n u ) (∞→n . 推论 (比值法的极限形式) 设∑n u 为正项级数, 且 q u u nn n =+∞→1lim. 则ⅰ> 当q <1⇒∑nu<∞+; ⅱ>当q >1或q =∞+⇒∑nu=∞+. ( 证 )注: ⑴倘用比值法判得∑nu=∞+, 则有 , 0→/n u ) (∞→n .⑵检比法适用于n u 和1+n u 有相同因子的级数, 特别是n u 中含有因子!n 者. 例4 判断级数 ()()+-+⋅⋅-+⋅⋅++⋅⋅⋅⋅+⋅⋅+)1(41951)1(32852951852515212n n的敛散性. 解 1 434132lim lim1<=++=∞→+∞→n n u u n nn n ⇒∑+∞<.例5 讨论级数∑>-)0( 1x nx n 的敛散性.解 因为) ( , 1)1(11∞→→+⋅+=-+n x n n x nxx n u u n n n n . 因此, 当10<<x 时,∑+∞<; 1>x 时, ∑+∞=; 1=x 时, 级数成为∑n , 发散.例6 判断级数∑+nn n n !21的敛散性 .注: 对正项级数∑n u ,若仅有11<+nn u u ,其敛散性不能确定. 例如对级数∑n 1和∑21n,均有 11<+nn u u ,但前者发散, 后者收敛.Ex [1]P 16 1⑴―⑺, 2⑴⑵⑷⑸,3,4,12⑴⑷;2. 根值法 ( Cauchy 判别法 ): 也是以几何级数作为比较的对象建立的判别法.Th 4 设∑nu为正项级数,且 0 N ∃ 及 0>l , 当 0N n >时,ⅰ> 若 1 <≤l u n n ⇒∑nu<∞+;ⅱ> 若1 ≥n n u ⇒∑nu =∞+. ( 此时有 , 0→/n u ) (∞→n .) ( 证 ) 推论 (根值法的极限形式) 设∑nu为正项级数,且 l u n n n =∞→lim . 则ⅰ> 当1 <l 时⇒∑nu<∞+; ⅱ> 当1 >l 时⇒∑nu=∞+ . ( 证 )注: 根值法适用于通项中含有与n 有关的指数者.根值法优于比值法. (参阅[1]P 12)例7 研究级数 ∑-+nn2) 1 (3的敛散性 .解 1212)1(3l i m l i m <=-+=∞→∞→nnn n nn u ⇒∑+∞<. 例8 判断级数∑⎪⎭⎫⎝⎛+21n n n 和∑⎪⎭⎫⎝⎛+21n n n 的敛散性 .解 前者通项不趋于零 , 后者用根值法判得其收敛 . 3. 积分判别法:Th 5 设在区间) , 1 [∞+上函数0)(≥x f 且↘. 则正项级数∑)(n f 与积分⎰+∞1)(dx x f 共敛散.证 对] , 1[ , 1 A R f A ∈>∀ 且 ⎰-=-≤≤nn n n f dx x f n f 1, 3 , 2 , )1()()(⇒⎰∑∑∑=-===-≤≤mmn m n mn n f n f dx x f n f 12112, )()1()()( . 例9 讨论 -p 级数∑∞=11n pn的敛散性. 解 考虑函数>=p xx f p ,1)(0时)(x f 在区间 ) , 1 [∞+上非负递减. 积分⎰+∞1)(dxx f当1>p 时收敛, 10≤<p 时发散⇒级数∑∞=11n pn当1>p 时收敛,当10≤<p 时发散,当0≤p 时,01→/pn , 级数发散. 综上,-p 级数∑∞=11n pn当且仅当1>p 时收敛. 例10 讨论下列级数的敛散性:⑴ ∑∞=2) ln ( 1n p n n ; ⑵ ∑∞=3)ln ln ( ) ln ( 1n pn n n .Ex [1]P 16 1⑻,2⑶⑹,5,6,8⑴―⑶,11;§3 一般项级数 ( 4 时 )一. 交错级数: 交错级数, Leibniz 型级数.Th 1 ( Leibniz ) Leibniz 型级数必收敛,且余和的符号与余和首项相同, 并有1 ||+≤n n u r . 证 (证明部分和序列 } {n S 的两个子列} {2n S 和} {12+n S 收敛于同一极限. 为此先证明} {2n S 递增有界. ))()()()(22122124321)1(2++-+-+-++-+-=n n n n n u u u u u u u u S ≥ n n n S u u u u u u 22124321)()()(=-++-+-- ⇒n S 2↗; 又 1212223212)()(u u u u u u u S n n n n ≤------=-- , 即数列} {2n S 有界. 由单调有界原理, 数列} {2n S 收敛 . 设 )( , 2∞→→n s S n .)( , 12212∞→→+=++n s u S S n n n . ⇒s S n n =∞→lim .由证明数列} {2n S 有界性可见 , ∑∞=+≤-≤111)1 (0n n n u u . 余和∑∞=++-nm m m u 12)1(亦为型级数 ⇒余和n r 与1+n u 同号, 且1 ||+≤n n u r .例1 判别级数∑∞=>-1)0( ) 1 (n nnx n x 的敛散性.解 当10≤<x 时, 由Leibniz 判别法⇒∑收敛;当1>x 时, 通项0→/,∑发散.二. 绝对收敛级数及其性质:1. 绝对收敛和条件收敛: 以Leibniz 级数为例, 先说明收敛⇒/ 绝对收敛.Th 2 ( 绝对收敛与收敛的关系 ) ∑∞+< ||na, ⇒∑na收敛.证 ( 用Cauchy 准则 ).注: 一般项级数判敛时, 先应判其是否绝对收敛. 例2 判断例1中的级数绝对或条件收敛性 . 2. 绝对收敛级数可重排性: ⑴ 同号项级数:对级数∑∞=1n nu,令⎩⎨⎧≤>=+=. 0 , 0 , 0 , 2||n n n n n n u u u u u v ⎩⎨⎧≥<-=-= . 0 , 0 ,0 , 2||n n n n n n u u u u u w 则有 ⅰ>∑nv和∑nw均为正项级数 , 且有|| 0n n u v ≤≤和|| 0n n u w ≤≤;ⅱ> n n n w v u +=|| , n n n w v u -= . ⑵ 同号项级数的性质: Th 3 ⅰ> 若∑||nu +∞< , 则∑n v +∞< ,∑n w +∞< .ⅱ> 若∑nu条件收敛 , 则∑nv+∞= ,∑nw+∞= .证 ⅰ> 由|| 0n n u v ≤≤和|| 0n n u w ≤≤, ⅰ> 成立 .ⅱ> 反设不真 , 即∑nv和∑nw中至少有一个收敛 , 不妨设∑nv+∞< .由 n u = n v n w - , n w =n v n u - 以及 ∑nv+∞<和∑n u 收敛 ⇒∑n w +∞<.而n n n w v u +=||⇒∑||nu+∞<, 与∑n u 条件收敛矛盾 .⑶ 绝对收敛级数的可重排性: 更序级数的概念. Th 4 设∑'nu 是∑nu的一个更序. 若∑||nu+∞<,则||∑'nu +∞<,且∑'n u =∑n u . 证 ⅰ> 若n u 0≥,则∑'nu 和∑nu是正项级数,且它们的部分和可以互相控制.于是,∑nu+∞< ⇒∑'nu +∞<, 且和相等. ⅱ> 对于一般的n u , ∑nu=∑nv ∑-nw⇒∑'nu = ∑'nv ∑'-nw .正项级数∑'nv 和∑'n w 分别是正项级数∑nv和∑nw的更序. 由∑||nu+∞<, 据Th 1 ,∑nv和∑nw收敛. 由上述ⅰ>所证,有∑'nv +∞<,∑'nw +∞<, 且有∑nv =∑'nv , ∑n w ∑n u =∑'n w ⇒∑nu =∑'nu .由该定理可见, 绝对收敛级数满足加法交换律.是否只有绝对收敛级数才满足加法交换律呢 ? 回答是肯定的 . Th 5 ( Riemann ) 若级数∑nu条件收敛, 则对任意实数s ( 甚至是∞± ),存在级数∑nu的更序∑'nu , 使得∑'nu =s .证 以Leibniz 级数∑∞=+-111) 1 (n n n为样本, 对照给出该定理的证明. 关于无穷和的交换律, 有如下结果: ⅰ> 若仅交换了级数∑nu的有限项,∑nu的敛散性及和都不变.ⅱ> 设∑'nu 是的一个更序. 若N ∈∃K , 使 nu在∑'nu 中的项数不超过K n +,106则∑'n u 和∑n u 共敛散, 且收敛时和相等 .三. 级数乘积简介:1. 级数乘积: 级数乘积, Cauchy 积. [1] P 20—22.2.级数乘积的Cauchy 定理:Th 6 ( Cauchy ) 设∑||n u +∞<, ||∑n v +∞<, 并设∑n u =U , ∑n v =V . 则 它们以任何方式排列的乘积级数也绝对收敛, 且乘积级数的和为UV . ( 证略 ) 例3 几何级数1 || ,1112<+++++=-r r r r rn 是绝对收敛的. 将()2∑n r 按Cauchy 乘积排列, 得到 +++++++++++=++个12222)()()(1)1(1n n n n r r r r r r r r r ++++++=n r n r r )1(3212 .Ex [1] P 24—25 1⑴—⑻ ⑽,4; 31(总Ex ) 2,3,4⑴⑵;四. 型如∑n n b a 的级数判敛法:1.Abel 判别法:引理1 (分部求和公式,或称Abel 变换)设i a 和i b m i ≤≤1)为两组实数.记) (1 ,1m k b B k i i k ≤≤=∑=. 则∑∑=-=++-=m i m i m m i i i i i B a B a a b a 1111)(.证 注意到 1--=i i i B B b , 有∑∑==-+-=m i m i i i ii i b a B B a b a 12111)()()()(123312211--++-+-+=m m m B B a B B a B B a B a107 m m m m m B a B a a B a a B a a +-++-+-=--11232121)()()() )( ( . )(111111∑∑-=+-=+--=+-=m i i i i m m m m m i i i i B a a B a B a B a a. 分部求和公式是离散情况下的分部积分公式. 事实上,⎰⎰⎰=⎪⎪⎭⎫ ⎝⎛=b a ba x a dt t g d x f dx x g x f )()()()( ⎰⎰⎰⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=b a x a b a x a x df dt t g dt t g x f )()()()(⎰⎰⎰⎪⎭⎫ ⎝⎛-=b a b ax a x df dt t g dt t g b f )()()()(. 可见Abel 变换式中的i B 相当于上式中的⎰x a dt t g )(, 而差i i a a -+1相当于)(x df , 和式相当于积分. 引理 2 ( Abel )设i a 、i b 和i B 如引理1 .若i a 单调 , 又对m i ≤≤1,有M B i ≤||,则||1∑=mi i i b a ) ||2|| (1m a a M +≤.证 不妨设i a ↘.||1∑=m i i i ba ∑-=++-≤111||||||m i m m i i i B a B a a ) ||2|| ( ||)(1111m m i m i i a a M a a a M +≤⎥⎦⎤⎢⎣⎡+-≤∑-=+. 推论 设i a , 0≥i a ↘,(m i ≤≤1 ). i b 和i B 如引理1. 则有||1∑=m i i i ba 1Ma ≤.( 参引理2证明 ) Th 7 (Abel 判别法)设ⅰ> 级数∑n b 收敛,ⅱ> 数列}{n a 单调有界.则级数∑n n b a 收敛. 证 (用Cauchy 收敛准则,利用Abel 引理估计尾项)设K a n ≤||, 由∑n b 收敛 ⇒对N n N >∃>∀ , , 0ε时 , 对N ∈∀p , 有108 ε | |21<++++++p n n n b b b .于是当N n >时对p ∀有()εεK a a b a p n n pn n k k k 3 ||2|| 11≤+≤++++=∑.由Cauchy 收敛准则 ⇒∑n n b a 收敛.2. Dirichlet 判别法:Th 8 ( Dirichlet)设ⅰ> 级数∑n b 的部分和有界, ⅱ> 数列}{n a 单调趋于零. 则级数∑n n b a 收敛.证 设∑==n i n n bB 1, 则M B n ||≤ ⇒对p n , ∀, 有M B B b b b n p n p n n n 2 ||||21≤-=+++++++ .不妨设n a ↘0 ⇒对εε<⇒>∀∃>∀|| , , , 0n a N n N . 此时就有εM a a M b a P n n pn n k k k 6|)|2|(|2 11<+≤++++=∑.由Cauchy 收敛准则,∑n n b a 收敛. 取n a ↘0,∑n b ∑+-=1) 1(n ,由Dirichlet 判别法, 得交错级数∑+-n n a 1) 1(收敛 . 可见Leibniz 判别法是Dirichlet 判别法的特例.由Dirichlet 判别法可导出 Abel 判别法. 事实上, 由数列}{n a 单调有界 ⇒}{n a 收敛, 设) ( , ∞→→n a a n .考虑级数∑∑+-n n n b a b a a )(,a a n -单调趋于零,n B 有界 ⇒级数∑-n n b a a )(收敛,又级数∑n b a 收敛⇒级数∑∑+-n n n b a b a a )(收敛.109 例4 设n a ↘0.证明级数∑nx a n sin 和∑nx a n cos 对)2 , 0(π∈∀x 收敛.证 ++⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛+∑= 2s i n 23s i n 2s i n c o s 212s i n 21x x x kx x n k x n x n x n ) 21sin() 21 sin() 21 sin(+=⎥⎦⎤⎢⎣⎡--++, ) 2 , 0 (π∈x 时,02sin ≠x ⇒∑=+=+nk x x n kx 12sin 2) 21 sin(cos 21. 可见) 2 , 0 (π∈x 时, 级数∑kx cos 的部分和有界. 由Dirichlet 判别法推得级数∑nx a n cos 收敛 . 同理可得级数数∑nx a n sin 收敛 .Ex [1]P 24 — 25 2, 3.。