汽轮机疏水系统节能分析
- 格式:pdf
- 大小:183.17 KB
- 文档页数:13
汽轮机运行的节能降耗措施摘要:汽轮机不仅是电力生产的重要组成部分之一,也是能量转化的关键设备之一,而汽轮机在运行过程中会消耗大量的能量,所以实现汽轮机运行时的节能降耗有着十份重要的意义,不仅可以为民众带来更加优惠的用电价格,还可以有效体现节约环保的社会发展理念。
本文简单分析了影响汽轮机运行时节能降耗效率的因素,并简单阐述了汽轮机运行中的节能降耗措施。
关键词:汽轮机运行;节能降耗;有效措施引言在电厂的生产中,汽轮机是重要的生产设备,通常消耗着大量的能源,这给电厂的发展带来了一定的制约。
随着社会主义生态文明事业的建设,电厂的工作也进入到倡导节能环保的时代中,汽轮机运行中应用的节能技术以及节能的管理方式,使得能源的消耗量有效的降低。
在汽轮机的运行中,技术人员需要对于其运行的状况进行具体的分析,适应于实际情况展开节能技术的应用。
1汽轮机节能降耗技术的发展在我国的社会经济建设过程中,由于起步较晚,因此初期的阶段较为重视经济的发展,对于环境保护、能源节约等问题重视程度不足。
这也是由于受到了发展阶段中视野的制约,以及技术的制约。
因此,在我国的电厂生产中节能降耗技术的研究开始较晚,发展也较为缓慢,许多方面不够成熟。
这样的情况也为电厂的进步与发展带来了契机,在目前的发展环境下,进行节能减排的工作能够有效的提升电厂的生产效率,使得电厂的整体经济效益得到提高。
因此,在近几年,关于电厂汽轮机的研究逐渐增多,在研究与实践的双重推动下,对于社会主义生态文明的建设带来了正面的影响。
2电厂节能降耗的主要影响因素2.1汽轮机缸效率汽轮机缸效率,主要指的就是汽轮机将其他形式的能源转换为电能所产生的效率,称之为汽轮机缸效率。
影响汽轮机缸效率的因素分为多个方面,而且,在汽轮机实际应用的过程中,如果缸效率出现下降的情况,那么汽轮机的耗能也会由此增加。
通俗来讲,就是汽轮机的耗能同缸效率之间呈现正比的关系,并且,随着汽流面积的不断增加,其汽流量也会由此增加,进而达到节能减排的目标。
汽轮机疏水系统技术特点及负压稳定性维护摘要:汽轮机在重新启动或者长时间停机后启动的过程中,势必需要蒸汽管道与汽缸的预热处理过程,同时还需要确保温度能够达到允许汽轮机升速以及带负荷的条件。
在汽轮机系统设计中,疏水系统是其重要的组成部分,通过设置疏水管可以在汽轮机的启停、负荷变动和运行过程中,有效控制疏水阀,将汽轮机内部积水排出,避免汽轮机设备和相关管道等出现冷蒸汽回流问题,造成设备损伤。
因此,相关人员在对汽轮机设备进行管理时,需要掌握疏水系统的常见故障,并采取有效对策,保证汽轮机的安全、稳定运行。
关键词:汽轮机;疏水系统;措施随着当前我国社会的不断发展,汽轮机设备的应用越来越常见,具体到汽轮机的实际运行中,疏水系统作为比较关键的重要组成部分,应确保汽轮机本体设备能够通过相关管道进行输水管的设置,进而控制疏水阀将汽轮机中的积水及时排除,避免其较大程度上影响汽轮机运行安全性效果。
在汽轮机疏水系统的运行中,其还能够表现出较为理想的经济性优势,较好实现汽轮机整体应用性能的优化。
基于此,重点加强对于汽轮机疏水系统的研究极为必要,需要有效规避当前比较常见的各个隐患威胁,确保运行流畅有序,充分发挥经济性和安全性保障价值。
一、汽轮机疏水系统技术运行问题在汽轮机疏水系统的设计应用中,重点加强对于相关需求的详细分析是比较重要的一个方面,以确保疏水系统能够在汽轮机任何状态下实现对于本体设备以及相关管道设备积水的排出,进而也规避因为积水回流带来的较大隐患威胁。
结合当前汽轮机疏水系统的运行,虽然确实能够表现出较为理想的作用价值,但是因为设置不当,或者是运行条件不合理,很容易在运行中出现一些明显的缺陷问题,其中较为常见的问题表现在以下方面。
1、冷蒸汽回流导致气缸上下温差增大。
对于汽轮机疏水系统的运行,其出现冷蒸汽回流问题的威胁是比较大的,因为冷蒸汽的回流必然会导致气缸上下温差比较大,进而也就很可能会对于气缸自身带来较为明显的威胁影响,甚至会直接影响到整个汽轮机运行效果,比如机组的再次启动就可能受到较大威胁。
汽机疏放水系统讲解一、概述一般疏水分为汽轮机本体疏水和系统疏水两大类。
汽轮机本体疏水包括汽缸疏水,及直接与汽缸相连的各管道疏水,包括高、中压主汽门后,与汽缸直接连通的各级抽汽管道阀门前,高压缸排汽逆止门前,轴封系统等。
其他的疏水归类为系统疏水,如小机第一级汽缸、高压导汽管、内汽封疏水等等。
机组设计的疏水系统,在各种不同的工况下运行,应能防止可能的汽轮机外部进水和汽轮机本体的不正常积水,并满足系统暖管和热备用要求。
大型汽轮机组在启动、停机和变负荷工况下,蒸汽与汽轮机本体和蒸汽管道接触,蒸汽一般被冷却。
当蒸汽温度低于与蒸汽压力相对应的饱和温度时,蒸汽就凝结成水。
若不及时排出这些凝结水,它会积存在某些管段和汽缸中。
运行中,由于蒸汽和水的密度、流速不同,管道对它们的阻力也不同,这些积水可能引起管道水冲击,轻则使管道振动,产生噪声污染环境;重则使管道产生裂纹,甚至破裂。
更为严重的是,一旦部分积水进入汽轮机,将会使动静叶片受到水冲击而损伤、断裂,使金属部件因急剧冷却而造成永久性变形,甚至导致大轴弯曲。
另外汽轮机本体疏放水应考虑一定的容量,当机组跳闸时,能立即排放蒸汽,防止汽轮机超速和过热。
为了有效防止汽轮机发生这些恶劣的工况,必须及时地把汽缸和蒸汽管道中积存的凝结水排出,以确保机组安全运行。
同时尽可能地回收合格品质的疏水,以提高机组的经济性。
为此,汽轮机都设置有疏水系统,它包括汽轮机的高、中压主汽门前后,各主汽、中压调节阀前后及这些高温高压阀门的阀杆漏汽疏水管道,抽汽管道,轴封供汽母管等。
另外汽轮机的辅汽系统,小汽轮机本体及高、低压主汽门前后进汽管,除氧器加热以及高低加等系统也都有自己的疏水系统。
这些疏水有直接排放至疏水扩容器后回收至凝汽器的,也有直接排放至地沟的。
汽轮机疏放水主要由以下部分组成:主蒸汽、再热蒸汽管道上低位点疏水,汽轮机缸体及主汽调门、高压导汽管疏水,抽汽管道疏水,给水泵汽轮机供汽管道疏水、辅助蒸汽、除氧器加热管道疏水,轴封系统疏水及门杆漏汽,其它辅助系统的疏放水等。
火电厂汽轮机节能降耗措施摘要:当前能源市场竞争愈演愈烈,作为二次能源的主要生产单位,电厂的经营形势也变得更加严峻。
目前对于电厂而言,其提升自身经济价值的措施是有效的节约能源与降低消耗。
通过对输送途径进行有效的保护可以有效降低能源输送过程中的能源浪费。
众所周知,电厂的运行离不开汽轮机,但是汽轮机在运行时会大量消耗能源,因此需要我们对汽轮机的相关运行过程进行一定的调节,从而节约能源与降低消耗,提高电厂的经济效益。
文章以当前国际能源形势与环境问题为背景,分析了造成发电厂汽轮机组能耗的主要因素,阐述了电厂汽轮机节能降耗的可行性,并提出了多种汽轮机节能降耗策略与措施,希望对类似电厂汽轮机节能改造有所助益。
关键词:发电厂;汽轮机;节能降耗1、电厂汽轮机节能降耗的可行性当前在电厂发电过程中汽轮机往往会消耗大量的能量,并且造成严重的资源浪费。
在此状况下,电厂应当对现有的汽轮机进行定向化地设计和改造,来提高其节能降耗的功效。
同时我国现有的电厂所结合使用到的汽轮机还具备较大的节能改造空间,电厂除了需要对设备进行优化和改善之外还需要对参与到汽轮机生产管理的作业人员及时进行教育培训,提高相关人员的专业水平以及职业道德素养,在电厂全体员工思想意识层面上树立节能降耗的思想意识,并且在对应的工作管理过程中严格细致地落实贯彻节能降耗理念。
实施对应的节能降低管控措施,从实践工作中进行不断地经验总结,为电厂后续的发展提供更加成熟、完善的节能管理措施,使得电厂汽轮机节能降耗的功效能够得到进一步提升[1]。
2、影响火力发电厂汽轮机功耗的主要因素2.1气压与温度火力发电厂的汽轮机组运行时,周围环境的气压与温度对于其运行效率有着直接影响。
若汽轮机组水压较低又无法及时调整燃料燃烧,这使得汽轮机组蒸汽流量也会大大增大,使得机组蒸汽气压降低,运行效率下降。
同时,锅炉运行时,若吹入空气比重提高、燃料供应不足、喷水量增大,造成锅炉受热面出现严重积垢,这使得整个机组需要消耗大量热量,其运行效率不断降低。
汽轮机组轴加疏水系统改造方案摘要以国内大型机组为例,以运行实践为基础,探讨了大型汽轮机组轴封加热器(以下简称轴加)及其热力系统的设计和运行问题,认为目前情况下,平东公司轴加疏水单级U型管水封疏水必须进行改造,对存在的问题进行了分析,提出了改造的设计要点。
一、概述平东热电有限公司#6、#7汽轮机为哈尔滨汽轮机厂生产的C140/ N210-12.75/535/535/0.981型超高压、一次中间再热、两缸两排汽、采暖用可调整抽汽、供热凝汽式汽轮机,自试运以来,两台机组真空系统严密性均较差,#6汽轮机最好时达到1.4kPa/min左右,#7汽轮机为3.5kPa/min左右,严重影响机组的经济性。
#6、#7机设计上轴加疏水水封采用多级水封方式,根据以往其它机组的运行经验,多级水封运行中易发生水封破坏现象,公司2006年10月对轴加疏水水封进行改进,改为单级水封。
U 型水封管通常应用在电厂低压加热器轴封蒸汽冷却器等设备内的凝结疏水至凝汽器的管路上,它是依靠介质在U型水封管进口与出口之间的压力差来进行疏水的U 型水封管,分为单级和多级,在电厂实际应用中多级水封管应用较多,平东公司改造后的轴封疏水U 型运行一直不稳定,存在不少问题,针对这些问题进行分析和提出改造方案。
二、U型水封管在实际运行中遇到的问题目前国内设计轴加疏水水封不论是单级还是多级水封存在运行不稳定问题,易发生水封破坏现象,并且多是运行中临时对轴加水封进水和回水阀门进行调节。
一般情况下,主要是由于负压侧沿程阻力和局部阻力较小,难以抵消真空的影响,在U型套桶管里未能建立起水封,致使空气随疏水一同进入凝汽器中,使得真空恶化。
因此,在U型套桶管的出口加装一个调节阀,使疏水在U型套桶管里流动会产生节流,增大沿程阻力和局部阻力,强制建立起水封,改善真空。
如果U型套桶管直通凝汽器或者设计不当,将无法建立起水封,从轴封回收的蒸汽(含有空气)冷却后空气随疏水一同进入凝汽器,影响凝汽器真空。
300MW机组节能降耗分析漏时含油回水进入化学水系统,改造时应将各冷油器回水改道。
开式水回水量在扣除用于各冷油器(电泵油冷却器和密封油泠却器)的水量约275t/h后仍有超过1000t/h的流量,完全能满足净水站约600t/h的用量。
2.2将#1机开式水回水改接至冲洗水泵前池原设计冲洗水泵前池补水由专门的补水泵供给。
该补水压力低,但流量变化较大,要求3台补水泵经常处于完好的备用状态。
而原设计开式水回水接入循环排水管排入河中。
分析表明,开式水的回水压力和流量足以满足冲洗水泵前池补水的要求,而且水源可靠。
目前改造完成后经2年多的时间检验,开式水系统运转正常,补充水可靠性得到保证,而且三台补水泵可以完全退出备用。
2.3将空压机冷却水回水引接到输煤系统冲洗泵前池做补水,达到退出抑尘水泵运转备用的目的。
3疏水系统改造3.1问题提出:在原有汽轮机热力系统中,所有管道疏水均直接接到疏水扩容器后进入到凝汽器。
同目前国内其它300mw机组一样,系统普遍存在内漏的问题,从而降低了机组运行热经济性。
影响机组经济性的内漏主要是系统内的一些疏水阀门关不严造成的,而很多阀门在机组运行中往往不能及时消缺,甚至只能等停机时处理,运行时间越长,内漏越严重,损失越大。
因此对疏水系统进行优化化改造显得更有现实意义。
3.2分析与对策:为减少内漏对热经济性的影响,对汽机热力系统做以下改进:3.2.1将汽机高中压平衡管疏水改接到四段抽汽逆止阀前。
原高中压平衡管疏水接到本体疏水扩容器,一旦发生内漏,将增加凝汽器热负荷。
因高中压平衡管蒸汽压力、温度与四段抽汽相近,改造后不会产生热冲击。
改进后,就算疏水阀关不严,漏汽可随四段抽汽进入除氧器加热凝结水,减少了热能损失,同时不会影响凝汽器热负荷。
当机组发生跳机或其它异常时,四段抽汽逆止阀关闭,疏水排到四段抽汽逆止阀前通过抽汽逆止阀前疏水管排到本体疏水扩容器,也不会影响机组安全。
3.2.2将高压外缸疏水改接到高排逆止阀前。
·黎寿年(珠海市钰海电力有限公司,广东珠海,519055)摘要:文章分析了汽轮机疏水系统问题,包括设计要求,汽缸壁温上下温差大、中调门后扩散器呈现裂纹、转子动叶损伤或转速失控等,最后提出了解决措施。
关键词:汽轮机,疏水,温差中图分类号:TK262文献标识码:A文章编号:1674-9987(2020)01-0070-03 Problem Analysis of Steam Turbine Drainage SystemLI Shounian(Zhuhai Yuhai Electric Power Co.,Ltd.,Zhuhai Guangdong,519055)Abstract:The problem of steam turbine drainage system is analyzed in this paper,including design requirements,the large tem⁃perature difference between the upper and lower temperature of cylinder wall,the cracks of the diffuser behind the middle adjusting valve,damage of rotor blade or speed out of control,et al.Finally,the solution measures are proposed.Key words:turbine,drainage,temperature difference0引言汽轮机为上海汽轮机厂生产的LZC(B)137-12.5/0.4/550/547型汽轮机。
本汽轮机由高中压缸和低压缸两部分组成,其中高中压缸由24级高压级以及16级中压级组成,低压缸由双流2×7级组成,共计54级。
本机组有2个主汽阀和2个高压调节汽阀,1个主汽阀和1个高压调节汽阀组成一组,共分两组布置在高中压缸的两侧,阀门直接座缸,法兰连接。
生活垃圾焚烧电厂汽轮机运行效率优化措施分析摘要:对于生活垃圾焚烧发电厂来说,其内部汽轮机的运行效率直接影响其可持续性和长期发展。
因此,在工业自动化发展相对清晰的环境下,我们认为有必要考虑以下几个方面,以不断增强生活垃圾焚烧发电厂的综合实力。
通过及时的检查和维护,可以确保汽轮机运行效率的优化,为提高生活垃圾焚烧发电厂的经济效益提供保障。
关键词:生活垃圾焚烧电厂;汽轮机运行;运行效率优化;1.汽轮机技术特点与燃煤和燃气发电厂不同,垃圾焚烧发电厂主要依靠垃圾解决方案,发电为辅。
由于垃圾热值和蒸汽量的限制,垃圾焚烧发电厂配备小出力汽轮机组,并选择恒压启动运行模式,不参与调峰。
由于垃圾成分不稳定,产生的热量随时间波动,导致余热锅炉主蒸汽流量和主要参数发生显著变化。
因此,应优先选择可变运行能力强的汽轮机组,即在各种参数变化的范围内,汽轮机运行的可靠性较高。
以广州某垃圾焚烧发电厂为例,该发电厂一期共配置6台伟伦机械往复式炉排焚烧炉及配套的余热锅炉,每个焚烧炉的垃圾处理能力为750t/d,设计垃圾低热值为7500kJ/kg;余热锅炉的额定蒸汽压力为4.0MPa,额定蒸汽温度为400℃,额定蒸发量为73.5t/h。
配备4台中温中压纯冷凝式汽轮机,型号为N25-3.82/39025MW,额定功率为25MW。
对于垃圾焚烧发电厂,汽轮发电机组的设置不仅要充分利用垃圾焚烧后产生的热量,还要保证焚烧炉的正常运行,即“机随炉”运行。
电厂设置两套热力系统,分别以三炉两机和三炉两机组为基础。
同时,为保证全厂锅炉运行的灵活性,两个系统中的主蒸汽、主凝结水及其他主汽水管道均设置了连接管,可实现两个系统锅炉的切换运行。
每个系统中三台垃圾焚烧余热锅炉产生的过热蒸汽被收集到主蒸汽主管中。
两条管道分别从主蒸汽主管引出,通过汽轮机主蒸汽阀进入两台凝汽式汽轮机,驱动发电机发电。
排出的蒸汽进入冷凝器并凝结成冷凝水。
2.电厂汽轮机运行产生的损耗2.1汽轮机启动时产生的损耗汽轮机在启动过程中产生的损失是电厂汽轮机运行过程中不可忽视的损失的重要组成部分,在汽轮机运行过程中,蒸汽参数的变化会导致转子内部温度的不稳定,转子在这种状态下长时间运行可能会导致重大损失,如果参数没有得到正确有效的处理,汽轮机在启动过程中的消耗将继续增加,这将降低电厂汽轮机的运行效率,缩短其使用寿命。