必修一数学易错题归类
- 格式:docx
- 大小:142.20 KB
- 文档页数:5
高一数学错题和知识点对于许多高一学生来说,数学常常是一门令人头疼的科目。
尤其是在课堂上,老师提出的问题似乎总是与自己所学知识背离。
在高一时期,学生面临着许多新的数学概念和技巧,因此错题也时常发生。
本文将讨论一些常见的高一数学错题,并介绍相应的知识点以帮助学生改进。
1. 说出函数f(x) = |x|的定义域和值域。
错题分析:许多学生在这个问题上犯了错误,因为它涉及到绝对值函数。
他们可能会误以为绝对值只能保持为正数,因此定义域只包含正数。
解决方法:绝对值函数的定义域是整个实数集(即负无穷到正无穷),而值域是非负实数。
2. 解方程:2x - 5 = x + 3。
错题分析:这是一道简单的一次方程题,但是一些学生会犯以下错误:他们在解方程过程中将变量移到等式的另一侧时,忘记同时改变符号。
解决方法:正确的解题步骤是将x的系数移到等号的另一侧,并进行运算。
在这个例子中,可以通过将x的系数减去5和3,得到x = 8。
3. 求解三角形的面积:已知a = 5,b = 6,c = 8。
错题分析:这道题目需要学生运用海伦公式或正弦定理求解三角形的面积。
有些学生可能忘记其中一个公式,或者在应用公式时计算错误。
解决方法:学生需要记住海伦公式(s = (a + b + c) / 2)和正弦定理((a / sinA) = (b / sinB) = (c / sinC))。
应用这些公式,可以计算出三角形的面积。
4. 计算函数f(x) = (x + 1)²的导数。
错题分析:这个错误涉及到函数的导数概念。
许多学生会误以为在计算函数的导数时只需要直接计算平方。
解决方法:函数f(x) = (x + 1)²的导数可以通过应用链式法则计算。
首先求导数公式为d(u²) / dx = 2u,其中u = (x + 1)。
因此,函数f(x)的导数为f'(x) = 2(x + 1)。
5. 确定下列集合的并集:A = {1, 2, 3},B = {3, 4, 5},C = {5, 6}。
集合部分错题库1.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( )A .3个B .5个C .7个D .8个2.已知集合M ={(x ,y)|x +y =3},N ={(x ,y)|x -y =5},那么集合M ∩N 为 A.x =4,y =-1 B.(4,-1) C.{4,-1} D.{(4,-1)}3.已知集合A ={x|x 2-5x+6<0},B ={x|x< a2},若A B ,则实数a 的范围为A.[6,+∞)B.(6,+∞)C.(-∞,-1)D.(-1,+∞) 4.满足{x|x 2-3x +2=0}M {x ∈N|0<x<6}的集合M 的个数为 A.2 B.4 C.6 D.85.图中阴影部分所表示的集合是( )A .)]([C A C B U ⋃⋂ B.)()(C B B A ⋃⋃⋃ C.)()(B C C A U ⋂⋃ D. )]([C A C B U ⋂⋃6.高一某班有学生45人,其中参加数学竞赛的有32人,参加物理竞赛的有28人,另外有5人两项竞赛均不参加,则该班既参加数学竞赛又参加物理竞赛的有__________人.7.已知集合12,6A x x N N x ⎧⎫=∈∈⎨⎬-⎩⎭用列举法表示集合A 为8. 已知集合{}2210,A x ax x x R =++=∈,a 为实数(1)若A 是空集,求a 的取值范围(2)若A 是单元素集,求a 的值(3)若A 中至多只有一个元素,求a 的取值范围9.判断如下集合A 与B 之间有怎样的包含或相等关系: (1)A={x|x=2k-1,k ∈Z},B={x|x=2m+1,m ∈Z}; (2)A={x|x=2m,m ∈Z},B={x|x=4n,n ∈Z}.10.集合A={x|-2≤x ≤5},B={x|m+1≤x ≤2m-1}, (1)若B ⊆A,求实数m 的取值范围;(2)当x ∈Z 时,求A 的非空真子集个数;(3)当x ∈R 时,没有元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围.函数概念部分错题库1、与函数32y x =-有相同图象的一个函数是( ) A. 32y x =- B. 2y x x =-C.y =- D. y x =2、为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移,这个平移是( )A .沿x 轴向右平移1个单位B .沿x 轴向右平移12个单位C .沿x 轴向左平移1个单位D .沿x 轴向左平移12个单位3、若函数()y f x =的定义域是[0,2],则函数(2)()1f xg x x =-的定义域是A .[0,1]B .[0,1)C . [0,1)(1,4]D .(0,1)4、若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是( )A .1[,3]2B .10[2,]3C .510[,]23D .10[3,]35、已知函数f (x )=221x x +,那么f (1)+f (2)+f (21)+f (3)+f (31)+f (4)+f (41)=_____.6、已知⎩⎨⎧<-≥=0,10,1)(x x x f ,则不等式(2)(2)5x x f x ++⋅+≤的解集是 。
高中数学必修一第四章指数函数与对数函数易错题集锦单选题1、若ln2=a,ln3=b,则log818=()A.a+3ba3B.a+2b3aC.a+2ba3D.a+3b3a答案:B分析:先换底,然后由对数运算性质可得.log818=ln18ln8=ln(32×2)ln23=2ln3+ln23ln2=2b+a3a.故选:B2、设函数f(x)=lg(x2+1),则使得f(3x−2)>f(x−4)成立的x的取值范围为()A.(13,1)B.(−1,32)C.(−∞,32)D.(−∞,−1)∪(32,+∞)答案:D分析:方法一 :求出f(3x−2),f(x−4)的解析式,直接带入求解.方法二 : 设t=x2+1,则y=lgt,判断出f(x)=lg(x2+1)在[0,+∞)上为增函数,由f(3x−2)>f(x−4)得|3x−2|>|x−4|,解不等式即可求出答案.方法一 :∵f(x)=lg(x2+1)∴由f(3x−2)>f(x−4)得lg[(3x−2)2+1]>lg[(x−4)2+1],则(3x−2)2+1>(x−4)2+1,解得x<−1或x>32.方法二 :根据题意,函数f(x)=lg(x2+1),其定义域为R,有f(−x)=lg(x2+1)=f(x),即函数f(x)为偶函数,设t=x2+1,则y=lgt,在区间[0,+∞)上,t=x2+1为增函数且t≥1,y=lgt在区间[1,+∞)上为增函数,则f(x)=lg(x2+1)在[0,+∞)上为增函数,f(3x−2)>f(x−4)⇒f(|3x−2|)>f(|x−4|)⇒|3x−2|>|x−4|,解得x <−1或x >32, 故选:D .3、Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I(t)=K1+e −0.23(t−53),其中K 为最大确诊病例数.当I (t ∗)=0.95K 时,标志着已初步遏制疫情,则t ∗约为( )(ln19≈3)A .60B .63C .66D .69答案:C分析:将t =t ∗代入函数I (t )=K 1+e −0.23(t−53)结合I (t ∗)=0.95K 求得t ∗即可得解. ∵I (t )=K 1+e −0.23(t−53),所以I (t ∗)=K 1+e −0.23(t ∗−53)=0.95K ,则e 0.23(t∗−53)=19, 所以,0.23(t ∗−53)=ln19≈3,解得t ∗≈30.23+53≈66.故选:C. 小提示:本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.4、若x 1,x 2是二次函数y =x 2−5x +6的两个零点,则1x 1+1x 2的值为( )A .−12B .−13C .−16D .56答案:D分析:解方程可得x 1=2,x 2=3,代入运算即可得解.由题意,令x 2−5x +6=0,解得x =2或3,不妨设x 1=2,x 2=3,代入可得1x 1+1x 2=12+13=56. 故选:D.5、已知9m =10,a =10m −11,b =8m −9,则( )A .a >0>bB .a >b >0C .b >a >0D .b >0>a答案:A分析:法一:根据指对互化以及对数函数的单调性即可知m =log 910>1,再利用基本不等式,换底公式可得m >lg11,log 89>m ,然后由指数函数的单调性即可解出.[方法一]:(指对数函数性质)由9m =10可得m =log 910=lg10lg9>1,而lg9lg11<(lg9+lg112)2=(lg992)2<1=(lg10)2,所以lg10lg9>lg11lg10,即m >lg11,所以a =10m −11>10lg11−11=0.又lg8lg10<(lg8+lg102)2=(lg802)2<(lg9)2,所以lg9lg8>lg10lg9,即log 89>m ,所以b =8m −9<8log 89−9=0.综上,a >0>b .[方法二]:【最优解】(构造函数)由9m =10,可得m =log 910∈(1,1.5).根据a,b 的形式构造函数f(x)=x m −x −1(x >1) ,则f ′(x)=mx m−1−1,令f ′(x)=0,解得x 0=m 11−m ,由m =log 910∈(1,1.5) 知x 0∈(0,1) .f(x) 在 (1,+∞) 上单调递增,所以f(10)>f(8) ,即 a >b ,又因为f(9)=9log 910−10=0 ,所以a >0>b .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法; 法二:利用a,b 的形式构造函数f(x)=x m −x −1(x >1),根据函数的单调性得出大小关系,简单明了,是该题的最优解.6、若2x =3,2y =4,则2x+y 的值为( )A .7B .10C .12D .34答案:C分析:根据指数幂的运算性质直接进行求解即可.因为2x =3,2y =4,所以2x+y =2x ⋅2y =3×4=12,故选:C7、在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )A.10名B.18名C.24名D.32名答案:B分析:算出第二天订单数,除以志愿者每天能完成的订单配货数即可.由题意,第二天新增订单数为500+1600−1200=900,90050=18,故至少需要志愿者18名.故选:B【点晴】本题主要考查函数模型的简单应用,属于基础题.8、已知实数a,b∈(1,+∞),且log2a+log b3=log2b+log a2,则()A.a<√b<b B.√b<a<b C.b<√a<a D.√a<b<a答案:B分析:对log2a−log a2<log2b−log b2,利用换底公式等价变形,得log2a−1log2a <log2b−1log2b,结合y=x−1x 的单调性判断b<a,同理利用换底公式得log2a−1log2a<log3b−1log3b,即log2a>log3b,再根据对数运算性质得log2a>log2√b,结合y=log2x单调性,a>√b,继而得解.由log2a+log b3=log2b+log a2,变形可知log2a−log a2<log2b−log b2,利用换底公式等价变形,得log2a−1log2a <log2b−1log2b,由函数f(x)=x−1x在(0,+∞)上单调递增知,log2a<log2b,即a<b,排除C,D;其次,因为log2b>log3b,得log2a+log b3>log3b+log a2,即log2a−log a2>log3b−log b3,同样利用f(x)=x−1x的单调性知,log2a>log3b,又因为log3b=log√3√b>log2√b,得log2a>log2√b,即a>√b,所以√b<a<b.故选:B.多选题9、已知函数f(x)=log2x,g(x)=2x+a,若存在x1,x2∈[1,2],使得f(x1)=g(x2),则a的取值可以是()A.-4B.-2C.2D.3答案:AB分析:根据条件求出两个函数的值域,结合若存在x1,x2∈[1,2],使得f(x1)=g(x2),等价为两个集合有公共元素,然后根据集合的关系进行求解即可.当1≤x≤2时,0≤log2x≤1,即0≤f(x)≤1,则f(x)的值域为[0,1],当1≤x≤2时,2+a≤g(x)≤4+a,则g(x)的值域为[2+a,4+a],若存在x1,x2∈[1,2],使得f(x1)=g(x2),则[2+a,4+a]∩[0,1]≠∅,若[2+a,4+a]∩[0,1]=∅,则2+a>1或4+a<0,解得a>−1或a<−4.所以当[2+a,4+a]∩[0,1]≠∅时,a的取值范围为−4≤a≤−1.故选:AB10、已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图,则下列结论成立的是()A.a>1B.0<a<1C.c>1D.0<c<1答案:BD分析:根据对数函数的图象判断.由图象知0<a<1,可以看作是y=log a x向左移动c个单位得到的,因此0<c<1,故选:BD .11、已知函数f (x )={(12)x−1,x ≤0x 12,x >0,则下列结论中错误的是( ) A .f (x )的值域为(0,+∞)B .f (x )的图象与直线y =2有两个交点C .f (x )是单调函数D .f (x )是偶函数答案:ACD分析:利用指数函数、幂函数的性质画出f (x )的图象,由图象逐一判断即可.函数f (x )的图象如图所示,由图可知f (x )的值域为[0,+∞),结论A 错误,结论C ,D 显然错误,f (x )的图象与直线y =2有两个交点,结论B 正确.故选:ACD填空题12、函数f (x )=log 12(x 2−5x +6)的单调递减区间为___________.答案:(3,+∞)分析:利用对数型复合函数性质求解即可.由题知:x 2−5x +6>0,解得x >3或x <2.令t =x 2−5x +6,则y =log 12t 为减函数.所以t ∈(−∞,2),t =x 2−5x +6为减函数,f (x )=log 12(x 2−5x +6)为增函数,t ∈(3,+∞),t =x 2−5x +6为增函数,f (x )=log 12(x 2−5x +6)为减函数.所以函数f (x )=log 12(x 2−5x +6)的单调递减区间为(3,+∞).所以答案是:(3,+∞)13、解指数方程2x+3=3x 2−9:__________.答案:x =−3或x =3+log 32分析:直接对方程两边取以3为底的对数,讨论x +3=0和x +3≠0,解出方程即可. 由2x+3=3x2−9得log 32x+3=log 33x 2−9,即(x +3)log 32=(x −3)(x +3),当x +3=0即x =−3时,0=0显然成立;当x +3≠0时,log 32=x −3,解得x =log 32+3;故方程的解为:x =−3或x =3+log 32. 所以答案是:x =−3或x =3+log 32.14、设x 13=2,则√x 53⋅x −1=___________.答案:4分析:由根式与有理数指数幂的关系,结合指数幂的运算性质,求值即可.由√x 53⋅x −1=x 53⋅x −1=x 23=(x 13)2=22=4. 所以答案是:4.解答题15、证明:函数f (x )=log 3(1+x )的图象与g (x )=log 2x 的图象有且仅有一个公共点. 答案:证明见解析分析:把要证两函数的图象有且仅有一个公共点转化为证明方程log 3(1+x )=log 2x 有且仅有一个实根.易观察出x =2为其一根,再假设(x 0,y 0)(x 0≠2)是函数图象的另一个公共点,然后得出矛盾即可. 要证明两函数f (x )和g (x )的图象有且仅有一个公共点,只需证明方程log 3(1+x )=log 2x 有且仅有一个实根,观察上述方程,显然有f (2)=g (2),则两函数的图象必有交点(2,1).设(x 0,y 0)(x 0≠2)是函数图象的另一个公共点.则log 3(1+x 0)=log 2x 0,1+x 0=3y 0,x 0=2y 0,∴1+2y 0=3y 0,即(13)y 0+(23)y 0=1, 令M (x )=(13)x +(23)x ,易知函数M (x )=(13)x +(23)x 为指数型函数.显然M (x )在(−∞,+∞)内是减函数,且M (1)=1,故方程(13)y 0+(23)y 0=1有唯一解y 0=1,从而x 0=2,与x 0≠2矛盾, 从而知两函数图象仅有一个公共点.。
高一数学期末复习(易错60题28个考点)一.集合的包含关系判断及应用(共1小题)1.下列五个写法:①{0}∈{1,2,3};②∅⊆{0};③{0,1,2}⊆{1,2,0};④0∈∅;⑤0∩∅=∅,其中错误写法的个数为()A.1B.2C.3D.4二.交集及其运算(共1小题)2.设全集U=R,集合A={x|x2﹣x﹣2≤0},B={x|lgx>0},则A∩B=()A.{x|﹣1≤x≤2}B.{x|1<x≤2}C.{x|1<x<2}D.{x|x≥﹣1}三.充分条件与必要条件(共1小题)3.已知命题p:|x﹣a|<4,命题q:(x﹣2)(3﹣x)>0.若¬p是¬q的充分不必要条件,则实数a的取值范围是()A.[﹣1,6]B.(﹣∞,﹣1)C.(6,+∞)D.(﹣∞,﹣1)∪(6,+∞)四.全称量词和全称命题(共1小题)4.若命题“∀x0∈(0,+∞)使得+ax0+a+3≥0”为假命题,则实数a的取值范围是()A.(﹣∞,﹣2)∪(6,+∞)B.(﹣∞,﹣2)C.[﹣2,6]D.[2﹣,2+]五.基本不等式及其应用(共4小题)5.已知,则的最小值为()A.B.C.20D.46.已知m>n>1,则的最小值为()A.B.2C.4D.7.已知正数a,b满足:+1=a+2b+,则以下结论中(1)a+2b=1(2)a+2b=2(3)的最小值为9(4)的最小值为3正确结论个数为()A.1B.2C.3D.48.已知a,b为正实数,且.(1)求a2+b2的最小值;(2)若(a﹣b)2=4(ab)3,求ab的值.六.一元二次不等式及其应用(共4小题)9.已知不等式ax2+bx+2>0的解集为{x|﹣1<x<2},则不等式2x2+bx+a<0的解集为()A.B.{x|x<﹣1,或x>}C.{x|﹣2<x<1}D.{x|x<﹣2,或x>1}10.关于x的不等式x2+ax﹣2<0在区间[1,4]上有解,则实数a的取值范围为()A.(﹣∞,1)B.(﹣∞,1]C.(1,+∞)D.[1,+∞)11.已知p:﹣4<x﹣a<4,q:(x﹣2)(3﹣x)>0,若¬p是¬q的充分条件,则实数a 的取值范围是()A.[﹣1,6]B.(﹣∞,﹣1]C.[6,+∞)D.(﹣∞,﹣1]∪[6,+∞)12.已知不等式ax2﹣3x+6>4的解集为{x|x<1或x>b}.(1)求a、b的值;(2)m为何值时,ax2+mx+3≥0的解集为R;(3)解不等式ax2﹣(ac+b)x+bc<0.七.判断两个函数是否为同一函数(共1小题)13.下列各组函数f(x)与g(x)的图象相同的是()A.f(x)=x,g(x)=()2B.f(x)=|x|,g(x)=C.f(x)=1,g(x)=x0D.f(x)=x2,g(x)=(x+1)2八.函数单调性的性质与判断(共2小题)14.已知f(x)=是(﹣∞,+∞)上的减函数,那么实数a的取值范围是.15.已知是R上的严格增函数,那么实数a的取值范围是.九.函数的最值及其几何意义(共2小题)16.已知函数且(a≠1).(1)求函数f(x)的定义域;(2)是否存在实数a,使得函数f(x)在区间[1,2]上的最大值为2?若存在,求出a 的值;若不存在,请说明理由.17.已知f(x)=2+log3x,x∈[1,9],g(x)=[f(x)]2+f(x2),(1)求g(x)的定义域;(2)求g(x)的最大值以及g(x)取最大值时x的值.一十.函数奇偶性的性质与判断(共1小题)18.已知函数f(x)=log a(x+1)﹣log a(1﹣x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明.一十一.幂函数的概念、解析式、定义域、值域(共1小题)19.已知幂函数y=f(x)的图象经过点,则的值是()A.﹣B.1C.D.﹣1一十二.幂函数的性质(共2小题)20.若幂函数f(x)过点(4,2),则满足不等式f(2﹣a)>f(a﹣1)的实数a的取值范围是.21.若幂函数f(x)=(2m2+m﹣2)x2m+1在其定义域上是增函数.(1)求f(x)的解析式;(2)若f(2﹣a)<f(a2﹣4),求a的取值范围.一十三.对数值大小的比较(共2小题)22.已知,则()A.b<a<c B.a<b<c C.c<b<a D.c<a<b 23.设a=log32,b=log64,c=log3e(2e),则()A.c<b<a B.a<b<c C.b<a<c D.a<c<b一十四.对数函数的图象与性质(共1小题)24.设函数f(x)=log2(2x)•log2.(1)解方程f(x)+6=0;(2)设不等式≤43x﹣2的解集为M,求函数f(x)(x∈M)的值域.一十五.反函数(共1小题)25.已知函数f(x)=4x﹣a•2x+1.(Ⅰ)当a=2时,求f(x)的反函数f﹣1(x);(Ⅱ)若x∈[1,2]时f(x)的最小值是g(a),求g(a)解析式.一十六.三角函数的周期性(共2小题)26.如果函数f(x)=sinωx+cosωx(ω>0)的两个相邻零点间的距离为2,那么f(1)+f(2)+f(3)+…+f(9)的值为()A.1B.﹣1C.D.﹣27.已知函数x﹣1,x∈R (1)求函数f(x)的最小正周期;(2)函数f(x)的单调递增区间和对称轴方程.(3)求函数f(x)在区间上的最大值和最小值.一十七.正弦函数的单调性(共1小题)28.已知函数在区间上单调递增,且存在唯一使得f(x0)=1,则ω的取值范围为()A.B.C.D.一十八.正弦函数的奇偶性和对称性(共1小题)29.已知同时满足下列三个条件:①T=π;②是奇函数;③.若f(x)在[0,a)上没有最小值,则实数a的取值范围是()A.B.C.D.一十九.正切函数的奇偶性与对称性(共1小题)30.已知函数f(x)=tan(2x+),则下列说法正确的是()A.f(x)在定义域内是增函数B.f(x)的最小正周期是πC.f(x)的对称中心是(),k∈ZD.f(x)的对称轴是x=二十.函数y=Asin(ωx+φ)的图象变换(共2小题)31.为了得到函数y=sin3x+cos3x+1的图象,可以将函数y=sin3x的图象()A.向右平移个单位,向下平移1个单位B.向左平移个单位,向下平移1个单位C.向右平移个单位,向上平移1个单位D.向左平移个单位,向上平移1个单位32.为了得到函数y=sin(x+)的图:只需把函数y=sin x图象上的所有点()A.向左平移个单位长度B.向右平移个单位长度C.向上平移个单位长度D.向下平移个单位长度二十一.由y=Asin(ωx+φ)的部分图象确定其解析式(共6小题)33.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<),若g(x)•f(x)=1,且函数g(x)的部分图象如图所示,则φ等于()A.B.C.34.已知函数f(x)=sinωx+cosωx(ω>0)的图象的一个对称中心的横坐标在区间内,且两个相邻对称中心之间的距离大于,则ω的取值范围为()A.(0,3)B.C.D.(1,3)35.如图为函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的图象.则函数f(x)=A sin(ωx+φ)的解析式是()A.f(x)=sin(2x﹣)B.f(x)=sin(2x﹣)C.f(x)=2sin(2x﹣)D.f(x)=sin(2x+)36.已知函数f(x)=sin(2ωx+φ)(其中ω>0,|φ|<)的最小正周期为π,它的一个对称中心为.(1)求函数y=f(x)的解析式;(2)求时,函数f(x)的值域.37.已知函数f(x)=A sin(ωx+φ),(ω>0,|φ|<)的部分图象如图所示.(1)求f(x)的解析式;(2)若x∈(﹣),求f(x)的取值范围.38.已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图像如图所示.(1)求f(x)的解析式及对称中心;(2)先将f(x)的图像纵坐标缩短到原来的倍,再向右平移个单位后得到g(x)的图像,求函数y=g(x)在上的单调减区间和最值.二十二.三角函数的最值(共1小题)39.已知函数.(1)求f(x)的单调递增区间;(2)求f(x)在上的最大值与最小值.二十三.两角和与差的三角函数(共2小题)40.已知定义在R上的偶函数f(x)=对任意x∈R都有f(x)+f(x+)=0,当ω取最小值时,的值为()A.1B.C.D.41.,,.(1)求的值;(2)求sin(α+β)的值.二十四.三角函数应用(共3小题)42.摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯瞰四周景色.如图,某摩天轮的转盘直径为110米,摩天轮的中心O点距离地面的高度为80米,摩天轮匀速逆时针旋转,每30分钟转一圈.若摩天轮上点P的起始位置在最低点处,下列说法中错误的是()A.经过10分钟,点P上升了82.5米B.在第20分钟和第40分钟时点P距离地面的高度相同C.摩天轮旋转一周的过程中,点P距离地面的高度不低于55米的时间大于20分钟D.点P从第5分钟至第10分钟上升的高度是其从第10分钟到第15分钟上升的高度的2倍43.如图,一个半径为3米的筒车按逆时针方向每4分钟转1圈,筒车的轴心O距离水面的高度为1.5米.设筒车上的某个盛水筒W到水面的距离为d(单位:米)(在水面下则d为负数),若以盛水筒W刚浮出水面时开始计算时间,且d与时间t(单位:分钟)之间的关系式为:,则d与时间t之间的关系是.44.如图,在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2)在单位圆上,∠xOA=α,,且,过点B作x轴的垂线,垂足为C,记△BOC的面积为S.(1)若,用α的三角函数表示x2并求x2的值;(2)设S=f(α),求函数f(α)的值域.二十五.函数零点的判定定理(共1小题)45.函数f(x)=lnx+3x﹣1﹣6的零点所在区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)二十六.函数的零点与方程根的关系(共5小题)46.已知函数,g(x)=x2﹣ax+1,若y=g(f(x))有6个零点,则a的取值范围为()A.B.C.(3,+∞)D.47.已知函数,有下列两个结论:①f(x)的值域为R;②对任意的正有理数a,g(x)=f(x)﹣a存在奇数个零点则下列判断正确的是()A.①②均正确B.①②均错误C.①对②错D.①错②对48.定义在R上的奇函数f(x),当x≥0时,,则关于x的函数F(x)=f(x)﹣a(0<a<1)的所有零点之和为()A.2a﹣1B.1﹣2a C.2﹣a﹣1D.1﹣2﹣a49.已知函数,当a>1时,方程f2(x)﹣(a2+a)f(x)+a3=0的根的个数是()A.6B.5C.4D.350.已知函数,若方程f(x)=a恰有四个不同的实数解,分别记为x1,x2,x3,x4,则x1+x2+x3+x4的取值范围是二十七.分段函数的应用(共6小题)51.设函数,若实数a,b,c满足0<a<b<c,且f(a)=f(b)=f(c).则下列结论不能恒成立的是()A.abc>2B.C.D.a+2b>352.设函数若f(x)存在最小值,则实数a的取值范围为()A.B.C.D.53.若函数的图象上存在两点关于直线x=﹣1对称,则实数a的取值范围为()A.[﹣e﹣3,e3]B.[﹣e﹣3,+∞)C.[﹣ln3,+∞)D.[﹣e3,+∞)54.“空气质量指数(AQI)”是定量描述空气质量状况的无量纲指数.当AQI大于200时,表示空气重度污染,不宜开展户外活动.某地某天0~24时的空气质量指数y随时间t变化的趋势由函数y=描述,则该天适宜开展户外活动的时长至多为()A.5小时B.6小时C.7小时D.8小时55.已知函数f(x)的最大值为m,f(x)的最小值为n,则m+n=.56.函数g(x)=|x﹣k|+|x﹣2|,若对任意的x1,x2∈R,都有f(x1)≤g(x2)成立.(1)求函数g(x)的最小值;(2)求k的取值范围.二十八.根据实际问题选择函数类型(共4小题)57.2010年,考古学家对良渚古城水利系统中一条水坝的建筑材料上提取的草茎遗存进行碳14年代学检测,检测出碳14的残留量约为初始量的55.2%,碳14的半衰期为5730年,≈1.1665,以此推断水坝建成的年份大概是公元前()A.3500年B.2900年C.2600年D.2000年58.放假期间,小明一家准备去淄博旅游,已知他家汽车行驶速度v(km/h)与每公里油费w(元)的关系式为,当每公里油费最低时,v=()A.60km/h B.80km/h C.100km/h D.120km/h59.甲、乙两地相距800km,货车从甲地匀速行驶到乙地,速度不得超过100(km/h),若货车每小时的运输成本(以元为单位)由可变成本和固定成本组成:可变成本是速度v (km/h)的平方的倍,固定成本为a元.(1)将全程运输成本y(元)表示为速度v(km/h)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,货车应以多大的速度行驶?并求出全程运输成本的最小值.60.随着我国经济发展,医疗消费需求增长,人们健康观念转变以及人口老龄化进程加快等因素的影响,医疗器械市场近年来一直保持了持续增长的趋势.宁波医疗公司为了进一步增加市场竞争力,计划改进技术生产某产品.已知生产该产品的年固定成本为300万元,最大产能为80台.每生产x台,需另投入成本G(x)万元,且,由市场调研知,该产品的售价为200万元,且全年内生产的该产品当年能全部销售完.(1)写出年利润W(x)万元关于年产量x台的函数解析式(利润=销售收入﹣成本);(2)当该产品的年产量为多少时,公司所获利润最大?最大利润是多少?。
高一数学必修一错题集
好的,这里是一份高一数学必修一错题集,包括所有的错题、易错点和难点。
请注意,这只是一份参考,实际的错题集可能因个人差异而有所不同。
```
1. 函数的定义域
2. 函数的值域
3. 函数的极值
4. 函数的单调性
5. 函数的连续性
6. 函数的奇偶性
7. 函数的周期性
8. 函数的图像
9. 函数的解析式
10. 函数的定义域和值域的关系
11. 函数的导数
12. 函数的斜率
13. 函数的切线
14. 函数的最大值和最小值
15. 二元函数的极值问题
16. 对称轴和中心
17. 函数的性质
18. 图像变换
19. 函数的应用
20. 极限的概念
21. 极限的运算
22. 无穷大和无穷小
23. 介值定理
24. 罗必塔法则
25. 向量的叉积
26. 坐标系的系结
27. 平面方程
28. 立体方程
29. 空间向量
30. 向量的计算
31. 向量的夹角
32. 立体坐标系
33. 解析几何中的应用
34. 椭圆
35. 双曲线
36. 参数方程
37. 标准方程
38. 椭圆和双曲线的焦点
39. 椭圆和双曲线的参数方程
40. 椭圆和双曲线的研究
```
希望这份错题集能有所帮助。
数学必修1基本易错题总结在高中的数学学习中,出题的题型千变万化,各种不同的题型,不同的解题思路让同学们很困惑。
事实上,难题并不是占据了主导地位,更多的是同学们可以掌握的题型。
在初等题中有一大部分是基础题型,这是大家需要牢牢掌握的。
而中等难度的题绝大部分是由初等题型转化,综合,变型而来的,基础题型掌握好了这个也很容易解决。
而在难题中,有绝大部分是由于综合性比较强,但是基础扎实了后也是完全可以克服的。
这里帮同学解决主要总结基本易错题型,以及我们已经学到的数学解题思想。
一、基本易错题1、忽略空集(1)已知2{|320},{|20}A x x x B x ax =-+==-=且A B A = ,求实数a 组成的集合C .解:∵A B A = ∴B A ⊆ 又2{|320}{1,2}A x x x =-+==∴B =∅或{1}{2},∴C={0,1,2}总结:此题要理解为什么B =∅时0a =(2)已知集合2{|3100},{|121}A x x x B x p x p =--≤=≤≤+-.若B A ⊆,求实数p的取值范围.解:①当B ≠∅时,即1212p p p ≤∴≥+-. 由B A ⊆得21215p p ≤≤-+且-∴ 23p ≤≤ ②当时B =∅,即1212p p p >∴<+-. 综上由①、②得:3p ≤.总结:不少同学在解决①时很容易忘了考虑前提2p ≥,在最后23p ≤≤和2p <做并集时直接就写成了23p ≤≤和2p <。
练习1 设集合2{|40}A x x x =+=,22{|2(1)10}B x x a x a =+++-=,A B B = ,求实数a 的值. (答案 1 1a a ≤-=或 )2、集合的含义已知集合{|A x y ==,2{|,}B y y t t A ==∈,求B A解:{|{|11}A x y x x ===-≤≤,2{|,}{|01}B y y t t A y y ==∈=≤≤, {|01}B A x x =≤≤总结:首先要注意的是集合中的元素和元素符合的条件,在集合A 中元素为x 是函数的定义域,在集合B 中元素为y 是函数的值域,要注意此时B 中这个条件t A ∈。
高一数学必修一易错题集锦答案1. 已知集合M={y |y =x 2+1,x∈R },N={y|y =x +1,x∈R },则M∩N=( )解:M={y |y =x 2+1,x∈R }={y |y ≥1}, N={y|y=x +1,x∈R }={y|y∈R }.∴M∩N={y |y ≥1}∩{y|(y∈R)}={y |y ≥1},注:集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x |y =x 2+1}、{y |y =x 2+1,x ∈R }、{(x ,y )|y =x 2+1,x ∈R },这三个集合是不同的.2 .已知A={x |x 2-3x +2=0},B={x |ax -2=0}且A∪B=A,求实数a 组成的集合C . 解:∵A∪B=A ∴B A 又A={x |x 2-3x +2=0}={1,2}∴B=或{}{}21或∴C={0,1,2}3 。
已知m ∈A,n ∈B, 且集合A={}Z a a x x ∈=,2|,B={}Z a a x x ∈+=,12|,又C={}Z a a x x ∈+=,14|,则有:m +n ∈ (填A,B,C 中的一个)解:∵m ∈A, ∴设m =2a 1,a 1∈Z , 又∵n B ∈,∴n =2a 2+1,a 2∈ Z ,∴m +n =2(a 1+a 2)+1,而a 1+a 2∈ Z , ∴m +n ∈B 。
4 已知集合A={x|x 2-3x -10≤0},集合B={x|p +1≤x≤2p-1}.若B A ,求实数p 的取值范围.解:①当B≠时,即p +1≤2p-1p≥2.由B A 得:-2≤p+1且2p -1≤5. 由-3≤p≤3.∴ 2≤p≤3②当B=时,即p +1>2p -1p <2.由①、②得:p≤3.点评:从以上解答应看到:解决有关A∩B=、A∪B=,A B 等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中要全方位、多角度审视问题.5 已知集合A={a,a +b,a +2b},B={a,ac,ac 2}.若A=B ,求c 的值.分析:要解决c 的求值问题,关键是要有方程的数学思想,此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式.解:分两种情况进行讨论.(1)若a +b=ac 且a +2b=ac 2,消去b 得:a +ac 2-2ac=0,a=0时,集合B 中的三元素均为零,和元素的互异性相矛盾,故a≠0.∴c 2-2c +1=0,即c=1,但c=1时,B 中的三元素又相同,此时无解.(2)若a +b=ac 2且a +2b=ac ,消去b 得:2ac 2-ac -a=0,∵a≠0,∴2c 2-c -1=0,即(c -1)(2c +1)=0,又c≠1,故c=-21.点评:解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验. 6 设A 是实数集,满足若a∈A,则a -11∈A ,1≠a 且1∉A.⑴若2∈A,则A 中至少还有几个元素?求出这几个元素⑵A 能否为单元素集合?请说明理由.⑶若a∈A,证明:1-a 1∈A.⑷求证:集合A 中至少含有三个不同的元素.解:⑴2∈A ⇒ -1∈A ⇒ 21∈A ⇒ 2∈A∴ A 中至少还有两个元素:-1和21⑵如果A 为单元素集合,则a =a -11即12+-a a =0该方程无实数解,故在实数范围内,A 不可能是单元素集⑶a∈A ⇒ a -11∈A ⇒ a--1111∈A ⇒111---a a∈A ,即1-a 1∈A⑷由⑶知a∈A 时,a -11∈A, 1-a 1∈A .现在证明a,1-a 1, a -11三数互不相等.①若a=a -11,即a2-a+1=0 ,方程无解,∴a ≠a -11②若a=1-a 1,即a 2-a+1=0,方程无解∴a ≠1-a 1③若1-a 1 =a -11,即a2-a+1=0,方程无解∴1-a 1≠a -11.综上所述,集合A 中至少有三个不同的元素.点评:⑷的证明中要说明三个数互不相等,否则证明欠严谨.7 设M ={a ,b ,c },N ={-2,0,2},求(1)从M 到N 的映射种数;(2)从M 到N 的映射满足 f (a)>f (b)≥f(c),试确定这样的映射f 的种数. 解:(1)由于M ={a ,b ,c },N ={-2,0,2},结合映射的概念,有一共有27个映射(2)符合条件的映射共有4个0222,2,2,0,0,2220a a a ab b b bc c c c →→→→⎧⎧⎧⎧⎪⎪⎪⎪→-→-→→⎨⎨⎨⎨⎪⎪⎪⎪→-→-→-→⎩⎩⎩⎩8.已知函数()f x 的定义域为[0,1],求函数(1)f x +的定义域解:由于函数()f x 的定义域为[0,1],即01x ≤≤∴(1)f x +满足011x ∴≤+≤ 10x -≤≤,∴(1)f x +的定义域是[-1,0]9根据条件求下列各函数的解析式:(1)已知()f x 是二次函数,若(0)0,(1)()1f f x f x x =+=++,求()f x .(2)已知1)f x x x =+,求()f x(3)若()f x 满足1()2(),f x f ax x +=求()f x解:(1)本题知道函数的类型,可采用待定系数法求解设()f x =2(0)ax bx c a ++≠由于(0)0f =得2()f x ax bx =+,又由(1)()1f x f x x +=++,∴22(1)(1)1a x b x ax bx x +++=+++即 22(2)(1)1ax a b x a b ax b x ++++=+++211021a b b a a b a b +=+⎧⎪∴≠∴==⎨⎪+=⎩ 因此:()f x =21122x x +(2)本题属于复合函数解析式问题,可采用换元法求解设22()(1)2(1)1(1)f u u u u u ∴=-+-=-≥∴()f x =21x - (1x ≥)(3)由于()f x 为抽象函数,可以用消参法求解用1x 代x 可得:11()2(),f f x a x x +=与 1()2()f x f ax x +=联列可消去1()f x 得:()f x =233a axx -.点评:求函数解析式(1)若已知函数()f x 的类型,常采用待定系数法;(2)若已知[()]f g x 表达式,常采用换元法或采用凑合法;(3)若为抽象函数,常采用代换后消参法. 10 已知x y x 62322=+,试求22y x +的最大值.分析:要求22y x +的最大值,由已知条件很快将22y x +变为一元二次函数,29)3(21)(2+--=x x f 然后求极值点的x 值,联系到02≥y ,这一条件,既快又准地求出最大值.解 由 x y x 62322=+得.20,0323,0.3232222≤≤∴≥+-∴≥+-=x x x y xx y 又,29)3(2132322222+--=+-=+x x x x y x∴当2=x 时,22y x +有最大值,最大值为.429)32(212=+--点评:上述解法观察到了隐蔽条件,体现了思维的深刻性.大部分学生的作法如下:由 x y x 62322=+得 ,32322x x y +-=1(0),1(1)u x x x u u =+≥=-≥,29)3(2132322222+--=+-=+∴x x x x y x ∴当3=x 时,22y x +取最大值,最大值为29 这种解法由于忽略了02≥y 这一条件,致使计算结果出现错误.因此,要注意审题,不仅能从表面形式上发现特点,而且还能从已知条件中发现其隐蔽条件,既要注意主要的已知条件,又要注意次要条件,甚至有些问题的观察要从相应的图像着手,这样才能正确地解题.. 11设()f x 是R 上的函数,且满足(0)1,f =并且对任意的实数,x y 都有()()(21)f x y f x y x y -=--+,求()f x 的表达式.解法一:由(0)1,f =()()(21)f x y f x y x y -=--+,设x y =,得(0)()(21)f f x x x x =--+,所以()f x =21x x ++解法二:令0x =,得(0)(0)(1)f y f y y -=--+即()1(1)f y y y -=--+又将y -用x 代换到上式中得()f x =21x x ++点评:所给函数中含有两个变量时,可对这两个变量交替用特殊值代入,或使这两个变量相等代入,再用已知条件,可求出未知的函数.具体取什么特殊值,根据题目特征而定. 12判断函数1()(1)1xf x x x -=++.解:1()(1)1x f x x x -=++有意义时必须满足10111xx x -≥⇒-<≤+即函数的定义域是{x |11x -<≤},由于定义域不关于原点对称,所以该函数既不是奇函数也不是偶函数13 判断22()log (1)f x x x =++的奇偶性.正解:方法一:∵)1(log )1)((log )(2222++-=+-+-=-x x x x x f =11log 22++x x =)1(log22++-x x =-)(x f ∴)(x f 是奇函数方法二:∵)1(log )1(log )()(2222++-+++=-+x x x x x f x f =01log )1()1[(log 2222==++-⋅++x x x x)()(x f x f -=- ∴)(x f 是奇函数14函数y=245x x --的单调增区间是_________. 解:y=245x x --的定义域是[5,1]-,又2()54g x x x =--在区间[5,2]--上增函数,在区间[2,1]-是减函数,所以y=245x x --的增区间是[5,2]--15已知奇函数f (x )是定义在(-3,3)上的减函数,且满足不等式f (x -3)+f (x 2-3)<0,求x 的取值范围.解:由⎩⎨⎧<<-<<⎩⎨⎧<-<-<-<-66603333332x x x x 得,故0<x<6,又∵f (x )是奇函数,∴f (x -3)<-f (x 2-3)=f (3-x 2),又f (x )在(-3,3)上是减函数,∴x -3>3-x 2,即x 2+x -6>0,解得x >2或x <-3,综上得2<x <6,即A ={x |2<x <6}, 16 作出下列函数的图像(1)y=|x-2|(x +1);(2)|lg |10x y =.分析:显然直接用已知函数的解析式列表描点有些困难,除去对其函数性质分析外,我们还应想到对已知解析式进行等价变形.在变换函数解析式中运用了转化变换和分类讨论的思想.解:(1)当x ≥2时,即x-2≥0时,当x <2时,即x-2<0时,所以⎪⎪⎩⎪⎪⎨⎧<+--≥--=)2(49)21()2(49)21(22x x x x y这是分段函数,每段函数图像可根据二次函数图像作出(见图)(2)当x ≥1时,lgx ≥0,y =10lgx=x ;当0<x <1时,lgx <0,所以这是分段函数,每段函数可根据正比例函数或反比例函数作出.(见图)点评:作不熟悉的函数图像,可以变形成基本函数再作图,但要注意变形过程是否等价,要特别注意x ,y 的变化范围.因此必须熟记基本函数的图像.例如:一次函数、反比例函数、二次函数、指数函数、对数函数,及三角函数、反三角函数的图像.17若f(x)= 21++x ax 在区间(-2,+∞)上是增函数,求a 的取值范围解:设12121212112,()()22ax ax x x f x f x x x ++-<<-=-++12211212121221121122121212(1)(2)(1)(2)(2)(2)(22)(22)(2)(2)22(21)()(2)(2)(2)(2)ax x ax x x x ax x ax x ax x ax x x x ax x ax x a x xx x x x ++-++=+++++-+++=++--+--==++++由f (x )=21++x ax 在区间(-2,+∞)上是增函数得12()()0f x f x -<210a ∴-> ∴a >21点评:有关于单调性的问题,当我们感觉陌生,不熟悉或走投无路时,回到单调性的定义上去,往往给我们带来“柳暗花明又一村”的感觉.18已知函数f (x )在(-1,1)上有定义,f (21)=-1,当且仅当0<x <1时f (x )<0,且对任意x 、y ∈(-1,1)都有f (x )+f (y )=f (xy yx ++1),试证明:(1)f (x )为奇函数;(2)f (x )在(-1,1)上单调递减解:证明:(1)由f (x )+f (y )=f (xy yx ++1),令x =y =0,得f (0)=0,令y =-x ,得f (x )+f (-x )=f (21x xx --)=f (0)=0.∴f (x )=-f (-x ).∴f (x )为奇函数.(2)先证f (x )在(0,1)上单调递减.令0<x 1<x 2<1,则f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (21121x x x x --)∵0<x 1<x 2<1,∴x 2-x 1>0,1-x 1x 2>0,∴21121x x x x -->0,又(x 2-x 1)-(1-x 2x 1)=(x 2-1)(x 1+1)<0∴x 2-x 1<1-x 2x 1,∴0<12121x x x x --<1,由题意知f (21121x x x x --)<0,即f (x 2)<f (x 1).∴f (x )在(0,1)上为减函数,又f (x )为奇函数且f (0)=0.∴f (x )在(-1,1)上为减函数.点评:本题知识依托:奇偶性及单调性定义及判定、赋值法及转化思想.对函数的奇偶性、单调性的判定以及运算能力和逻辑推理能力要求较高. 如果“赋值”不够准确,运算技能不过关,结果很难获得. 对于(1),获得f (0)的值进而取x =-y 是解题关键;对于(2),判定21121x x x x --的范围是解题的焦点.19已知18log 9,185,ba ==求36log 45解:∵185,b =∴18log 5b =∴1818183621818181818log 45log 5log 9log 451818log 36log 4log 92log ()2log ()99b ab a b a aa a++++=====+-++20知)2(log ax y a -=在[0,1]上是x 的减函数,则a 的取值范围是 解:∵)2(log ax y a -=是由u y a log =,ax u -=2复合而成,又a >0∴ax u -=2在[0,1]上是x 的减函数,由复合函数关系知u y a log =应为增函数,∴a >1又由于x 在[0,1]上时 )2(log ax y a -=有意义,ax u -=2又是减函数,∴x =1时,ax u -=2取最小值是a u -=2min >0即可, ∴a <2综上可知所求的取值范围是1<a <221已知函数()log (3)a f x ax =-.(1)当[0,2]x ∈时()f x 恒有意义,求实数a 的取值范围.(2)是否存在这样的实数a 使得函数()f x 在区间[1,2]上为减函数,并且最大值为1,如果存在,试求出a 的值;如果不存在,请说明理由.分析:函数()f x 为复合函数,且含参数,要结合对数函数的性质具体分析找到正确的解题思路,是否存在性问题,分析时一般先假设存在后再证明.解:(1)由假设,ax -3>0,对一切[0,2]x ∈恒成立,0,1a a >≠显然,函数g(x)= ax -3在[0,2]上为减函数,从而g(2)=32a ->0得到a <32∴a 的取值范围是(0,1)∪(1,32)(2)假设存在这样的实数a ,由题设知(1)1f =,即(1)log (3)a f a =-=1∴a =32此时3()log (3)2a f x x =-当2x =时,()f x 没有意义,故这样的实数不存在.点评:本题为探索性问题,应用函数、方程、不等式之间的相互转化,存在性问题一般的处理方法是先假设存在,结合已知条件进行推理和等价转化,若推出矛盾,说明假设不成立.即不存在,反之没有矛盾,则问题解决.22已知函数f (x )=1421lg 2+-⋅++a a ax x , 其中a 为常数,若当x ∈(-∞, 1]时, f (x )有意义,求实数a 的取值范围.分析:参数深含在一个复杂的复合函数的表达式中,欲直接建立关于a 的不等式(组)非常困难,故应转换思维角度,设法从原式中把a 分离出来,重新认识a 与其它变元(x )的依存关系,利用新的函数关系,常可使原问题“柳暗花明”. 解:14212+-⋅++a a ax x >0, 且a 2-a +1=(a -21)2+43>0,∴ 1+2x +4x ·a >0, a >)2141(x x +-,当x ∈(-∞, 1]时, y =x 41与y =x 21都是减函数,∴ y =)2141(x x +-在(-∞, 1]上是增函数,)2141(x x +-max =-43,∴ a >-43, 故a 的取值范围是(-43, +∞).点评:发掘、提炼多变元问题中变元间的相互依存、相互制约的关系、反客为主,主客换位,创设新的函数,并利用新函数的性质创造性地使原问题获解,是解题人思维品质高的表现.本题主客换位后,利用新建函数y =)2141(x x +-的单调性转换为函数最值巧妙地求出了实数a 的取值范围.此法也叫主元法.23若1133(1)(32)a a --+<-,试求a 的取值范围.解:∵幂函数13y x -=有两个单调区间,∴根据1a +和32a -的正、负情况,有以下关系10320.132a a a a +>⎧⎪->⎨⎪+>-⎩① 10320.132a a a a +<⎧⎪-<⎨⎪+>-⎩② 10.320a a +<⎧⎨->⎩③解三个不等式组:①得23<a <32,②无解,③a <-1∴a 的取值范围是(-∞,-1)∪(23,32)点评:幂函数13y x -=有两个单调区间,在本题中相当重要,不少学生可能在解题中误认为132a a +>-,从而导致解题错误.24 已知a>0 且a ≠1 ,f (log a x ) = 12-a a(x -x 1)(1)求f(x);(2)判断f(x)的奇偶性与单调性;(3)对于f(x) ,当x ∈(-1 , 1)时 , 有f( 1-m ) +f (1- m 2 ) < 0 ,求m 的集合M . 分析:先用换元法求出f(x)的表达式;再利用有关函数的性质判断其奇偶性和单调性;然后利用以上结论解第三问.解:(1)令t=log a x(t ∈R),则).(),(1)(),(1)(,22R x a a a a x f a a a a t f a x xx t t t ∈--=∴--==--,101,.)(,10,)(,01,1.)(,),()(1)()2(22<<><<-=>->∴∈-=--=---a a x f a a a x u a aa x f R x x f a a a a x f x x x x 或无论综上为增函数类似可判断时当为增函数时当为奇函数且f(x)在R 上都是增函数.)1,1().1()1(,)(,0)1()1()3(22-∈-<-∴<-+-x m f m f R x f m f m f 又上是增函数是奇函数且在.211111111122<<⇒⎪⎩⎪⎨⎧-<-<-<-<-<-∴m m m m m点评:对含字母指数的单调性,要对字母进行讨论.对本例的③不需要代入f (x )的表达式可求出m 的取值范围,请同学们细心体会.25已知函数2()3f x x ax a =++-若[2,2]x ∈-时,()f x ≥0恒成立,求a 的取值范围. 解:设()f x 的最小值为()g a(1)当22a-<-即a >4时,()g a =(2)f -=7-3a ≥0,得73a ≤故此时a 不存在;(2) 当[2,2]2a-∈-即-4≤a ≤4时,()g a =3-a -24a ≥0,得-6≤a ≤2又-4≤a ≤4,故-4≤a ≤2;(3)22a->即a <-4时,()g a =(2)f =7+a ≥0,得a ≥-7,又a <-4故-7≤a <-4综上,得-7≤a ≤226已知210mx x ++=有且只有一根在区间(0,1)内,求m 的取值范围. 解:设2()1f x mx x =++,(1)当m =0时方程的根为-1,不满足条件.(2)当m ≠0∵210mx x ++=有且只有一根在区间(0,1)内又(0)f =1>0∴有两种可能情形①(1)0f <得m <-2 或者②1(1)02f m =-且0<<1得m 不存在综上所得,m <-227.是否存在这样的实数k ,使得关于x 的方程x 2+(2k -3)x -(3k -1)=0有两个实数根,且两根都在0与2之间?如果有,试确定k 的取值范围;如果没有,试说明理由.解:令2()(23)(31)f x x k x k =+---那么由条件得到2(23)4(31)0(0)130(2)42(23)(31)023022k k f k f k k k ⎧∆=-+-≥⎪=->⎪⎪⎨=+--->⎪-⎪<<⎪⎩即24501313722k k k k ⎧+≥⎪⎪<⎪⎨>⎪⎪<<⎪⎩即此不等式无解即不存在满足条件的k 值.28已知二次函数2()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时12()()f x f x ≠,求证:方程()f x =121[()()]2f x f x +有不等实根,且必有一根属于区间(x 1,x 2).解:设F (x )=()f x -121[()()]2f x f x +,则方程 ()f x =121[()()]2f x f x + ①与方程 F (x )=0 ② 等价 ∵F (x 1)=1()f x -121[()()]2f x f x +=121[()()]2f x f x - F (x 2)=2()f x -121[()()]2f x f x +=121[()()]2f x f x -+∴ F (x 1)·F (x 2)=-2121[()()]4f x f x -,又12()()f x f x ≠∴F (x 1)·F (x 2)<0故方程②必有一根在区间(x 1,x 2)内.由于抛物线y =F (x )在x 轴上、下方均有分布,所以此抛物线与x 轴相交于两个不同的交点,即方程②有两个不等的实根,从而方程①有两个不等的实根,且必有一根属于区间(x 1,x 2).点评:本题由于方程是()f x =121[()()]2f x f x +,其中因为有()f x 表达式,所以解题中有的学生不理解函数图像与方程的根的联系,误认为证明()f x 的图像与x 轴相交于两个不同的点,从而证题中着眼于证1()f x 2()f x <0,使本题没法解决. 本题中将问题转化为F (x )=()f x -121[()()]2f x f x +的图像与x 轴相交于两个不同的两点是解题的关健所在. 29试确定方程322420x x x --+=最小根所在的区间,并使区间两个端点是两个连续的整数.分析:只要构造函数()f x =32242x x x --+,计算()f x 的自变量x 取整数值时的函数值,根据其符号,确定方程根的个数及根的分布. 解:令()f x =32242x x x --+∵(3)f -=-54-9+12+2=-49<0 (2)f -=-16-4+8+2=-10<0 (1)f -=-2-1+4+2=3>0,,(0)f =0-0-0+2=2>0 (1)f =2-1-4+2=-1<0, (2)f =16-4-8+2=6>0根据(2)f -·(1)f -<0,(0)f ·(1)f <0,(1)f ·(2)f <0 可知()f x 的零点分别在区间(-2,-1),(0,1),(1,2)内.因为方程是一个一元三次方程,所以它最多有三个根,所以原方程的最小根在区间(-2,-1)内.点评:计算一元高次函数值可借助于计算器来完成,在实数范围内一元n 次方程最多有n 个实根,当然本题也可以用因式分解方法来解.32242x x x --+221(21)2(21)2()(2)212()(2)(2)2x x x x x x x x =---=--=-所以32242x x x --+=0有三个根:12,22-30设二次函数2()(0),f x ax bx c a =++>方程0)(=-x x f 的两个根21,x x ,满足0<21x x <a1<. (1)当),0(1x x ∈时,证明1)(x x f x <<;(2)设函数2()(0),f x ax bx c a =++>的图像关于直线0x x =对称,证明:210x x <. 分析:(1)用作差比较法证明不等式1)(x x f x <<;(2)函数2()(0),f x ax bx c a =++>图像关于直线0x x =对称,实际直线0x x =就是二次函数的对称轴,即abx 20-=,然后用已知条件证明不等式即可. 证明:(1)依题意,设))(()()(21x x x x a x x f x F --=-= 当),0(1x x ∈时,由于21x x <,∴0))((21>--x x x x ,又0>a ∴))(()()(21x x x x a x x f x F --=-=>0即)(x f x <)1)(()1)(()()]([)(2121111ax x x ax ax x x x F x x x F x x x f x -->-+-=--=+-=-∵0<21x x x <<a1<.∴01,021>->-ax x x ∴0)(1>-x f x 综合得1)(x x f x << (2)依题意知a b x 20-=,又ab x x 121--=+ ∴aax ax a x x a a bx 2121)(221210-+=-+=-=∵,012<-ax ∴22110x a ax x =<点评:解决本题的关健有三:一是用作差比较法证明不等式;二是正确选择二次函数的表达式,即本题选用两根式表示;三要知道二次函数的图像关于直线对称,此直线为二次函数的对称轴,即ab x 20-= 31已知函数0)1(),1(2)(2=<<++=f b c c bx x x f ,且方程01)(=+x f 有实根. (1)求证:-3<c ≤-1,b ≥0.(2)若m 是方程01)(=+x f 的一个实根,判断)4(-m f 的正负并加以证明 分析:(1)题中条件涉及不等关系的有1<<b c 和方程01)(=+x f 有实根.及一个等式0)1(=f ,通过适当代换及不等式性质可解得;(2)本小题只要判断)4(-m f 的符号,因而只要研究出4-m 值的范围即可定出)4(-m f 符号. (1)证明:由0)1(=f ,得1+2b+c=0,解得21+-=c b ,又1<<b c , 1c c >+->21解得313-<<-c , 又由于方程01)(=+x f 有实根,即0122=+++c bx x 有实根, 故0)1(442≥+-=∆c b 即0)1(4)1(2≥+-+c c 解得3≥c 或1-≤c ∴13≤<-c ,由21+-=c b ,得b ≥0. (2)c bx x x f ++=2)(2=)1)(()1(2--=++-x c x c x c x ∵01)(<-=m f ,∴c<m<1(如图) ∴c —4<m —4<—3<c. ∴)4(-m f 的符号为正.点评:二次函数值的符号,可以求出其值判断,也可以灵活运用二次函数的图像及性质解题.32定义在R 上的函数()f x 满足:对任意实数,m n ,总有()()()f m n f m f n +=⋅,且当0x >时,()01f x <<.(1)试求()0f 的值;(2)判断()f x 的单调性并证明你的结论; (3)设()()()(){}()({}22,1,,21,A x y f x f y f B x y f ax y a R =⋅>=-=∈,若A B ⋂=∅,试确定a 的取值范围.(4)试举出一个满足条件的函数()f x .解:(1)在()()()f m n f m f n +=⋅中,令1,0m n ==.得:()()()110f f f =⋅.因为()10f ≠,所以,()01f =.(2)要判断()f x 的单调性,可任取12,x x R ∈,且设12x x <.在已知条件()()()f m n f m f n +=⋅中,若取21,m n x m x +==,则已知条件可化为:()()()2121f x f x f x x =⋅-.由于210x x ->,所以()2110f x x >->.为比较()()21f x f x 、的大小,只需考虑()1f x 的正负即可.在()()()f m n f m f n +=⋅中,令m x =,n x =-,则得()()1f x f x ⋅-=. ∵ 0x >时,()01f x <<, ∴ 当0x <时,()()110f x f x =>>-.又()01f =,所以,综上,可知,对于任意1x R ∈,均有()10f x >. ∴ ()()()()2112110f x f x f x f x x -=--<⎡⎤⎣⎦. ∴ 函数()f x 在R 上单调递减.(3)首先利用()f x 的单调性,将有关函数值的不等式转化为不含f 的式子.()()()222211f x f y f x y ⋅>+<即,(()210f ax y f -==,即20ax y -+=.由A B ⋂=∅,所以,直线20ax y -+=与圆面221x y +<无公共点.所以,2211a ≥+.解得 11a -≤≤.(4)如()12xf x ⎛⎫= ⎪⎝⎭.点评:根据题意,将一般问题特殊化,也即选取适当的特值(如本题中令1,0m n ==;以及21,m n x m x +==等)是解决有关抽象函数问题的非常重要的手段;另外,如果能找到一个适合题目条件的函数,则有助于问题的思考和解决. 33设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈ (1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值.解:(1)当0=a 时,函数)(1||)()(2x f x x x f =+-+-=- 此时,)(x f 为偶函数当0≠a 时,1)(2+=a a f ,1||2)(2++=-a a a f ,)()(a f a f -≠,)()(a f a f --≠此时)(x f 既不是奇函数,也不是偶函数(2)(i )当a x ≤时,43)21(1)(22++-=++-=a x a x x x f 当21≤a ,则函数)(x f 在],(a -∞上单调递减,从而函数)(x f 在],(a -∞上的最小值为1)(2+=a a f .若21>a ,则函数)(x f 在],(a -∞上的最小值为a f +=43)21(,且)()21(a f f ≤. (ii )当a x ≥时,函数43)21(1)(22+-+=+-+=a x a x x x f若21-≤a ,则函数)(x f 在],(a -∞上的最小值为a f -=-43)21(,且)()21(a f f ≤-若21->a ,则函数)(x f 在),[+∞a 上单调递增,从而函数)(x f 在),[+∞a 上的最小值为1)(2+=a a f .综上,当21-≤a 时,函数)(x f 的最小值为a -43当2121≤<-a 时,函数)(x f 的最小值为12+a当21>a 时,函数)(x f 的最小值为a +43.点评:(1)探索函数的奇偶性,可依据定义,通过)()(x f x f =-代入有1||1||)(22+-+=+--+-a x x a x x ,即||||a x a x -=+可得,当0=a 时,||||a x a x -=+,函数)()(x f x f =-函数为偶函数. 通过)()(x f x f -=-可得 1||1||)(22----=+--+-a x x a x x 化得 ||||222a x a x x -++=+此式不管0=a 还是0≠a 都不恒成立,所以函数不可能是奇函数.(2)由于本题中含有绝对值,需要去掉,故分类讨论,既要对二次函数值域的研究方法熟练掌握,又要将结论综合,对学生的综合运用数学知识能力及数学思想作了较好的考查.34某公司为帮助尚有26.8万元无息贷款没有偿还的残疾人商店,借出20万元将该商店改建成经营状况良好的某种消费品专卖店,并约定用该店经营的利润逐步偿还债务(所有债务均不计利息).已知该种消费品的进价为每件40元;该店每月销售量q (百件)与销售价p (元/件)之间的关系用右图中的一条折线(实线)表示;职工每人每月工资为600元,该店应交付的其它费用为每月130元. (1)若当销售价p 为52元/件时,该店正好收支平衡,求该店的职工人数; (2)若该店只安排40名职工,则该店最早可在几年后还清所有债务,此时每件消费品的价格定为多少元?分析:本题题目的篇幅较长,所给条件零散杂乱,为此,不仅需要划分段落层次,弄清每一层次独立的含义和相互间的关系,更需要抓住矛盾的主要方面.由题目的问题找到关键词——“收支平衡”、“还清所有债务”,不难想到,均与“利润”相关.从阅读和以上分析,可以达成我们对题目的整体理解,明确这是一道函数型应用题.为此,首先应该建立利润与职工人数、月销售量q 、单位商品的销售价p 之间的关系,然后,通过研究解析式,来对问题作出解答.由于销售量和各种支出均以月为单位计量,所以,先考虑月利润. 解:(1)设该店的月利润为S 元,有职工m 名.则()4010060013200S q p m =-⨯--.124584060q p81又由图可知:()()2140, 405882 5881p p q p p -+≤≤⎧⎪=⎨-+<≤⎪⎩. 所以,()()()()()()21404010060013200 4058824010060013200 58<81p p m p S p p m p -+-⨯--≤≤⎧⎪=⎨-+-⨯--≤⎪⎩ 由已知,当52p =时,0S =,即()()214040100600132000p p m -+-⨯--=,解得50m =.即此时该店有50名职工.(2)若该店只安排40名职工,则月利润()()()()()()21404010037200 4058824010037200 58<81p p p S p p p -+-⨯-≤≤⎧⎪=⎨-+-⨯-≤⎪⎩. 当4058p ≤≤时,求得55p =时,S 取最大值7800元. 当5881p <≤时,求得61p =时,S 取最大值6900元. 综上,当55p =时,S 有最大值7800元.设该店最早可在n 年后还清债务,依题意,有 1278002680002000000n ⨯--≥. 解得5n ≥.所以,该店最早可在5年后还清债务,此时消费品的单价定为55元.点评:求解数学应用题必须突破三关:(1)阅读理解关:一般数学应用题的文字阅读量都比较大,要通过阅读审题,找出关键词、句,理解其意义.(2)建模关:即建立实际问题的数学模型,将其转化为数学问题. (3)数理关:运用恰当的数学方法去解决已建立的数学模型.。
1、设集合M={x|x2-x<0},N={x||x|<2},则…(???)A.M∩N=???????????????????????????????B.M∩N=MC.M∪N=M????????????????????????????????D.M∪N=RM N.C.2个D.3个参考答案与解析:解析:空集、子集、真子集是本题考查的重点,要明确空集是除了它自身之外的任何一个集合的真子集,当然是任何集合的子集.根据集合的含义、性质和运算法则逐一判断真假.空集也有子集,是它本身,所以①不正确;空集不是它自身的真子集,所以②也是不正确的;空集就只有一个子集,所以③也是不正确的;因为空集是任何集合的子集,所以④是正确的;设A={3n-1|n∈Z},B={3n+2|n∈Z},则A={3n-1|n∈Z}={3(k+1)-1|(k+1)∈Z}={3k+2|k∈Z}=B={3n+2|n∈Z},所以⑤也是正确的.因此,选C.答案:C主要考察知识点:集合4、函数f(x)=-1的定义域是(???)A.x≤1或x≥-3???????????????????????????????B.(-∞,1)∪[-3,+∞)C.-3≤x≤1???????????????????????????????????D.[-3,1]D.f(x)=和g(x)=f(x)==1(x0),g(x)==1(x6、函数f(x)=若f(x)=3,则x的值是(???)A.1??????????B.±????????????C.,1??????????????D.x=1(-x=±,∵-(-1,2),2x=3,∴x=[???∴x=.->->9、在下列选项中,可表示函数y=f(x)的图象的只可能是()您的答案:CD.y=++可能的取值组成的集合为(12、下列说法中,正确的命题个数是()①-2是16的四次方根②正数的n次方根有两个③a的n次方根就是④=a(a≥0)A.1B.2C.3D.4..次方根可能有一个值而只表示一个确定的值,=a则有=a.为何值均有=a.: B主要考察知识点y=(-1)y=(-1)-2改写成分数指数幂的形式为A.????????????????????????????????????B.参考答案与解析:思路解析:考查根式与分数指数幂的转化.原式可化为?=?.故选A.答案:A主要考察知识点:指数与指数函数14、化简()-4等于(???)A.?????????????B.?????????????C.?????????????D.====.,,=x,,=x解析:由指数函数的定义?????17、函数y=-e x的图象(???)A.与函数y=e x的图象关于y轴对称B.与函数y=e x的图象关于坐标原点对称C.与函数y=e-x的图象关于y轴对称D.与函数y=e-x的图象关于坐标原点对称<.f(x)=,(1)f(a)+f(1-a)的值;(2)f()+f()+f()+…+f()的值..参考答案与解析:解:(1)f(a)+f(1-a)=+=+=+=+==1.()()()()()()]()()]()()]-1)y=(-1)y=(-1)21、函数y=(2m-1)x是指数函数,则m的取值范围是__________.参考答案与解析:解析:考查指数函数的概念.据指数函数的定义,y=a x中的底数a约定a>0且a≠1.故此2m-1>0且2m-1≠1,所以m>且m≠1.答案:m>且m≠1主要考察知识点:指数与指数函数。
高一数学知识点大全易错题数学是一门需要掌握基础知识并运用逻辑思维的学科,而在高一阶段,学生们会接触到更多的数学知识点。
然而,由于新知识的涌入以及知识点的复杂性,易错题也相应增多。
以下是一些高一数学知识点大全易错题的总结,希望能帮助同学们更好地理解和记忆这些知识。
1. 二次函数易错点:判断开口方向和对称轴位置例题:已知二次函数y = ax^2 + bx + c的图像经过点(1, 5),并且在x轴上的截距为4。
求函数的解析式。
解析:由于已知函数的图像经过点(1, 5),代入得到一个方程:a + b + c = 5。
又因为函数在x轴上的截距为4,所以另一个方程为c = 4。
将c代入前一个方程得到 a + b = 1。
因此,我们可以得到方程组:a + b = 1,a + b + c = 5,c = 4。
解该方程组,得到a = -2,b = 3,c = 4。
所以,函数的解析式为y = -2x^2 + 3x + 4。
2. 概率易错点:计算概率时的漏算或重算例题:一个袋子里有8个红球和4个蓝球。
从袋子中先后取两个球,不放回,求取出的两球颜色相同的概率。
解析:首先计算取出两个红球的概率。
第一次取到红球的概率为8/12,第二次取到红球的概率为7/11。
因为两个事件是独立的,所以将两个概率相乘,得到取出两个红球的概率为(8/12) * (7/11) = 14/33。
同理,计算取出两个蓝球的概率为(4/12) * (3/11) = 1/11。
所以,取出的两球颜色相同的概率为14/33 + 1/11 = 17/33。
3. 平面向量易错点:向量的方向和数量运算的错误例题:已知向量a = (2, -3),向量b = (-1, 4),求向量a和向量b 的数量积和向量积。
解析:首先计算向量的数量积。
数量积计算公式为a·b = |a| * |b| * cosθ,其中|a|和|b|分别表示向量a和向量b的模,θ表示两个向量的夹角。
类型一——子集与包含1.集合2{|60}A x x x =+-=,{|10}B x ax =+=,若B A ⊆,则实数a 的集合是____________.2.已知集合A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0,a ∈R},若B ⊆A ,求实数a 的取值范围.3.已知{}|25M x x =-≤≤, {}|121N x a x a =+≤≤-.若M N ⊇,求实数a 的取值范围.类型二——函数的定义域1.函数()lg(2)f x x +的定义域为( ) A .(2,1)-B .[2,1)-C .(2,1]-D .[]1,2-2.函数2()lg(31)f x x =++的定义域为. 3.函数y =的定义域是( )A .[1,+∞)B .(0,+∞)C .[0,1]D .(0,1]4.已知函数()f x 的定义域为[]15-,,(35)f x -的定义域为( )A. 41033⎡⎤⎢⎥⎣⎦,B. []810-,C. 43⎡⎤∞⎢⎥⎣⎦,+ D. []810,5.若)1(-x f 的定义域为[]1,2,则)2(+x f 的定义域为( ) A .[]0,1B. []2,3C. []2,1--D.无法确定6.函数()f x =(,)-∞+∞,则实数a 的取值范围是( ) A. (,)-∞+∞ B.3[0,)4 C.3(,)4+∞ D.3[0,]47.若函数()f x =R ,则a 的取值范围是. 类型三函数的值域1.函数243,[0,3]y x x x =-+∈的值域为( )A.[0,3]B.[-1,0]C.[-1,3]D.[0,2]2.函数()211xx f +=()R x ∈的值域是( ). A .(0,1) B .(0,1] C .[0,1]3.函数y=的值域是 _________ .4.函数()1f x x =-的值域为____________.5.求函数 类型四——函数的解析式1.已知1)f x =+()f x 的解析式为.2.已知f(x 5)=lg x ,则f(2)=________.3.设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 的解析式。
4(1)已知af (x )+f (-x )=bx ,其中a ≠±1,求f (x );(2)已知f (x )-2f ⎝ ⎛⎭⎪⎫1x =3x +2,求f (x ).5.已知函数为奇函数,且当时,则当时,的解析式为 .类型五——函数的单调性和奇偶性1.已知函数f (x )=x 2-2(1-a )x +2在(-∞,4]上是减函数,则实数a 的取值范围为________.2.已知函数f (x )=x 2-2(1-a )x +2的单调递减区间是(-∞,4],则实数a 的值为________.3.已知y =f (x )在定义域(-1,1)上是减函数,且f (1-a )<f (2a -1),则a 的取值范围是________.4若函数f (x )=ax 2+bx +3a +b 是偶函数,定义域为[a -1,2a ],则a =________,b =________;5.已知函数f (x )=x +mx 2+nx +1是定义在(-1,1)上的奇函数,则常数m ,n 的值分别为________.7.设f (x )为奇函数,g (x )为偶函数,又f (x )+g (x )=1x -1,则f (x )=________,g (x )=________.8.已知偶函数f (x )在区间[0,+∞)上单调增加,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 取值范围是________. 9.已知函数为奇函数,且当时,则当时,的解析式为 .10.设定义在[-2,2]上的奇函数f (x )在区间[0,2]上单调递减,若f (m )+f (m -1)>0,求实数m 的取值范围.11.已知函数f (x )对任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.y x =(1)求证:f (x )在R 上是减函数;(2)求f (x )在[-3,3]上的最大值及最小值.12.(12分)已知y=f(x)是定义域为R 的奇函数,当x ∈[0,+∞)时,f(x)=x 2-2x. (1)写出函数y=f(x)的解析式.(2)若方程f(x)=a 恰有3个不同的解,求a 的取值范围.类型七——函数图像的定点问题1函数y =a x -3+3(a >0,且a ≠1)的图象过定点________.2.数y =log a (x +1)-2(a >0,且a ≠1)的图象恒过点________.3.函数f (x )=a x -2+log a (x -1)+1(a >0,a ≠1)的图象必经过点________. 4.已知幂函数f (x )=x α,(a >0,且a ≠1)的图象恒过点________. 类型八——求值问题1.化简3a a 的结果是________.2.化简 (a >0,b >0)的结果是________.(1)lg 52+23lg 8+lg 5lg 20+(lg 2)2;(2)lg 25+lg 2+lg 2·lg 5;(1)log 327+lg 25+lg 4+77log 2+(-9.8)0;(2)⎝ ⎛⎭⎪⎫278-23-⎝ ⎛⎭⎪⎫4990.5+(0.008)-23×225.类型九——比较大小问题1.(1)设y 1=40.9,y 2=80.48,y 3=⎝ ⎛⎭⎪⎫12-1.5,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 3>y 2D .y 1>y 2>y 32.已知三个数a =60.7,b =0.70.8,c =0.80.7,则这三个数的大小关系是( ) A .a >b >c B .b >c >a C .c >b >a D .a >c >b 3设a =log 32,b =log 52,c =log 23,则( ) A .a >c >b B .b >c >a C .c >b >a D .c >a >b 4.三个数 3.3320.99,log ,log 0.8π的大小关系为( )A . 3.332log 0.99log 0.8π<<B . 3.323log 0.8log 0.99π<<C . 3.3230.99log 0.8l og π<<D . 3.323log 0.80.99log π<<5.已知0.30.22log 0.3,2,0.3a b c ===,那么a 、b 、c 的大小关系为 (用""<号表示)。
类型十——指数函数对数函数的最值和值域1.函数的单调递增区间为( )A .(﹣∞,1)B .(2,+∞)C .(﹣∞,)D .(,+∞)2.已知y=log a (2﹣ax )是[0,1]上的减函数,则a 的取值范围为( ) A .(0,1) B .(1,2) C .(0,2) D .(2,+∞) 3 已知函数f (x )=2x +2ax +b ,且f (1)=52,f (2)=174.(1)求a ,b 的值;(2)判断f (x )的奇偶性并证明;(3)判断并证明函数f (x )在[0,+∞)上的单调性,并求f (x )的值域. 4.已知-1≤x ≤2,求函数y =f (x )=3+2×3x +1-9x 的值域.5.已知f (x )=2+log 3x ,x ∈[1,9],求y =[f (x )]2+f (x 2)的最大值,及y 取最大值时x 的值.6设x ∈[2,8],函数f (x )=12log a (ax )·log a (a 2x )的最大值是1,最小值是-18,求a 的值.类型十一——零点问题1.函数f (x )=log 3x -8+2x 的零点一定位于区间( ) A .(5,6) B .(3,4)C .(2,3) D .(1,2)2.函数f (x )=ln x -1x -1的零点的个数是( )A .0B .1C .2D .33.已知函数f (x )=⎩⎨⎧|2x -1|, x <2,3x -1,x ≥2,若方程f (x )-a =0有三个不同的实数根,则实数a 的取值范围为( ) A .(1,3) B .(0,3) C .(0,2) D .(0,1)3.已知关于x 的二次方程x 2+2mx +2m +1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的范围;(2)若方程两根均在区间(0,1)内,求m 的范围.4.关于x 的方程mx 2+2(m +3)x +2m +14=0有两实根,且一个大于4,一个小于4,求m 的取值范围. 类型十一——分段函数问题1.已知函数f (x )=,则f (1)﹣f (3)=( )A .﹣2B .7C .27D .﹣72.已知f(x)=⎪⎩⎪⎨⎧≥<<--≤+)2(2)21()1(12x x x x x x ,若f(x)=3, 则x 的值是.3.已知函数在(﹣∞,+∞)上单调递减,那么实数a 的取值范围是 . 4.给出函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x (x ≥4),f (x +1)(x <4),则f (log 23)等于________。