风力摆控制系统方案
- 格式:docx
- 大小:11.43 KB
- 文档页数:4
2015年全国大学生电子设计竞赛风力摆控制系统( B 题)2015 年8 月15 日本文以IAP单片机为控制核心,可以在运行过程中对User Flash的部分区域进行烧写;MPU605是陀螺仪与加速度传感器的结合,可实时检测出风力摆的状态并由单片机处理后通过PID控制算法实现闭环调节,实现对直流电机转速的控制以此来达到风力摆的动态平衡。
系统设计结构简单,制作成本低,控制精度高。
风力摆运行状态由液晶显示,智能性好,反应速度快,具有良好的人机交互界面。
目录一、系统方案 (1)1、电机的论证与选择12、单片机的论证与选择...............................................................13、电机驱动电路的论证与选择1二、系统理论分析与计算22.1保证系统稳定性的方法 (2)⑴选取合适的材料搭建支架 (2)(2)选取适宜的硬件提高精准度 (2)1、小型直流电机电路32、显示模块的电路33、电机驱动电路3三、系统设计31、系统流程图32、程序设计(见附录) ................................................................3四、测试方案及结果31、测试仪器32、测试结果33、测试分析 (5)五、结论与心得5六、参考文献5附录1 :源程序 (6)风力摆控制系统( B 题)【本科组】一、系统方案本系统主要由控制处理模块、角度,加速度检测模块、驱动模块、电源模块、显示组成,下面分别论证这几个模块的选择。
1、电机的论证与选择方案一:采用步进电机。
步进电机具有动态响应快、易于起停,易于正反转及变速的优点。
但缺点是它以步进式跟进,角度小于一个步距角时是系统响应盲区,而且经过测试步进电机在控制旋转臂时,抖动性大并且容易出现卡顿现象,所以不适合风力摆的控制。
方案二:采用小型轴流风机。
扭矩大,体积小,驱动电路简单,稳定强,负载能力强等优点。
风力摆控制系统本系统采用STC12C5A60S2为主控芯片,通过MPU6050传感器提供反馈信息、采用PID控制算法调整轴流风机的状态、在液晶和按键的人机交互作用下显示并切换工作模式,形成一闭环测控系统。
该测控系统通过控制驱动各风机,使风力摆按照一定规律运动,同时保证摆杆下方悬挂的激光笔能在地面画出要求的轨迹。
一、方案论证1.1 控制器模块方案。
控制器是整个控制系统的核心,承载着执行控制算法,实现控制功能的作用。
因此,要保证系统整体的控制质量,控制器的选择非常重要!在控制器的选择方案中,主要进行了如下對比:方案一:选择常见且应用广泛的AT89C52作为控制芯片。
对于这种单片机,我们有良好的知识基础,上手快,成本低。
然而对于本控制系统,程序量较大、所需I/O口较多,89单片机将很难满足控制要求,难以胜任控制任务。
因此,89单片机并不适合作为本系统的控制器。
方案二:较之89系列单片机,STC12单片机资源丰富,集成EEPROM、AD、PCA可编程计数阵列等;其功能更强大,执行速度更快。
对于本系统来说,足以完成控制任务。
故而作为本控制系统的首选。
2.2位置检测模块。
检测模块不仅是获得被控系统所需信息的唯一渠道,而且从根本上决定了被控系统的控制精度,相当于控制系统中的“眼睛”;因此检测模块的设计对整个控制系统的设计至关重要!基于此,在选择检测元件时,主要做了如下对比:方案一:选择整合性6轴运动处理组件MPU6050,利用其自身集成的3轴MEMS陀螺仪,3轴MEMS加速度计精确地对被控对象的运动状态进行数据采集;在数据处理上采用卡尔曼滤波算法,测量精度极高。
另外,该传感器封装小节省空间,对本系统的控制十分有利。
方案二:选择角度、加速度模块MMA7361传感器。
这一模块虽有压降小,适合高噪声电源环境工作等特点,但其测量精度及测量范围等各方面性能不及MPU6050。
综合考虑,选取MMA7361作为检测变送传感器并不明智。
摘要:本次风力摆控制系统设计,采用4个直流风机垂直挂在长约70cm的细管下方,直流风机下方固定一个激光笔,当风力摆受控制按一定规律运动时,激光笔在地上画出相应的轨迹。
本设计以STC15W4K32S4系列的芯片作为主控芯片,采用LM298模块作电机驱动,通过单片机控制其输入占空比获得不同高低电平,达到对电机转速的控制。
空间角度测量中,本设计采用MPU-6050陀螺仪对空间角度进行准确追踪,精度高。
最终可将所测部分数据传输到LCD12864显示出来。
关键字:STC15W4K32S4单片机轴流风机陀螺仪一、设计任务设计一测控系统,控制驱动各风机使风力摆按照一定规律运动,激光笔在地面画出要求的轨迹。
1.基本要求(1)从静止开始,15s内控制风力摆做类似自由摆运动,使激光笔稳定地在地面画出一条长度不短于50cm的直线段,其线性度偏差不大于±2.5cm,并且具有较好的重复性;(2)从静止开始,15s内完成幅度可控的摆动,画出长度在30~60cm间可设置,长度偏差不大于±2.5cm的直线段,并且具有较好的重复性;(3)可设定摆动方向,风力摆从静止开始,15s内按照设置的方向(角度)摆动,画出不短于20cm的直线段;(4)将风力摆拉起一定角度(30°~60°)放开,5s内使风力摆制动达到静止状态。
2.发挥部分(1)以风力摆静止时激光笔的光点为圆心,驱动风力摆用激光笔在地面画圆,30s内需重复3次;圆半径可在15~35cm范围内设置,激光笔画出的轨迹应落在指定半径±2.5cm的圆环内;(2)在发挥部分(1)后继续作圆周运动,在距离风力摆1~2m距离内用一台50~60W台扇在水平方向吹向风力摆,台扇吹5s后停止,风力摆能够在5s内恢复发挥部分(1)规定的圆周运动,激光笔画出符合要求的轨迹;(3)其他。
二、方案论证基于本次风力摆控制系统的设计,我们有如下几种方案:方案一:采用传统的51单片机做主控芯片,其体积小,价格便宜,控制简单,但其运算速度慢,内部存储容量小,难以存储大体积的程序和实现快速精准的反应控制。
2015年全国大学生电子设计竞赛风力摆控制系统(B题)2015年8月15日风力摆控制系统摘要STC89C52是单片机里应用比较广泛的一款,在自动控制领域里享有很高的价值。
本设计采用STC89C52单片机作为主控制芯片,设计并制作一套风力摆控制系统。
该系统主要是以单片机最小系统模块、电源模块、电机驱动模块、12864液晶显示模块组成的。
利用三轴加速度陀螺仪MPU-6050对轴流风机姿态的采集反馈给STC89C52,通过PID控制算法提高动态性能,实现类似自由摆运动、幅度可控的摆动,以及按照设置的方向(角度)摆动等功能。
关键词:STC89C52,三轴加速度陀螺仪、L298N驱动、轴流风扇、12864液晶显示。
AbstractSTC89C52 is a wide range of applications in the micro controller, in the field of automatic control to enjoy a high value. This design uses STC89C52 micro controller as the main control chip, design and manufacture a set of wind pendulum control system. The system is mainly based on single-chip micro- computer system module, power supply module, motor driver module, 12864 LCD module. Using the three axis acceleration gyroscope MPU-6050 to collect feedback to the STC89C52, the PID control algorithm is used to improve the dynamic performance, and to achieve a similar free swing motion, the am- plitude controllable swing, and in accordance with the direction of setting (angle) swing and other functions.Keywords:STC89C52, three axis acceleration gyroscope, L298N drive, axial flow fan, 12864 LCD目录一.方案论证 (1)1. 系统方案的总体程序框图 (1)1.1微控制器的论证与选择 (1)1.2风扇控制方案选择 (1)1.3电机驱动的论证与选择 (2)1.4速度控制的论证与选择 (2)1.5 角度测量方案选择 (2)1.6 显示方案选择 (3)二.系统理论分析与计算 (3)2.1风扇调试原理 (3)2.2风力摆状态测量与计算 (4)2.3控制算法分析 (4)三.系统结构 (5)3.1机械结构 (5)3.2测控电路结构 (5)四.系统软件 (6)4.1主程序流程框图 (6)五.测试方案及结果 (6)六.结束语 (7)七.参考文献 (8)附录一.系统方案:1.系统总体设计框图如下图所示1.1微控制器的方案选择与论证方案一:采用FPGA(现场可编程门阵列)作为系统的控制器。
风力摆控制系统方案1. 方案背景和目标随着可持续能源的需求日益增加,风力发电作为一种清洁、可再生的能源形式受到了广泛关注。
然而,由于风能的不稳定性和不可控性,风力发电系统的稳定性和可靠性成为限制其发展的一个关键因素。
为了解决这个问题,风力发电系统必须配备一个可靠的风力摆控制系统。
本文将介绍一种风力摆控制系统的方案,以帮助优化风力发电系统的性能。
2. 系统原理和组成部分风力摆控制系统的主要原理是通过控制摆角,调节风轮的旋转速率,以实现稳定的输出功率。
该系统由以下几个主要组成部分构成:2.1. 风轮风轮是风力发电系统的核心部件,它由多个叶片组成。
当风吹过叶片时,风轮开始旋转,并转化风能为机械能。
2.2. 摆角传感器摆角传感器用于监测风轮的偏移角度,并将这些数据反馈给控制器。
基于传感器的反馈,控制器可以调整风轮的旋转速度,从而在风能不稳定的情况下维持系统的稳定性。
2.3. 控制器控制器是风力摆控制系统的大脑,它接收来自摆角传感器的数据,并根据事先设定的控制算法进行计算。
通过对风轮的速度和角度进行调节,控制器确保系统能够自动适应不同风速和风向的变化。
2.4. 储能装置储能装置用于存储风能,以便在风力不足时提供稳定的电能输出。
常见的储能装置包括电池组、超级电容器等。
2.5. 电力输出风力摆控制系统最终的目标是通过电力输出将风能转化为可用的电能。
电力输出模块将经过控制器调节过的风轮旋转速度转化为电能,并将其连接到电网或其他电力设备。
3. 工作流程和控制算法风力摆控制系统的工作流程如下:1.摆角传感器检测风轮的摆角,并将数据发送给控制器。
2.控制器根据传感器数据和预设的控制算法进行计算。
3.控制器通过调节风轮的旋转速度,使风轮保持在适当的角度。
4.如果风速增加,控制器将增加风轮的旋转速度以提高系统的输出功率;如果风速减小,控制器将降低风轮的旋转速度以避免过载。
5.当风力不足时,储能装置将提供额外的电能,以维持系统的稳定性。
风力摆控制系统摘要:本系统以MSP430F149单片机作为主控芯片,通过陀螺仪传感器MPU-6050检测风力摆的姿态信息,采用PID控制算法和互补滤波,实现了系统的最优控制,角度和X-Y轴等姿态信息的实时显示,使系统按照预期的轨迹运动。
本设计结构简单、可靠性高、操作方便、性能优良。
关键词:风力摆;MSP430F149; PID调节;互补滤波目录一、系统方案 (1)1、检测模块的论证与选择 (1)2、动力模块的论证与选择 (1)3、显示模块的论证与选择 (1)4、控制模块的论证与选择 (2)二、系统理论分析 (2)1、运动情况分析 (2)(1)水平直线运动 (2)(2)自动“归零”运动 (2)(3)圆周运动 (3)2、水平直线运动计算 (3)3、圆周运动计算 (3)4、PID调节和互补滤波 (4)三、电路与程序 (4)1、电路的设计 (4)(1)系统总体框图 (4)(2)供电子系统 (4)(3)检测模块 (5)(4)显示模块 (5)2、程序的设计 (5)(1)程序功能描述与设计思路 (5)(2)程序流程图 (6)四、测试方案与测试结果 (6)1、测试方案 (6)2、测试条件与仪器 (6)3、测试结果及分析 (6)(1)测试结果 (6)(2)测试分析与结论 (8)五、结论与心得 (8)六、参考文献 (8)风力摆控制系统(B题)【本科组】一、系统方案本系统主要由检测模块、显示模块、动力模块和控制模块组成,下面分别论证这几个模块的选择。
1、检测模块的论证与选择方案一:采用MMA7455加速度传感器检测平台倾角。
其核心为飞思卡尔公司的MMA7455L数字三轴加速度传感器,它通过数字输出,工作可靠。
但其8位模式限制了其测量精度,在测量微小的角度变化上误差较大,且7455不含陀螺仪,由此产生陀螺仪与加速器之间时间差的问题。
方案二:采用电位器检测摆杆倾角。
用电阻分压方式可以实现电位器对角度变化的感应。
但是必须经过模数转换才能将信号传给处理器处理,其灵敏度和模数转换器的精度都会对测量结果产生直接影响,误差很大。
2015 年全国大学生电子设计竞赛论文B 题:风力摆控制系统的设计2015年8 月15 日摘要该系统以高速单片机STC89C52R为控制核心,主要由物理框架、数据采集系统、主控系统、执行系统四大部分组成。
主控系统以高速单片机STC11F52X助核心,实现对执行系统对直流电机的控制,从而实现基于自由摆的摆动控制系统。
此方案可行性高,且精确度较高。
关键词:单片机( STC11F52X)E ,直流电机,风力摆摆动控制目录1、系统方案论证与选择 (1)1.1 控制系统的论证与选择 (1)1.2 供电系统的论证与选择 (2)1.3 风力摆角度调整系统的论证与选择 (2)2、系统理论分析与计算 (3)2.1 建模与控制方法 (3)2.1.1 基本部分的第一项控制方法 (3)2.1.2 基本部分的第二项控制方法 (3)3 、硬件电路设计与分析 (3)3.1 系统电路总体框图 (3)3.2 主要模块电路的设计 (4)3.2.1 继电器模块电路 (4)3.2.2 单片机模块电路 (4)4、测试方案与测试结果 (5)4.1 测试仪器 (5)4.2 测试方案以及结果...4.2.1 测试基本部分(1)4.2.2 测试基本部分(2).5、总结....................5.1硬件小结 ............5.2软件小结 ............5.3 心得体会 ........... 附录1电路原理图和PCB版图附录2主要元器件清单 (5) (5)...514 14 15 15 16 18风力摆控制系统(B题)【本科组】1系统方案论证与选择本任务要求设计制作一个基于风力摆测控系统,控制驱动各风机使风力摆按照一定规律运动,激光笔在地面上画出要求的轨迹。
据题目要求分析,我们得到基本思路,如图 1. i所示:图1. i 系统总体方案i.i控制系统的论证与选择方案1:用继电器来产生直流机的控制信号。
它是利用电磁效应实现电路开、关控制作用的原件,广泛应用在电子设备、仪器仪表及自动化设备中。
风力摆控制系统方案
简介
风力摆控制系统是用来控制风力摆的运动的一种系统。
风力摆通常用于测量风力的强度和方向,以便在风能利用方面进行相应的调整和优化。
本文将介绍一个设计用于控制风力摆运动的系统方案。
目标
本系统的目标是实现对风力摆的精确控制,使其可以随需要而停止、开始或改变方向。
通过控制风力摆的运动,可以提高其测量精度,并确保风能的高效利用。
系统组成
本系统主要由下面几个组成部分构成:
1. 风力摆
风力摆是本系统的核心部件,它用于测量风向和风速。
风力摆通常由一个垂直铰接杆和一个悬挂在杆上的摆锤组成。
当风吹过摆锤时,摆锤会向相反方向摆动,从而使测量者能够通过观察摆动的幅度和方向来判断风的强度和方向。
2. 传感器
为了实现对风力摆的控制,需要安装相应的传感器来检测风力摆的姿态和运动。
常用的传感器包括倾斜传感器和加速度传感器。
倾斜传感器用于检测风力摆的倾斜角度,而加速度传感器用于检测风力摆的加速度。
这些传感器可以提供给控制系统必要的数据,以便进行相应的控制。
3. 控制器
控制器是系统中的核心部件,负责接收传感器的数据并根据设定的控制算法对风力摆进行控制。
控制器通常由微处理器或可编程逻辑控制器(PLC)组成,它可
以根据需求改变风力摆的运动方向、幅度或停止风力摆的运动。
4. 电源与通信模块
为了保证系统的正常运行,需要为系统提供稳定的电源。
另外,为了方便对系统进行监控和控制,还需要配备相应的通信模块,使得系统可以与外部设备进行数据传输和命令交互。
系统工作原理
本系统工作的基本原理是通过控制器对风力摆进行精确控制。
控制器通过接收传感器提供的数据来判断当前风力摆的状态,并根据设定的控制算法采取相应的控制策略。
控制信号经过放大和处理后,通过执行机构控制风力摆的运动。
系统的工作流程如下:
1.传感器采集风力摆的姿态和运动数据,并将数据传输给控制器。
2.控制器根据接收到的数据判断风力摆的状态,如姿态角度、加速度等。
3.控制器根据设定的控制算法,计算出相应的控制信号。
4.控制信号经过放大和处理后,送达给执行机构。
5.执行机构根据控制信号控制风力摆的运动,如改变摆动方向、停止摆动等。
6.系统根据需要持续监测风力摆的状态,并根据实时数据调整控制策略。
系统特点
本系统具有以下特点:
1.精确控制:通过使用传感器和控制器,可以实现对风力摆运动的精确控制,提高测量精度和风能利用效率。
2.灵活性:系统可根据需要调整控制策略,如改变摆动方向、停止摆动等,以适应不同的工作场景和需求。
3.可靠性:系统配备有电源和通信模块,以确保系统的稳定运行和远程监控。
4.可扩展性:系统采用模块化设计,方便根据实际需求进行扩展和升级。
总结
本文介绍了一个用于控制风力摆运动的系统方案。
该系统具有精确控制、灵活性、可靠性和可扩展性等特点,适用于各种需要对风力摆进行控制的场合。
通过本系统,可以实现对风力摆的精确控制,提高测量精度和风能利用效率。