晶闸管(可控硅)的特性与检测
- 格式:doc
- 大小:22.50 KB
- 文档页数:3
可控硅的测量方法
可控硅(也称为晶闸管)是一种常见的电子器件,广泛应用于电力电子控制和调节领域。
为了确保可控硅的正常工作,需要准确测量其关键参数。
下面将介绍几种可控硅的测量方法。
1. 电流测量:可控硅的最重要参数之一是最大额定电流。
为了测量可控硅的电流,可以使用电流表或电流传感器。
通过将电流表或电流传感器与可控硅并联,可以直接测量通过可控硅的电流。
2. 电压测量:另一个重要参数是最大额定电压。
为了测量可控硅的电压,可以使用电压表或电压传感器。
通过将电压表或电压传感器与可控硅串联,可以直接测量可控硅的电压。
3. 触发电流测量:可控硅的触发电流是指使其从关断状态转换为导通状态所需的最小电流。
为了测量可控硅的触发电流,可以使用特定的触发电流测量电路。
该电路通过向可控硅施加一个小电流,并测量通过可控硅的电流来确定触发电流的大小。
4. 触发电压测量:可控硅的触发电压是指使其从关断状态转换为导通状态所需的最小电压。
为了测量可控硅的触发电压,可以使用触发电压测量电路。
该电路通过向可控硅施加一个小电流,并测量通过可控硅的电压来确定触发电压的大小。
5. 温度测量:可控硅在工作过程中会产生一定的发热量,因此温度测量是必要的。
可以使用温度传感器来测量可控硅的温度。
将温度传感器与可控硅连接,并通过读取传感器输出来确定可控硅的温度。
上述方法是常用的可控硅测量方法,可以帮助工程师评估可控硅的性能和健康状态。
通过准确测量可控硅的参数,可以确保其在电力电子应用中的可靠性和稳定性。
晶闸管(可控硅)的特性及检测可控硅(SCR)国际通用名称为Thyyistoy,中文简称晶闸管。
它能在高电压、大电流条件下工作,具有耐压高、容量大、体积小等优点,它是大功率开关型半导体器件,广泛应用在电力、电子线路中。
1. 可控硅的特性。
可控硅分单向可控硅、双向可控硅。
单向可控硅有阳极A、阴极K、控制极G三个引出脚。
双向可控硅有第一阳极A1(T1),第二阳极A2(T2)、控制极G三个引出脚。
只有当单向可控硅阳极A与阴极K之间加有正向电压,同时控制极G与阴极间加上所需的正向触发电压时,方可被触发导通。
此时A、K间呈低阻导通状态,阳极A与阴极K间压降约1V。
单向可控硅导通后,控制器G即使失去触发电压,只要阳极A和阴极K之间仍保持正向电压,单向可控硅继续处于低阻导通状态。
只有把阳极A电压拆除或阳极A、阴极K 间电压极性发生改变(交流过零)时,单向可控硅才由低阻导通状态转换为高阻截止状态。
单向可控硅一旦截止,即使阳极A和阴极K间又重新加上正向电压,仍需在控制极G和阴极K间有重新加上正向触发电压方可导通。
单向可控硅的导通与截止状态相当于开关的闭合与断开状态,用它可制成无触点开关。
双向可控硅第一阳极A1与第二阳极A2间,无论所加电压极性是正向还是反向,只要控制极G和第一阳极A1间加有正负极性不同的触发电压,就可触发导通呈低阻状态。
此时A1、A2间压降也约为1V。
双向可控硅一旦导通,即使失去触发电压,也能继续保持导通状态。
只有当第一阳极A1、第二阳极A2电流减小,小于维持电流或A1、A2间当电压极性改变且没有触发电压时,双向可控硅才截断,此时只有重新加触发电压方可导通。
2. 单向可控硅的检测。
万用表选电阻R*1Ω挡,用红、黑两表笔分别测任意两引脚间正反向电阻直至找出读数为数十欧姆的一对引脚,此时黑表笔的引脚为控制极G,红表笔的引脚为阴极K,另一空脚为阳极A。
此时将黑表笔接已判断了的阳极A,红表笔仍接阴极K。
此时万用表指针应不动。
可控硅(SCR)知识可控硅(SCR)国际通用名称为Thyyistoy,中文简称晶闸管。
它能在高电压、大电流条件下工作,具有耐压高、容量大、体积小等优点,它是大功率开关型半导体器件,广泛应用在电力、电子线路中。
1.可控硅的特性。
可控硅分单向可控硅、双向可控硅。
单向可控硅有阳极A、阴极K、控制极G 三个引出脚。
双向可控硅有第一阳极A1(T1),第二阳极A2(T2)、控制极G 三个引出脚。
只有当单向可控硅阳极A 与阴极K 之间加有正向电压,同时控制极G 与阴极间加上所需的正向触发电压时,方可被触发导通。
此时A、K 间呈低阻导通状态,阳极A 与阴极K 间压降约1V。
单向可控硅导通后,控制器G 即使失去触发电压,只要阳极A 和阴极K 之间仍保持正向电压,单向可控硅继续处于低阻导通状态。
只有把阳极A 电压拆除或阳极A、阴极K 间电压极性发生改变(交流过零)时,单向可控硅才由低阻导通状态转换为高阻截止状态。
单向可控硅一旦截止,即使阳极A 和阴极K 间又重新加上正向电压,仍需在控制极G 和阴极K 间有重新加上正向触发电压方可导通。
单向可控硅的导通与截止状态相当于开关的闭合与断开状态,用它可制成无触点开关。
双向可控硅第一阳极A1 与第二阳极A2 间,无论所加电压极性是正向还是反向,只要控制极G 和第一阳极A1 间加有正负极性不同的触发电压,就可触发导通呈低阻状态。
此时A1、A2 间压降也约为1V。
双向可控硅一旦导通,即使失去触发电压,也能继续保持导通状态。
只有当第一阳极A1、第二阳极A2 电流减小,小于维持电流或A1、A2 间当电压极性改变且没有触发电压时,双向可控硅才截断,此时只有重新加触发电压方可导通。
2.单向可控硅的检测。
万用表选电阻R*1Ω挡,用红、黑两表笔分别测任意两引脚间正反向电阻直至找出读数为数十欧姆的一对引脚,此时黑表笔的引脚为控制极G,红表笔的引脚为阴极。
IGBT、晶闸管(可控硅)、MOS场效应管的测量IGBT好坏判断:将万用表拨在R×10KΩ挡,用黑表笔接IGBT 的漏极(D),红表笔接IGBT 的源极(S),此时万用表的指针指在无穷处。
用手指同时触及一下栅极(G)和漏极(D),这时IGBT 被触发导通,万用表的指针摆向阻值较小的方向,并能站住指示在某一位置。
然后再用手指同时触及一下源极(S)和栅极(G),这时IGBT 被阻断,万用表的指针回到无穷处。
此时即可判断IGBT 是好的。
注意:若进第二次测量时,应短接一下源极(S)和栅极(G)。
任何指针式万用表皆可用于检测IGBT.注意判断IGBT 好坏时,一定要将万用表拨在R×10K Ω挡,因R×1KΩ挡以下各档万用表内部电池电压太低,检测好坏时不能使IGBT 导通,而无法判断IGBT 的好坏。
此方法同样也可以用于检测功率场效应晶体管(P-MOSFET)的好坏.场效应管好坏的简单判断:用机械万用表的R×1挡,红表笔接场效应管的漏极D,黑表笔接源极s,这时表针应该摆在中间位置,除这样测量有阻值以外,其余各脚问都不应该有阻值,然后交换表笔,黑表笔接D,红表笔接s,万用表置高阻挡(内部电池电压高),用左手的食指触摸一下G极,此时表针如果摆动到接近零位,说明场效应管是好的.晶闸管(可控硅)的好坏判断:1、将万用表拨在R×1Ω挡,黑笔接A(阳极),红笔接K(阴极),指针不动;2、短接A(阳极)、G(控制极),指针向右摆动,读数为几十Ω;3、断开导线,读数不变,指针保持不动;4、短接G(控制极)、K(阴极),指针回归到原位置无穷大处。
场效应管的好坏判断:1、R×10KΩ档,黑笔接G,红笔接S,充电3秒,指针不动;2、黑笔接D,红笔接S,指针回摆到0Ω附近,说明触发成功;3、红笔接G,黑笔接S,指针在左边无穷大处;4、黑笔接D,红笔接S,指针在左边无穷大处,说明MOS管是好的。
可控硅的使用-可控硅用法-可控硅(晶闸管)的特性与使用方法对单向可控硅(晶闸管)来说,当栅极电压达到门限值VGT且栅电流达到门限值IGT时,可控硅(晶闸管)被触发导通。
当触发电流的脉宽较窄时,则应提高触发电平。
当负载电流超过单向可控硅(晶闸管)的闩电流IL时,即使此时的栅电流减为零,可控硅(晶闸管)仍能维持导通状态。
为了保证电路在环境最低温度下也能正常工作,则要求驱动电路能提供足够高的电压、电流及占空比的控制信号。
高灵敏度的单向可控硅(晶闸管),会在高温下因阳-阴极间的漏电流而误触发,应确保不超过TJMAX。
可靠地关断单向可控硅(晶闸管),负载电流必须降到低于保持电流IH,并维持一定的时间。
标准的双向可控硅(晶闸管)既可被栅极的正向电流触发,也能被栅极的反向电流触发,它可以在四个象限内导通。
在负载电流为零时,最好用反相的直流或单极性脉冲的(栅极)电流触发。
在通常的交流相位控制电路中,如电灯调光器和家用马达调速器等,可控硅(晶闸管)G与MT2的极性要一致,在设计可控硅(晶闸管)时要避免在3+区域内工作(MT2为-,G为+)。
值得注意的是,双向可控硅(晶闸管)可能在一些意想不到的情况下触发导通,其后果有些问题不大,而有些则有潜在的破坏性。
1.栅极上的噪声电平在有电噪声的环境中,如果栅极上的噪声电压超过VGT,并有足够的栅电流激发可控硅(晶闸管)内部的正反馈,则也会被触发导通。
应用安装时,首先要使栅极外的连线尽可能短。
当连线不能很短时,可用绞线或屏蔽线来减小干扰的侵入。
在然后G与MT1之间加一个1kΩ的电阻来降低其灵敏度,也可以再并联一个100nF的电容,来滤掉高频噪声。
2.关于转换电压变化率当驱动一个大的电感性负载时,在负载电压和电流间有一个很大的相移。
当负载电流过零时,双向可控硅(晶闸管)开始换向,但由于相移的关系,电压将不会是零。
所以要求可控硅(晶闸管)要迅速关断这个电压。
如果这时换向电压的变化超过允许值时,就没有足够的时间使结间的电荷释放掉,而被迫使双向可控硅(晶闸管)回到导通状态。
一、实验目的1. 了解晶闸管的基本结构、工作原理及触发方式。
2. 掌握晶闸管驱动电路的设计方法及驱动信号的生成。
3. 通过实验验证晶闸管的触发、导通和关断特性。
二、实验原理1. 晶闸管(Thyristor)是一种大功率半导体器件,具有可控硅整流器的特性,是一种四层三端器件。
晶闸管在正向电压作用下,在阳极与阴极之间形成PNPN结构,导通电流;在反向电压作用下,阻断电流。
2. 晶闸管的触发方式主要有以下几种:(1)正触发:在阳极与阴极之间施加正向电压,并在控制极与阴极之间施加正向脉冲信号,使晶闸管导通。
(2)负触发:在阳极与阴极之间施加反向电压,并在控制极与阴极之间施加负向脉冲信号,使晶闸管导通。
(3)双极触发:在阳极与阴极之间施加正向电压,同时在控制极与阴极之间施加正向脉冲信号,使晶闸管导通。
3. 晶闸管驱动电路主要作用是产生触发信号,驱动晶闸管导通和关断。
驱动电路一般由脉冲发生器、驱动放大器、隔离电路和缓冲电路组成。
三、实验器材1. 晶闸管:2只2. 驱动电路:1套3. 脉冲发生器:1台4. 测量仪器:示波器、万用表、电源等5. 电路板、导线、连接器等四、实验步骤1. 晶闸管基本特性测试(1)将晶闸管安装在电路板上,连接好电路。
(2)打开脉冲发生器,设置触发方式为正触发。
(3)使用示波器观察晶闸管的触发、导通和关断波形。
(4)调整脉冲发生器的脉冲宽度,观察晶闸管的导通和关断特性。
2. 晶闸管驱动电路设计(1)设计驱动电路,包括脉冲发生器、驱动放大器、隔离电路和缓冲电路。
(2)连接好电路,确保电路连接正确。
(3)打开脉冲发生器,设置触发方式为正触发。
(4)使用示波器观察驱动电路的输出波形,确保触发信号正确。
3. 驱动电路性能测试(1)在晶闸管驱动电路的基础上,连接晶闸管。
(2)打开脉冲发生器,设置触发方式为正触发。
(3)使用示波器观察晶闸管的触发、导通和关断波形,验证驱动电路的性能。
五、实验结果与分析1. 晶闸管基本特性测试实验结果显示,晶闸管在正触发方式下,触发电压为20V,导通电流为5A。
晶闸管的原理、特性、主要参数及测试方法1.1 晶闸管晶闸管(Thyristor)是硅晶体闸流管的简称,也称为可控硅SCR(Semiconductor Control Rectifier)。
晶闸管作为大功率的半导体器件,只要用几十至几百毫安的电流就可以控制几百至几千安的大电流,实现了弱电对强电的控制。
1.1.1 晶闸管的结构晶闸管是四层(P1N1P2N2)三端(阳极A、阴极K、门极G)器件,其内部结构和等效电路如图1-1所示。
图1-1 晶闸管的内部结构和等效电路晶闸管的符号及外形如图1-2所示,图1-2(a)为晶闸管的符号,图1-2(b)为晶闸管的外形。
晶闸管的类型大致有4种:塑封型、螺栓型、平板型和模块型。
塑封型晶闸管多用于额定电流5A以下;螺栓型晶闸管额定电流一般为5~200A;平板型晶闸管用于额定电流200A以上;模块型晶闸管额定电流可达数百安培。
晶闸管由于体积小、安装方便,常用于紧凑型设备中。
晶闸管工作时,由于器件损耗会产生热量,需要通过散热器降低管芯温度,器件外形是为便于安装散热器而设计的。
图1-2 晶闸管的符号及外形晶闸管的散热器如图1-3所示。
图1-3 晶闸管的散热器1.1.2 晶闸管的工作原理以图1-4所示的晶闸管的导通实验电路来说明晶闸管的工作原理。
在该电路中,由电源EA、晶闸管的阳极和阴极、白炽灯组成晶闸管主电路,由电源EG、开关S、晶闸管的门极和阴极组成控制电路(触发电路)。
图1-4 晶闸管的导通实验电路实验步骤及结果说明如下。
(1)将晶闸管的阳极接电源EA的正极,阴极经白炽灯接电源的负极,此时晶闸管承受正向电压。
当控制电路中的开关S断开时,灯不亮,说明晶闸管不导通。
(2)当晶闸管的阳极和阴极承受正向电压,控制电路中开关S闭合,使控制极也加正向电压(控制极相对阴极)时,灯亮说明晶闸管导通。
(3)当晶闸管导通时,将控制极上的电压去掉(即将开关S断开),灯依然亮,说明一旦晶闸管导通,控制极就失去了控制作用。
1111
单向晶闸管是一种半导体器件,也被称为可控硅,它可以用于控制电流的导通和截止。
以下是单向晶闸管的常见检测方法:
1. 外观检查:首先,检查单向晶闸管的外观是否有明显的损坏或烧焦的痕迹。
检查引脚是否有松动或脱落的情况。
2. 万用表测量:使用万用表可以对单向晶闸管进行基本的电气测量。
将万用表调至电阻档,测量晶闸管的阳极和阴极之间的电阻值。
正常情况下,正向电阻值较小,反向电阻值较大。
如果电阻值异常或无穷大,则可能表明晶闸管损坏。
3. 触发测试:为了进一步确认单向晶闸管的功能是否正常,可以进行触发测试。
将晶闸管的阳极连接到电源正极,阴极连接到电源负极,然后将触发极通过一个电阻连接到正极。
在正常情况下,当触发极上施加一个正向电压时,晶闸管应该导通,电流可以通过;当触发极上的电压消失时,晶闸管应该截止,电流停止通过。
可以使用示波器观察触发极和阳极之间的电压波形来确认触发信号是否正常。
4. 负载测试:最后,可以将单向晶闸管连接到一个适当的负载上,如电阻或灯泡,进行负载测试。
在正常情况下,当晶闸管导通时,负载应该正常工作;当晶闸管截止时,负载应该停止工作。
需要注意的是,在进行检测时,要确保遵循安全操作规程,并使用适当的测试仪器和工具。
如果对单向晶闸管的检测结果存在疑问或不确定,建议咨询专业的电子工程师或技术人员进行进一步的分析和诊断。
晶闸管(可控硅)的特性与检测
可控硅(SCR)国际通用名Thyyistoy,中文简称晶闸管。
它能在高电压、大电流条件下工作,具有耐压高,容量大、体积小等优点,它是开关型大功率半导体器件,广泛应用于电力电子线路中。
1、可控硅的特性
可控硅分为单向可控硅和双向可控硅。
单向可控硅有阳极A、阴极K和控制极G三个引出脚。
双向可控硅有第一阳极A1(T1),第二阳极A2(T2)和控制极G三个引出脚。
只有当单向可控硅阳极A与阴极K之间加上正向电压,同时控制极G与阴极间加上所需的正向触发电压时,方可被触发导通。
此时A、K间呈低阻导通状态,阳极A与阴极K间压降约1V。
单向可控硅导通后,控制极G即使失去触发电压,只要阳极A 和阴极K之间仍保持正向电压,单向可控硅继续处于低阻导通状态。
只有把阳极A电压拆除或阳极A、阴极K之间电压极性发生改变(交流过零)时,单向可控硅才由低阻导通状态转换为高阻截止状态。
单向可控硅一旦截止,即使阳极A和阴极K间又重新加上正向电压,仍需在控制极G和阴极K间重新加上正向触发电压方可导通。
单向可控硅的导通与截止状态相当于开关的闭合与断开状态,用它可制成无触点开关。
双向可控硅第一阳极A1与第二阳极A2间,无论所加电压极性是正向还是反向,只要控制极G和第一阳极间加有正负极性不同的触发电压,就可触发导通呈低阻状态。
此时A1、A2间压降也约为1V。
双向可控硅
一旦导通,即使失去触发电压,也能继续保持导通状态。
只有当第一A1、第二阳极A2电流减小,小于维持电流或A1、A2间当电压极性改变且没有触发电压时,双向可控硅才截断,此时只有重新加触发电压方可导通。
2、单向可控硅的检测
万用表选电阻R*1档,用红、黑两表笔分别测任意两引脚间正反向电阻直至找出读数为数十欧姆的一对引脚,此时黑表笔的引脚为控制极G,红表笔的引脚为阴极K,另一空脚为阳极A。
此时将黑表笔接已判断了的阳极A,红表笔仍接阴极K,此时万用表指针应不动,用短线瞬间短接阳极A和控制极G,此时万用表电阻档指针应向右偏转,阻值读数为10欧姆左右。
如阳极A接黑表笔,阴极K接红表笔时,万用表指针发生偏转,说明该单向可控硅已击穿损坏。
3、双向可控硅的检测
万用表选电阻R*1档,用红、黑两表笔分别测任意两引脚间正反向电阻,结果其中两组读数为无穷大。
若一组为数十欧姆时,该组红、黑表所接的两引脚为第一阳极A1和控制极G,另一空脚即为第二阳极。
确定A1、G极后,再仔细测量A1、G极间正、反向电阻,读数相对较小的那次测量的黑表笔所接的引脚为第一阳极A1,红表笔所接引脚为控制极G。
将黑表笔接已确定的第二阳极A2,红表笔接第一阳极A1,此时万用表指针不应发生偏转,阻值为无穷大。
再用短接线将A2、G极瞬间短接,给G极加上正向触发电压,A2、A1间阻值约为10欧姆左右。
随后断开
A2、G间短接线,万用表读数应保持10欧姆左右。
互换红、黑表笔接线,红表笔接第二阳极A2,黑表笔接第一阳极A1。
同样万用表指针应不发生偏转,阻值为无穷大。
用短接线将A2、G极间瞬间短接,给G极加上负的触发电压,A1、A2间的阻值也是10欧姆。
随后断开A2、G极间短接线,万用表读数就不变,保持在10欧姆左右。
符合以上规律,说明被测双向可控硅未损坏且三个引脚极性判断正确。
▲检测较大功率可控硅时,需要在万用表黑笔中串接一节1.5V干电池,以提高触发电压。
单向晶闸管(可控硅)管脚的判别可用下述方法:
先用万用表R*1K挡测量三脚之间的阻值,阻值小的两脚分别为按制极和阴极,所剩的一脚为阳极。
再将万用表置于R*10K挡,用手指捏住阳极和另一脚,且不让两脚接触,黑表笔接阳极,红表笔接剩下的一脚,如表针向右摆动,说明红表笔所接为阴极,不摆动则为控制极。