无脊椎动物的一般构造和生理
- 格式:doc
- 大小:34.00 KB
- 文档页数:3
无脊椎动物的形状结构与生理之杨若古兰创作一、体制指动物躯体结构的排列方式和规律.普通分为有规律可寻(对称)无规律可寻(分歧错误称)•原生动物分歧错误称(尾草履虫、变形虫)球辅对称(太阳虫、团藻虫)辐射对称(钟虫)球辐对称:通过身体中间点可分成很多不异的两半.•海绵动物分歧错误称或辐射对称•腔肠动物辐射对称或两辐对称辐射对称:指通过身体的地方轴有很多个切面可以将身体分为摆布相等的两部分(对称面).次要适应附着、漂浮、及不太活动的生活方式.两辐对称;通过动物体轴仅可分成两个对称面.(如海葵)•扁形动物两侧对称;通过体轴只要一个对称面.两侧对称的次要意义;(1)使动物身体明显地分为前后、背腹和摆布,由不定向活动变成定向活动.(2)使动物由水中固着或漂浮生活向水底爬行生活及陆地爬行奠定了基础.•扁形动物当前的各类群全部是两侧对称.仅有两个特例;1. 软体动物腹足纲;因为胚胎发育发生了扭转,是以成体分歧错误称.2. 棘皮动物初期发育的羽腕幼虫及短腕幼虫(两侧对称),成体因为适应不太活动的生活方式发生了次生性的辐射对称.二、胚层与体腔1.胚层指多细胞动物胚胎发育时期因为细胞分化而构成的特殊区域.多细胞动物初期的胚胎发育;受精→卵裂→囊胚→原肠胚→中胚层和体腔的构成→胚层分化•海绵动物没有明确的胚层分化,体壁由两层细胞构成.因为胚胎发育的“逆转景象”,故不克不及称其为外胚层和内胚层(只称皮层和胃层).•腔肠动物两个胚层(外胚层、内胚层)中胶层不是细胞结构.•扁形动物当前各类群因为出现了中胚层,故都称为三胚层动物.2. 体腔指动物体消化道与体壁之间的腔隙.•扁形动物及之前各类群没有体腔•原体腔(线形动物)动物出现原体腔原体腔指胚胎发育的囊胚腔演变构成的体壁与脏壁之间的腔隙.原体腔(假体腔、初生体腔)特点:(1)只要体壁中胚层,没有肠壁中胚层和体腔膜. (2)腔内充满体腔液. (3)体腔对外没有孔道.•环节动物具有真体腔(次生体腔)蛭类除外.真体腔指中胚层的脏壁与体壁分离后,构成的动物内脏和体壁之间的腔隙.真体腔的次要意义:(1)肠壁出现了肌肉,为消化道的进一步分化打下了物资基础.(2)导致了轮回零碎的构成,改善了排泄、生殖、神经零碎的功能.(3)体腔液有介入轮回、活动、保持体形的感化.真体腔构成的方式端细胞法(裂体腔法) 原口动物在胚孔两侧的内、外胚层交界处植物极的一个细胞(端细胞)分裂后移入内、外胚层之间,经过不竭分裂构成了中胚层带,随后在中胚层带两头开裂构成真体腔.如环节动物等.体腔囊法 (肠体腔法) 后口动物的原肠背部两侧的内胚层向外构成一对囊状突起,其实不竭扩展并与原肠的内胚层离开构成中胚层带,在内、外胚层之间构成中胚层和体腔.如棘皮动物等.•软体动物混合体腔(并存式混合体腔)指真体腔退化变小,初生体腔扩大并构成血窦.如河蚌的真体腔只留下围心腔、生殖腔和排泄管腔.•节肢动物混合体腔(打通式混合体腔)真体腔不发达,围心腔等破裂并与初生体腔打通.故又称血腔.•棘皮动物真体腔发达,又拓展成为水管零碎和围血零碎.☆棘皮动物是后口动物,其真体腔的构成为肠体腔法.三、分节与分部1. 分节(真分节)指由中胚层起源的结构将动物体分成很多形状、机能类似的体段,是无脊椎动物发展到高级阶段的次要标记.同律分节为一种原始的分节景象,其特点是身体除头节和最初一节之外,其它体节在形状和机能上基底细似.异律分节身体部分形状与功能类似的体节常彼此愈合,同时各部分的机能发生分化.动物分节的次要意义;(1)因为次要的器官在每个体节反复排列,使动物的推陈出新水平及对外界环境的适应能力加强.(2)使动物的活动能力加强.•原生到原体腔动物体不分节★绦虫有节片,蛔虫有环纹;但均为外胚层构成的产品,非真分节.•环节动物出现真分节(同律分节)•软体动物不分节•节肢动物真分节(异律分节)•棘皮动物幼体内部分节,成体不分节.2. 分部在异律分节的基础上,表面的分节景象消逝而构成了体区(部).•分部是节肢动物分类的根据甲壳纲、肢口纲、蛛形纲分为头胸部和腹部;原气管纲、多足纲分为头部和躯干部;昆虫纲分为头、胸和腹部;四、体壁与骨骼•腔肠动物外胚层中胶层内胚层水螅体壁次要有六种细胞;皮肌细胞、间细胞、刺细胞、感觉细胞、神经细胞和腺细胞构成.外胚层常分泌角质、石灰质骨骼.外胚层皮肌细胞的肌原纤维方向与螅体的纵轴平行排列,是以其收缩时可使水螅体和触手变粗缩短.内胚层的肌原纤维方向与螅体纵轴垂直排列,其收缩可惹起水螅体和触手变细变长.•扁形动物皮肌囊结构表皮层外胚层柱状上皮细胞排列构成基膜非细胞构造,具有弹性肌肉层中胚层构成,分外环、中斜、内纵肌实质中胚层合胞体的网状组织,有输送和储存养分物、代谢产品、再生、生殖等功能.寄生生活品种体表发生特化;纤毛消逝,上表皮特化为富含粘多糖的合胞体结构,具皮棘,皮层的细胞核埋在肌肉层之下,微绒毛,孔道.皮肌囊由外胚层构成的表皮与中胚层构成的肌肉层彼此紧贴而构成的体壁呈囊状结构包裹动物全身,称之为皮肤肌肉囊.具有呵护、活动等功能.•原体腔动物皮肌囊结构角质层非细胞结构有呵护和抵抗消化酶感化表皮层合胞体结构,其细胞界线不明显肌肉层肌原细胞构成原体腔由胚胎时期的囊胚腔演变构成肠壁无肌肉层•环节动物皮肌囊结构角质膜(非细胞结构)表皮层(柱状细胞、刚毛、腺细胞和感觉细胞)肌肉层(外环肌、内纵肌)壁体腔膜真体腔真体腔脏体腔膜(黄色细胞)肌肉层(纵肌、环肌)肠上皮•软体动物表皮有纤毛,并构成外衣膜.外衣膜(Mantle)是软体动物背侧的体壁向腹面延并常包裹着动物全体或一部分,具有呵护、呼吸和活动等功能.•软体动物表皮有纤毛,并构成外衣膜.外衣膜(Mantle)是软体动物背侧的体壁向腹面延并常包裹着动物全体或一部分,具有呵护、呼吸和活动等功能.贝壳(Shell)是由外衣膜外上皮分泌的钙质呵护性外壳.贝壳普通包含三层:角质层(壳皮)角化蛋白成分、黑褐色、较薄.棱柱层(壳层)碳酸钙、硫酸锶成分,白色,较厚.珍珠层(壳底)成分同于棱柱层、极厚、有金属光泽.•节肢动物体表被有厚而坚硬的体壁,又称几丁质外骨骼;由表皮(称为外骨骼)、上皮和基膜三部分构成.上表皮蜡质,拒水性,防止水分渗入或蒸发.表面皮较薄,含蛋白质、几丁质、钙盐坚硬.内表皮较厚,含蛋白质、几丁质,柔软.上皮外胚层的多角形细胞层,分泌外骨骼.基膜由上皮向内分泌一层薄的基膜.•蜕皮:节肢动物身体长到必定限制后,在内分泌激素控制下内表皮溶解、表面皮脱出偏从头构成新表皮的过程.(两次蜕皮之间为幼虫的龄期,龄期等于蜕皮加一)•棘皮动物由角质层、表皮、真皮、围脏膜(体腔膜)构成.表皮上有纤毛,真皮内有骨骼.五、消化零碎•原生动物消化细胞器食物泡,细胞内消化.•腔肠动物出现消化零碎,原始的消化轮回腔,无肛门.高等品种具有分化(如胃、胃囊、辐管零碎、隔膜等.细胞内外消化兼行.如;涡虫的消化道由口、咽和肠三部分构成.但吸虫纲动物消化管退化,绦虫纲动物消化管消逝.•扁形动物不完好的消化管,细胞内外消化兼行.•原体腔动物完好消化管(出现肛门),细胞外消化,但肠壁无肌肉.如蛔虫的消化道构成为;口→咽→肠→直肠→肛门分为前肠、中肠和后肠;前肠(口、咽)、后肠(直肠和肛门)•环节动物完好消化管,细胞外消化,肠壁出现肌肉,消化道进一步分化.如环毛蚓的消化道构成为;口→咽→食道→嗉囊→砂囊→胃→肠 (有盲道和盲肠)→肛门.出现消化腺;咽腺、钙质腺、胃肠腺、黄色细胞.蛭类的咽头腺可分泌蛭素,具有发达的的嗉囊.•软体动物与环节动物类似.但出现了真实的肝脏.河蚌还具有特殊的晶杆胃及直肠穿过心室等特征.除瓣鳃类外普通具有齿舌.节肢动物基本同于环节动物.昆虫出现了特殊的取食口器;如咀嚼式、刺吸式、虹吸式、舐吸式、嚼吸式.蝗虫的消化道构成;口→咽→食道→嗉囊→砂囊→胃→回肠→结肠→直肠→肛门•棘皮动物完好的消化管,但肛门通常不必.如海盘车的消化道构成为;口→食道→贲门胃→幽门胃→肠→肛门↓↓幽门盲囊肠盲囊六、呼吸零碎•原生动物至原体腔动物由体表进行气体交换.•环节动物普通用体表进行气体交换,有的出现特化的辅助呼吸结构.•软体动物出现鳃和肺(假肺)※本鳃由外衣膜内壁拓展构成的具有纤毛和丰富血管的呼吸结构.如河蚌本鳃呼吸时的水流;入水管→外衣腔→鳃小孔→鳃水管→鳃上腔→出水管※肺陆生软体动物外衣膜内概况构成的呼吸结构.※次生鳃(二次性鳃)腹足纲后鳃亚纲动物的本鳃退化后,由体表向外构成的膜状突起.•节肢动物用鳃、肺、气管进行呼吸,是分类的次要根据.鳃或书鳃:指水生节肢动物附肢基部的体壁向外突起构成的呼吸结构.书肺:指陆生节肢动物由书鳃内陷后构成的呼吸结构.气管:指陆生节肢动物体壁内陷构成的管道状呼吸结构.甲壳纲:普通用鳃呼吸(虾、蟹),小型品种由体表呼吸(水蚤),陆生品种用伪气管(鼠妇)呼吸.蛛形纲:书肺呼吸(蝎),书肺和气管呼吸(蜘蛛).昆虫纲:气管呼吸(蝗虫),有些水生昆虫的幼虫用气管鳃(蜻蜓、蜉蝣)呼吸.•棘皮动物用体表皮鳃呼吸,管足也有辅助呼吸感化.七、轮回零碎•原生动物无轮回零碎由原生质流动完成.•腔肠动物、扁形动物无特异的器官,由原始的消化轮回腔兼行.•原体腔动物无特异的器官,原体腔兼行.•环节动物闭管式轮回(因为真体腔出现)但蛭纲真体腔退化,被葡萄状组织填充,行开管式轮回.•软体动物真体腔退化,行开管式血轮回.头足纲除外,行闭管式轮回.河蚌血轮回途径:心室→动脉→血窦→静脉→心耳→心室.•节肢动物真体腔退化,行开管式轮回.蝗虫的血液轮回图示;•混合体腔(血腔)被2个纵隔分隔为背部的围心窦、围脏窦和围神经窦,隔上有孔隙,使三个腔彼此相通.心脏位于背血窦中,由8个心室构成,每个心室两侧具有心孔,血液后行经腹血窦及围脏窦隔膜上的孔进入背血窦,由心孔返回心室.•棘皮动物轮回零碎退化,由体腔承担血轮回的功能.※围血零碎由真体腔演变构成的管腔结构,是中轴器、环血管、辅血管包绕原体腔所构成的血窦.类似于其他动物的血窦感化,无血轮回功能.八、排泄零碎•原生动物至腔肠动物无特异的排泄器官,由体表完成排泄.草履虫的伸缩泡显示•扁形、原体腔动物具有原肾管,为水调节器,有学者认为可以将代谢废物排出体外.原肾管由外胚层沿身体两侧内陷构成的网状多分支的管道零碎,它由一对纵行的排泄管及其很多分支的小管及末端的焰细胞构成的盲管.•环节动物后肾管排泄.后肾管中胚层起源的体腔膜构成的具有两端开口盘曲的体腔导管,一端位于体腔的漏斗状开口称为肾口;另一端称肾孔开口于体外.环毛蚓在每体节中无数百个小肾管;包含三类:即体壁小肾管、咽头小肾管和隔膜小肾管.后肾与原肾的区别:(1)两端开口,原肾为盲管.(2)起源与原肾分歧.•软体动物由后肾管演变的肾脏.如河蚌有两种排泄器官,肾脏(鲍雅氏器)和围心腔腺(凯伯尔氏器).•节肢动物包含后肾管和马氏管两大类型:后肾管由后肾管演变的颚腺、绿腺又称触角腺(甲壳纲)和基节腺(蛛形纲),肾管(原气管纲)马氏管高等节肢动物中后肠的交界处的肠壁向血腔内突起的盲管,具有收集血液中的代谢废物排入后肠,并将肠中的多余水分接收入血液的感化.甲壳类的排泄器官为颚腺和触角腺;低等品种以颚腺为排泄器官,而高等品种在幼虫期以颚腺进行排泄,成虫则以触角腺为排泄器官.蛛形纲排泄器官为基节腺或马氏管.蜘蛛幼体由基节腺、成体用马氏管排泄.钳蝎以基节腺进行排泄.蜱与螨用基节腺或马氏管排泄.昆虫排泄器官为马氏管.•棘皮动物用皮鳃与管足排泄.九、神经零碎•原生动物无神经零碎.由原生质传递刺激可发生应激性.草履虫有一种表膜下纤维零碎可以使纤毛调和活动.•海绵动物无神经零碎.有一种星芒状细胞具有传递刺激感化,但只是由一个细胞传到另一个细胞,极为迟缓.•腔肠动物出现了最原始的网状神经零碎.网状神经零碎特点A.没有神经中枢(神经传导普通是无定向、弥散式的),称为泛化反射(一触全收).B.神经纤维没有髓鞘,传导速度缓慢.•扁形动物梯形神经零碎即头部一对膨大的脑神经节,向后发出一对腹神经索沿身体两侧纵行,在腹神经索之间还有横神经相连,构成梯状.•原体腔动物筒状梯形神经零碎.•环节动物链式神经零碎.由体前一对咽上神经节愈合构成脑,并由脑发出两条腹神经索彼此愈合向后纵行,并在每一体节内有一膨大的神经节而构成链状结构.•软体动物低等品种梯形神经(双神经).高等品种为四对神经节,少数合并.软体动物的四对神经节为脑、侧、脏、足.但河蚌的脑侧神经合并,故仅为三对神经节;脑、脏、足.头足类的神经零碎极为发达,特别是脑,为无脊椎动物中最高等的类群.•节肢动物链式神经零碎,有合并景象.如蝗虫的神经零碎在头部、胸部和和腹部均有膨大的合并神经节;前脑两个大型视叶,各发出视神经到复眼和单眼(视觉中枢).中脑发出一对神经至触角(触觉嗅觉中枢).后脑向后发出一对围咽神经(交感神经中枢).腹部前两个体节的神经节合并到胸部的第三个神经节.•棘皮动物脑不明显,辐射对称的三个神经零碎,不发达.包含上神经零碎、外神经零碎和内神经零碎.十、生殖与发育•原生动物无生殖零碎.生殖方式复杂;无性生殖包含;横二裂、纵二裂、复裂、孢子、出芽生殖等.有性生殖包含;同配、异配、卵配、接合生殖等.包囊很多原生动物在环境条件晦气的情况下能够收缩并分泌黏液包绕自体构成包囊.•海绵动物无性生殖为出芽和芽球生殖.有性生殖为配子生殖.•腔肠动物出现生殖腺(分类根据).无性为出芽生殖,有性为配子生殖.有的有世代交替景象.普通雌雄异体.海产间接发育的品种有浮浪幼虫.•扁形动物出现生殖零碎(中胚层发生).具有固定的生殖腺、导管、附属腺.普通雌雄同体,少数异体.寄生品种幼虫及生活史复杂.海产间接发育品种经螺旋式卵裂和牟勒氏幼虫期.•原体腔动物似扁形动物,但雌雄异体,而且异形.普通为两性生殖,少数行孤雌生殖.生活史较为复杂.•环节动物基本同上,雌雄同体或异体.海产间接发育的品种经螺旋卵裂及担轮幼虫期.•软体动物水生雌雄异体,陆生雌雄同体.海产间接发育品种经螺旋卵裂及担轮幼虫、面盘幼虫阶段.河蚌还具有钩介幼虫.•节肢动物雌雄异体而且异形.普通行有性生殖,少数孤雌生殖.幼虫期复杂,间接发育的需经过反常.•棘皮动物生殖零碎简化,有固定的生殖腺、导管,无附属腺体.间接发育,需经过幼虫期.注:十点特征比较:①细胞②体制③胚层④体腔⑤节部⑥消化⑦神经⑧轮回⑨呼吸⑩排泄翅;蜂、蝉类等很多昆虫的翅薄膜状,叫膜翅;步行虫等甲虫的前翅全部骨质化,翅脉不明显或无脉纹,呵护膜质的后翅,叫鞘翅;蝶、蛾类昆虫有膜质的翅,上面覆生着鳞片,叫鳞翅;蚊蝇等有的膜质前翅,但是后翅却退化成专起平衡感化的小型棒状结构,叫平衡棒.幼虫比较:多孔动物门:两囊幼虫,海绵囊胚动物极的一端为具鞭毛的小细胞,植物极的一端为不具鞭毛的大细胞.腔肠动物门:浮浪幼虫,受精卵发育,以内移的方式构成实心的原肠胚,在其概况有纤毛,能游动.比方水螅,水母类.浮浪扁形动物:牟勒氏幼虫,环节动物;担轮幼虫,形似陀螺,体可分为:1、口前纤毛区.2、口后纤毛区.3、生长带区.特点,无体节,有原肠腔、原肾管,神经与上皮相连,幼虫以纤毛环为活动器.第十四章无脊椎动物总结第一节无脊椎动物的比较形状和比较解剖一、体制所谓体制就是身体的对称方式1、无对称:大多原生动物、腔肠动物的珊瑚虫纲、苔藓动物2、球形辐射对称身体呈圆球形,通过中间轴可分为无穷或无限个不异的两半,此对称方式适应于在水中生活,上下、摆布环境都一样.如放射虫、太阳虫.3、辐射对称通过身体和固定的轴可分为若干对称面,也适应于水中漂浮和固定生活,能分为上、下端,身体的其余部分类似.eg:腔肠动物、原生动物中的表壳虫、钟虫、很多海绵动物.4、两侧对称是扁形动物及当前的动物所具有,是适应于水底爬行生活的结果,因为两侧对称的出现,使动物的生理机能有所加强.5、两辐对称界于辐射对称和两侧对称之间,也可算辐射对称,是栉水母动物门所具有的.另外:棘皮动物为五辐对称腹足类为分歧错误称,但它的头部和足是摆布对称的,它身体的一部分器官,零碎退化掉.二、胚层1、无胚层:多孔动物无胚层.原生动物无所谓胚层的构造.2、两胚层:腔肠动物,在形状和机能上有分化和分工.3、三胚层:从扁形动物开始都具三胚层.中胚层的发生在动物进化上有次要意义,也是动物由水→陆的一个次要基础.它有端cell法——原口动物和体腔囊法——后口动物.三、体节1.无体节:线形动物之前的各类动物.扁形动物的绦虫类是假分节景象,具有真体腔的动物才有分节景象,但软体动物无分节,而棘皮动物的幼体具有分节景象,它具有三个体腔囊.所以可能是由3体节的祖进步前辈化而来.2、同律分节:环节动物同律分节是指构成躯体的体节在形状和机能上大致不异,且内部器官按体节排列,同律分节较原始,但它起源于中胚层,它为高级的发展奠定了基础,在动物进化上具有次要意义.3、异律分节:环节动物的一部分及节肢动物所具有是指构成躯体的各体节在形状和机能上均有分歧,在分节中的体节出现愈合景象,在愈合中出现了体节群景象,异律分节对身体的进一步发展具有次要意义,分歧的体节群具有分歧的功能.象节肢动物不但身体分节,而且附肢也出现分节景象,且附肢与身体之间通过关节相连结.四、活动器官和肌肉(一)活动器官最初的方式是纤毛或鞭毛,随着机能的高能化,出现肌肉.活动器复杂化,使得活动大大加强.1.活动胞器:原生动物具有,如:纤毛、鞭毛、伪足,原生动物的鞭毛或纤毛是以cell表皮突起构成.2、鞭毛、纤毛(指多cell动物):如:海绵动物的幼体用鞭毛来活动,腔肠动物的幼体以纤毛活动,扁形动物幼体也以纤毛活动.3、疣足和刚毛:环节动物具有的原始附肢疣足可帮忙活动、呼吸,它分为背肢、腹肢,还有背须、腹须各一个,上面还有针毛、刚毛.刚毛着生在刚毛囊中,它们是原始的活动附肢.4、节肢和翅:节肢动物所具有的活动器在节肢动物中,很多品种的附肢呈双肢型(由原肢发出内,外肢,外肢普通较退化).翅是无脊椎动物中昆虫独一所具有的,有的有一对,有的有两对,在翅上有翅脉,翅脉分为纵脉和横脉等5、斧足、腹足、头足:软体动物具有,足为块状(腹足纲)、斧状(瓣鳃纲)、柱状(掘足纲的角见)、腕状(乌贼)、完好退化(牡蛎).6、腕和管足:棘皮动物具有腕上有步带沟或无,步带沟中有管足.半索动物的肠鳃类靠吻腔和领腔的充水和排水,而使身体伸缩活动.(二)肌肉1、皮肌cell:腔肠动物,具原始的皮肤与肌肉,在皮肌cell基部肌纤维收缩发生活动.2、皮肌囊:蠕形动物所具有,其中环节动物的皮肌囊较复杂,它还具脏壁体腔膜.3、束肌:节肢动物所具有,节肢动物有外骨骼,束肌附着在外骨骼上,节肢动物之前的动物具平滑肌和斜纹肌,节肢动物是横纹肌,其敏捷而强无力的收缩,可使各体节及附肢发生灵活、多变的活动.五、体腔体节和体腔的出现是高等无脊椎动物出现的标记,体腔是体壁与消化道之间的空隙.1、无体腔腔肠动物只要消化轮回腔,扁形动物地方由实质组织所填充.2、有体腔1)假体腔:线形动物具有.来源于胚胎时期的囊胚腔.位于中胚层的单层纵肌与内胚层的单层肠上皮之间的空腔.2)真体腔:环节动物当前的各类动物所具有.是在中胚层以内的腔,它是脏壁体腔膜与体壁体腔膜之间的空腔.真体腔与假体腔比拟有何特点?①来源于由肠腔法构成的体腔囊②体腔有与里面相通的通道③在体腔里面充满体腔液,在体腔液中有体腔cell.乌贼的体腔发达,包抄心腔、肾腔及生殖腔△真体腔的发生具有次要意义,为何?3) 混合体腔(节肢动物), 是由次生体腔退化与原生体腔混合在一路,内充满血液称为血腔.软体动物是真、假体腔同时存在,环节动物中的蛭纲也具真体腔,但退化,里面填充了结缔动物,也充满血液,称血窦.固着生活的苔藓腕足和帚虫动物的真体腔却很发达.棘皮动物的真体腔一部分酿成微血零碎和水管零碎.六、体表和骨骼各种动物的体壁都直接与外界环境相接触,并有分歧的结构和担负着必定的功能.单细胞原生动物的体表是细胞膜,有呵护、接收、分泌、物资交换、粘附等功能.多孔动物的体壁由皮层和胃层构成.腔肠动物的体壁由内、外两胚层发育而成.。
无脊椎动物形态结构你知道吗?世界上有一种生物,它们就像“身无长物”的小小游民,光是看它们的模样,可能很多人都得皱眉——没有脊柱,没有骨骼,看上去弱不禁风,偏偏却是地球上最古老、最坚韧的一群家伙。
这些“无脊椎动物”就像是自然界的另类明星,它们从远古时期一路活到了今天,真是“生生不息”,不服老!今天咱们就来聊聊这些“小脆弱”的生命,它们是怎么在这个星球上活得风生水起的。
想想看,无脊椎动物的身上没有骨架支撑,那可真是和我们这些骨骼“健全”的人不一样。
没有脊柱,咋撑起那一片天呢?但是,别看它们“没有背骨”,这些家伙的身体结构可不得了。
就拿蚯蚓来说,虽然它没有脊柱,但它的身体有个“节段式”设计,像一节一节的火车车厢,灵活又结实。
每节都能通过收缩和扩张,帮蚯蚓在土里轻松挖掘,简直可以说是“身手不凡”。
这些节段之间还分工明确,提供了类似支撑的作用,让它不至于软塌塌的,轻松做个“地下掘金者”。
再看看那些海洋中的无脊椎动物,像海星啊、海胆啊,外面有硬壳包着,防止敌人一口吞了它们。
尤其是海胆,外表全是坚硬的“刺”,你敢碰它一下吗?“不要命”!这些刺就像它们的“护身符”,能把那些想吃它们的猎物吓跑。
它们不需要脊柱,也能在海洋里活得有滋有味,反而凭借这些外壳或刺,活得像个“海洋霸王”。
再讲讲那些软趴趴的海绵动物,你能想象它们的模样吗?对,就是那种看起来像是泡沫一样的东西,没错,就是“海底软垫”。
它们的身体里并没有硬壳、骨骼,而是通过一些特殊的结构来保证身体不会垮掉。
它们的组织中有一种叫做“骨针”的小东西,虽然叫骨针,但其实很柔软,用来支撑身体并帮助它们过滤水中的食物。
海绵动物就像是海里的净水器,简直成了“海洋清道夫”。
即便没有脊柱,它们依旧能在海洋中发挥大作用,生活得悠闲又自在。
再来说说那些螃蟹、虾子这样的“硬核派”无脊椎动物。
它们的外壳就像一层“铠甲”,坚不可摧,完美保护着它们娇嫩的身体。
尽管它们没有脊柱,但是有了这层硬壳,它们可以自由自在地在海底或沙滩上横行霸道。
无脊椎动物的形态结构与生理一、体制指动物躯体结构的排列形式和规律。
一般分为有规律可寻(对称)无规律可寻(不对称)不对称(尾草履虫、变形虫)球辅对称(太阳虫、团藻虫)辐射对称(钟虫)球辐对称:通过身体中心点可分成许多相同的两半。
海绵动物不对称或辐射对称原生动物腔肠动物辐射对称或两辐对称辐射对称:指通过身体的中央轴有许多个切面可以将身体分为左右相等的两部分(对称面)。
主要适应附着、漂浮、及不太运动的生活方式。
两辐对称;通过动物体轴仅可分成两个对称面。
(如海葵)扁形动物两侧对称;通过体轴只有一个对称面。
两侧对称的重要意义;(1)使动物身体明显地分为前后、背腹和左右,由不定向运动变为定向运动。
(2)使动物由水中固着或漂浮生活向水底爬行生活及陆地爬行奠定了基础。
扁形动物以后的各类群全部是两侧对称。
仅有两个特例; 1. 软体动物腹足纲;由于胚胎发育发生了扭转,因此成体不对称。
2. 棘皮动物早期发育的羽腕幼虫及短腕幼虫(两侧对称),成体由于适应不太运动的生活方式产生了次生性的辐射对称。
二、胚层与体腔 1.胚层指多细胞动物胚胎发育时期由于细胞分化而形成的特殊区域。
多细胞动物早期的胚胎发育;受精→卵裂→囊胚→原肠胚→中胚层和体腔的形成→胚层分化海绵动物没有明确的胚层分化,体壁由两层细胞构成。
由于胚胎发育的“逆转现象”,故不能称其为外胚层和内胚层(只称皮层和胃层)。
两个胚层(外胚层、内胚层)中胶层不是细胞结构。
腔肠动物扁形动物以后各类群由于出现了中胚层,故都称为三胚层动物。
2. 体腔指动物体消化道与体壁之间的腔隙。
扁形动物及以前各类群没有体腔原体腔(线形动物)动物出现原体腔原体腔指胚胎发育的囊胚腔演化形成的体壁与脏壁之间的腔隙。
原体腔(假体腔、初生体腔)特点:(1)只有体壁中胚层,没有肠壁中胚层和体腔膜。
(2)腔内充满体腔液。
(3)体腔对外没有孔道。
环节动物具有真体腔(次生体腔)蛭类除外。
真体腔指中胚层的脏壁与体壁分离后,形成的动物内脏和体壁之间的腔隙。
无脊椎生物知识点总结一、无脊椎动物的分类无脊椎动物根据形态特征和生态习性的不同,被分为多个门,其中最常见的有:1. 海绵动物门:全身由一种细胞构成,无组织结构。
2. 刺胞动物门:有刺胞,多种生活在水中。
3. 腔肠动物门:身体总被具有腔肠的软体。
4. 扁形动物门:身体扁平,呈片状。
5. 线形动物门:身体圆柱形,呈线状。
6. 软体动物门:多数有壳,生活在水中的有周环基。
7. 轮形动物门:圆形或卵形,外部有环状毛。
8. 节肢动物门:身体呈节肢状,多有外骨骼。
9. 脊索动物门:有脊索和椎骨,属于基本的脊椎动物。
二、无脊椎动物的形态特征无脊椎动物的形态特征非常丰富,这些特征使得它们在不同的生活环境中都能找到自己的生存之道。
下面简要总结一下无脊椎动物的形态特征。
1. 外骨骼:节肢动物有外骨骼,可以保护身体和提供支撑。
2. 软体:软体动物的身体上有硬壳,主要是碳酸钙,可以保护身体,提供保护。
3. 刺胞:刺胞动物以具有刺细胞为特征,可以迅速捕捉猎物。
4. 轴索:脊索动物的外形呈板状,中间有脊索,与脊椎动物有相似之处。
除了上述主要形态特征外,无脊椎动物的形态特征还包括不同的体节构造、不同的身体外形、不同的呼吸器官等,总体上反映了无脊椎动物适应不同生态环境的特点。
三、无脊椎动物的生理特征无脊椎动物的生理特征也非常丰富,这些特征使得它们在不同的生活环境中都能找到自己的生存之道。
下面简要总结一下无脊椎动物的生理特征。
1. 消化系统:无脊椎动物的消化系统呈多样化结构,但都能满足其生活需要。
例如,软体动物的口器和食道可以适应不同的捕食方式。
2. 呼吸系统:各种无脊椎动物呼吸系统的结构和功能各异,但都能满足其生活需要。
例如,输泵式呼吸的多毛纲动物;3. 循环系统:无脊椎动物的循环系统也呈多样化结构,但都能很好地满足其生活需要。
例如,蜗牛的心脏和血液循环系统可以维持其生活需求;4. 神经系统:无脊椎动物的神经系统也呈多样化结构,但都能很好地满足其生活需要。
无脊椎动物的一般构造和生理
一、对称
●1、无对称:如变形虫,由于缺乏固定的结构型式。
●2、球状辐射对称:通过中心可以将身体分为无限或有限的相同的两半。
如太阳
虫,由于悬挂在水中,上下左右的环境都一样。
●3、辐射对称:对固着或漂浮生活的适应,环境只有上下之分,周围没有差别。
海绵动物、腔肠动物
●4、两侧对称:动物有前、后、背、腹之分,左右两侧对称。
适应爬行。
●扁形动物以上都是两侧对称,但腹足类、棘皮动物例外。
二、胚层
●无胚层:单细胞动物
●二胚层:海绵动物,腔肠动物
●三胚层:自扁形动物以上
三、体腔
●无体腔:扁形动物以下
●假体腔:线虫、轮虫、腹毛、棘头、线形动物
●真体腔:自环节动物以上(高等无脊椎动物特征)
●一些高等无脊椎动物的真体腔退化,形成围心腔、排泄器官和生殖器官的内腔。
如软体动物、节肢动物
●昆虫的混合体腔
●棘皮动物的一部分体腔形成了水管系统、围血系统。
四、体节和身体分部
●环节动物:同律分节多,异律分节少
●节肢动物:异律分节多,同律分节少,分部。
●触手冠动物、软体动物:不分节,分部。
●棘皮动物:成体无分节,但胚胎发育中有3对体腔囊。
可能是由3体节的祖先进化
而来
五、体表和骨胳
●原生动物:质膜(薄、加厚),外壳
●海绵动物:骨针、海绵丝
●腔肠动物:角质或石灰质的骨胳
●扁形动物:体表具纤毛
●线形动物、轮虫动物:体表具角质膜
●环节动物:体表具角质膜,常有刚毛
●软体动物、腕足类:石灰质贝壳
●节肢动物:几丁质外骨胳
●棘皮动物:内骨胳
六、运动器官、肌肉和附肢
●原生动物:伪足、鞭毛、纤毛
●海绵动物:两囊幼虫具鞭毛
●腔肠动物:皮肌细胞,幼虫有纤毛
●扁形动物:皮肌囊(环、纵、斜肌),纤毛,寄生的成虫无纤毛,但幼虫有纤毛●轮虫、腹毛类:纤毛
●线虫动物:纵肌
●环节动物:疣足,刚毛,纵肌、环肌
●节肢动物:节肢,横纹肌,翅
●软体动物:足
●棘皮动物:腕,管足
七、消化系统
●原生动物、海绵动物:细胞内消化。
●腔肠动物:消化管(消化循环腔)有口无肛门,细胞内、细胞外消化。
●扁形动物:消化管有口无肛门,寄生种类消化管退化或消失。
●线形动物:完全消化管:前肠、后肠(外胚层发生)、中肠(内胚层发生)。
●环节动物以后:消化管、消化腺。
●棘皮动物:完全消化管。
但有的种类肛门不用(海星钢)或消失(蛇尾纲)
八、呼吸和排泄
●原生动物:无呼吸、排泄系统。
体表呼吸、排泄,伸缩泡也可排泄。
●海绵动物、腔肠动物:无呼吸、排泄系统。
体表呼吸、排泄。
●扁形动物、线形动物:体表呼吸,寄生种类可进行厌氧呼吸;排泄器官:原肾管。
●环节动物:排泄器官为后肾管;体表和疣足呼吸。
●软体动物:由后肾管特化形成的肾;外套膜、鳃、肺囊呼吸
●节肢动物:排泄器官:绿腺、颚腺、马氏管;呼吸器官:鳃(虾)、书鳃(鲎)、
书肺(蜘蛛)、气管(昆虫)
●棘皮动物:管足和皮鳃(如海星)有呼吸和排泄的功能;海参具水肺
九、循环系统
●原生动物、海绵动物:无循环系统
●腔肠动物、扁形动物:无循环系统,但消化循环腔具有循环的功能。
●线形动物:无循环系统,但原体腔具有循环的功能。
●环节动物:闭管式循环系统(蛭纲开管式),背血管、弧状心,可搏动。
●软体动物:开管式循环(头足类除外)。
●节肢动物:开管式循环。
●棘皮动物:不发达,在围血窦内。
十、神经系统和感觉器官
●原生动物、海绵动物:无神经系统
●腔肠动物:散漫的神经系统
●扁形动物:梯式神经系统
●线形动物:梯式神经系统
●环节动物:索式神经系统
●软体动物:由脑、侧、脏、足神经节和其间的联络神经构成神经系统,头足类的
脑有软骨保护。
●节肢动物:索式神经系统,神经节多有前后愈合的情况。
●棘皮动物:3套神经系统。
●除海绵动物外,各门动物均有某些感觉器官
原生动物的眼点,腔肠动物的触手囊,扁形动物、环节动物、软体动物、棘皮动物都有各式的眼,节肢动物的单眼、复眼,昆虫的听器,此外还有司平衡、触觉、嗅觉、味觉的构造。
十一、生殖系统和生殖
●原生动物:无性:二裂、出芽、复分裂;有性:受精、接合。
●海绵动物:无性:出芽、芽球;有性:受精。
●腔肠动物:出芽、二裂;有性生殖;生殖腺有外胚层或内胚层产生。
●扁形动物:生殖腺由中胚层产生,有生殖管和附属腺,多雌雄同体。
●线形动物:多雌雄异体,一般生殖腺与生殖管互相连接,管状。
●自环节动物以后,生殖腺都是由体腔上皮变成,一般由体腔管通向体外。
●水中生活的种类有体外和体内受精,陆地生活的都是体内受精。
●节肢动物的一些种类和轮虫可行孤雌生殖。
十二、发育
●除节肢动物的卵裂是表裂、头足类盘裂外,一般是全裂,其中扁形、环节、软体
动物的卵裂是螺旋式,腔肠、棘皮和触手冠动物以辐射式卵裂为主。
●棘皮动物是后口动物,苔藓动物、帚虫动物、腕足动物可能在原口和后口动物之
间。
其他属原口动物。
●直接发育和间接发育。
●间接发育的幼虫有不同的形式:两囊幼虫(海绵动物)、浮浪幼虫(腔肠动物)、
牟勒氏幼虫(扁形动物)、担轮幼虫(环节、触手冠、软体动物)、无节幼体(甲壳类)、纤毛幼体(棘皮动物)、羽腕幼虫(棘皮动物)、短腕幼虫(棘皮动物)。