数学解题思维过程
- 格式:doc
- 大小:28.00 KB
- 文档页数:2
七年级数学必备的个解题思维方法七年级数学必备的 10 个解题思维方法数学是一门充满智慧和挑战的学科,对于七年级的同学来说,掌握一些有效的解题思维方法至关重要。
以下是 10 个在七年级数学学习中必备的解题思维方法。
一、方程思维方程是解决数学问题的有力工具。
当遇到一些涉及数量关系的问题时,通过设未知数,找出等量关系,列出方程,可以使问题变得清晰明了。
例如,有一道题:一个数的 3 倍加上 5 等于 20,求这个数。
我们就可以设这个数为 x,根据题意列出方程 3x + 5 = 20,然后解方程得出答案。
方程思维能够帮助我们将复杂的问题转化为数学表达式,从而更容易求解。
二、分类讨论思维很多数学问题的答案并不是唯一的,需要根据不同的情况进行分类讨论。
比如,在绝对值的问题中,当绝对值符号内的数大于 0、等于 0 和小于 0 时,计算方法是不同的。
再比如,在求解不等式组时,需要分别讨论每个不等式的解集,然后综合得出最终的解集。
分类讨论思维要求我们考虑问题全面,不遗漏任何一种可能的情况。
三、数形结合思维数与形是数学中的两个重要方面,将它们结合起来往往能让问题更直观、更容易理解。
比如,在学习数轴时,通过在数轴上表示数,可以清晰地看出数的大小关系和距离。
在解决函数问题时,画出函数图像能帮助我们直观地看到函数的性质和变化趋势。
四、逆向思维有时候,从问题的正面思考可能会遇到困难,这时可以尝试从反面或者结果出发进行逆向思考。
例如,证明“如果两个角是对顶角,那么这两个角相等”,可以逆向思考“如果两个角不相等,那么这两个角不是对顶角”。
逆向思维可以帮助我们打破常规,开拓解题思路。
五、整体思维在解决问题时,有时可以将某些部分看作一个整体,从而简化计算和推理。
比如,在代数式的化简和求值中,如果式子比较复杂,可以先将其中的一部分看作一个整体进行变形和处理。
整体思维能够提高解题效率,避免繁琐的计算。
六、转化思维把一个陌生的、复杂的问题转化为熟悉的、简单的问题是数学解题中常用的策略。
掌握数学中的解题步骤与思维方式数学是一门需要逻辑思维和解题技巧的学科,掌握解题步骤和思维方式对于学生来说非常重要。
在学习数学的过程中,我们常常会遇到各种各样的问题,有时候感到困惑和无从下手。
因此,学会正确的解题步骤和思维方式,可以帮助我们更好地理解和应用数学知识。
首先,正确的解题步骤是解决数学问题的基础。
解题步骤可以分为以下几个方面:第一步,理解问题。
在解题之前,我们首先要仔细阅读题目,理解问题的要求和条件。
有时候,问题的表述可能比较复杂,我们需要将其简化为易于理解的形式。
理解问题的关键是确定问题的核心内容,明确解题的方向。
第二步,分析问题。
在理解问题之后,我们需要对问题进行分析。
这包括确定问题的类型和解题方法。
有些问题可以通过建立方程或者画图来解决,有些问题可以通过逻辑推理或者归纳法来解决。
分析问题的关键是找到问题的关键点和解题的关键步骤。
第三步,解决问题。
在分析问题之后,我们可以开始解决问题。
解决问题的关键是运用所学的数学知识和解题技巧。
在解题的过程中,我们需要灵活运用各种数学方法和工具,比如代数、几何、概率等。
解决问题的关键是找到问题的解决方案和验证方法。
第四步,检查答案。
在解题之后,我们需要对答案进行检查。
检查答案的关键是核对计算过程和结果,确保答案的准确性。
有时候,我们可以通过反证法或者逆向推理来验证答案的正确性。
检查答案的目的是避免漏算和计算错误。
以上是解题的基本步骤,但是在实际解题中,我们还需要注意一些细节和技巧。
比如,我们可以通过分解问题、类比问题、逆向思维等方法来解决一些复杂的问题。
此外,我们还可以通过举反例、构造模型、利用已知条件等方法来解决一些不确定的问题。
这些方法和技巧可以帮助我们更好地理解和解决数学问题。
除了解题步骤,正确的思维方式也是解决数学问题的关键。
数学思维方式包括逻辑思维、创造思维和批判思维等方面。
首先,逻辑思维是数学思维的基础。
逻辑思维是指根据已知条件和逻辑关系来推理和判断的能力。
数学题目的解题思路与方法引言:数学作为一门抽象的学科,其解题过程需要运用一定的思维和方法,而提供丰富的解题思路和方法对学生的数学学习能力的培养具有重要意义。
本节课将重点讲解数学题目的解题思路和方法,帮助学生提升解题的能力,培养良好的数学思维方式。
一、问题理解1. 确定题目所求:仔细阅读题目,明确题目要求求解的内容。
2. 分析题目条件:了解题目中给出的已知条件,掌握问题的背景信息。
3. 预测题目解题思路:根据题目中给定的条件和结论,对问题进行分析,提前设想解题思路。
二、解题方法1. 列方程法:通过列方程将问题转化为数学方程式,从而简化问题,解决方程式得到答案。
2. 利用图形法:可以通过绘图的方式将问题转化为图形表示,从而更直观地理解问题,并通过图形的特征来解决问题。
3. 模型建立法:将问题抽象为数学模型,建立相应的数学模型来解决问题,可以运用的模型有等差数列、等比数列模型等。
4. 递推法:根据问题中已知的一些条件,运用递推的思路,逐步推导得到解决问题的方法。
5. 归纳法:通过观察已知的一些情况,总结规律,归纳出一般性的结论,从而解决问题。
6. 分类讨论法:将问题进行分类讨论,分别求解每个具体情况下的答案,再综合得到整体答案。
7. 数学定理运用法:题目中可能涉及到一些数学定理或公式,可以通过运用这些定理和公式,解决问题。
三、解题策略1. 简化问题:遇到复杂的问题,可以先简化问题,将问题转化为相对简单的情况来解决,再根据简化得到的结论推广到原问题上。
2. 反证法:当无法直接证明结论或得不到答案时,可以通过“假设不成立”来进行推理,根据推理的结果,得到结论的正确性。
3. 重述问题:在解题过程中,可以通过重新阐述问题和重新理解题目,找到解决问题的新思路。
4. 矛盾法:通过找出问题中的矛盾点,寻找解决问题的突破口。
5. 合理归纳:从已知条件出发,通过合理的归纳和推测,找出更多隐藏的问题条件,进一步推进解决问题的思路。
数学解题的思维过程数学解题的思维过程是指从理解问题开始,经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动。
对于数学解题思维过程,可简要总结为弄清问题、拟定计划、实现计划和回顾。
这四个阶段思维过程的实质,可以用下列八个字加以概括:理解、转换、实施、反思。
第一阶段:理解问题是解题思维活动的开始。
第二阶段:转换问题是解题思维活动的核心,是探索解题方向和途径的积极的尝试发现过程,是思维策略的选择和调整过程。
第三阶段:计划实施是解决问题过程的实现,它包含着一系列基础知识和基本技能的灵活运用和思维过程的具体表达,是解题思维活动的重要组成部分。
第四阶段:反思问题往往容易为人们所忽视,它是发展数学思维的一个重要方面,是一个思维活动过程的结束包含另一个新的思维活动过程的开始。
数学解题的技巧为了使回想、联想、猜想的方向更明确,思路更加活泼,进一步提高探索的成效,我们必须掌握一些解题的策略。
一切解题的策略的基本出发点在于“变换”,即把面临的问题转化为一道或几道易于解答的新题,以通过对新题的考察,发现原题的解题思路,最终达到解决原题的目的。
基于这样的认识,常用的解题策略有:熟悉化、简单化、直观化、特殊化、一般化、整体化、间接化等。
一、熟悉化策略所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。
一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。
从结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。
因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的联系方式上多下功夫。
常用的途径有:(一)、充分联想回忆基本知识和题型:按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。
数学方法论认为,数学对于一个人素质的养成,并不仅仅是掌握一定的数学知识,而是通过数学知识的学习,培养能力,锻炼思维,进而通过思维的训练,提高解决问题的能力和创新能力,成为具有数学素养的一员,为本职工作提供帮助。
在现今的高职数学教学中,由于数学是一门基础课不是专业课,加之学生数学基础差,底子薄,所以许多数学教师就把数学知识、结论直接灌输给学生,要求他们记忆模仿做大量的练习,以期通过“题海战术”来提高学生解决问题的能力,结果往往事与愿违。
笔者认为,要想从根本上提高学生的思维能力和解决问题的能力,除了要让学生掌握概念、定理等基础知识外,还必须让学生学会如何利用这些概念、定理去解决问题,以及在解决问题过程中出现障碍时,如何控制和调节自己的思维,使问题得到有效解决。
因此,剖析解题的思维过程,使思维在解题过程中得以有效展开,对于培养学生的思维能力,进而提高解决问题的能力是非常必要的。
一、数学问题与数学思维美国数学家哈尔莫斯(P.R.Halmos)指出:数学定理、证明、概念、定义、理论、公式、方法中的任何一个都不是数学的心脏,只有问题是数学的心脏,解决问题是数学活动的基本形式。
数学家波利亚的“怎样解题表”给出了解题的四个步骤:弄清问题、拟定计划、实现计划、回顾。
因此,不断地提出问题、分析和解决问题成为数学学习和研究的根本。
许多专家认为,所谓数学问题主要是指对于解题者具有一定的接受性、障碍性和探究性的一些情形或问题。
而解决数学问题可以看作是数学思维的一个基本过程。
由于解题重视的是使用信息和事实的能力,是解题的思维过程和思维策略,是构造算法或模型的设计技巧,是把非常规题变换为常规题的转化能力,因此数学思维贯穿于解题过程的始终。
二、解题过程的三个阶段数学思维理论指出,数学解题思维过程是主体以解决数学问题为目的,运用有关思维方式或方法达到认识数学问题的内在的信息加工活动。
(一)思维定向所谓思维定向是指解题开始时的思维指向,是解题的起点,要求全面正确地理解题意。
数学解题思路与方法总结数学是一门智力体操,它要求我们用逻辑思维和抽象推理的能力解决问题。
在学习数学的过程中,我们不仅要掌握各种数学知识,还要培养解题的思维方式和方法。
本文将总结一些常见的数学解题思路和方法,希望能够帮助大家更好地应对数学问题。
一、问题分析与建模解决数学问题的第一步是对问题进行分析和建模。
我们需要仔细阅读题目,理解问题的要求和条件。
在理解题目的基础上,我们可以使用抽象化的方法将问题转化为数学模型,从而更好地进行求解。
例如,有一道经典的问题:甲、乙、丙三人一起做一件事,甲一人做需要5天,乙一人做需要7天,丙一人做需要10天,他们一起做需要多少天?我们可以将这个问题抽象为一个工作量的问题,假设整个工作量为70,那么甲、乙、丙的单位工作量分别为14、10、7。
他们一起做的速度为单位工作量之和,即14+10+7=31,所以他们一起做需要70/31≈2.26天。
二、归纳与演绎归纳与演绎是数学思维中常用的方法。
归纳是从具体的例子中总结出一般规律,而演绎则是从一般规律推导出具体结论。
在解决数学问题时,我们可以通过观察和分析具体的例子,找出其中的规律,从而得出一般的结论。
例如,有一个数列:1,4,7,10,13,...,我们可以观察到每个数与前一个数的差都是3,根据这个规律,我们可以得出这个数列的通项公式为an=3n-2。
另外,演绎的方法也常用于证明数学定理。
通过已知的前提条件,应用逻辑推理和数学推导,我们可以得出结论。
例如,证明一个三角形是等边三角形,我们可以根据已知的条件和三角形的性质,逐步推导出三边相等的结论。
三、分析与解决复杂问题在解决复杂的数学问题时,我们需要进行深入的分析和细致的思考。
有时候,我们需要将一个复杂的问题分解为多个简单的子问题,并逐个解决。
这种方法被称为分而治之。
例如,有一个经典的问题:有一个无限长的赛道,一只兔子和一只乌龟在同一起点出发,兔子的速度是乌龟的10倍,但是每跑100米,兔子要休息10分钟,乌龟一直以恒定的速度跑。
数学解题思维过程数学解题的思维过程是指从理解问题开始,从经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动。
在数学中,通常可将解题过程分为四个阶段:第一阶段是审题。
包括认清习题的条件和要求,深入分析条件中的各个元素,在复杂的记忆系统中找出需要的知识信息,建立习题的条件、结论与知识和经验之间的联系,为解题作好知识上的准备。
第二阶段是寻求解题途径。
有目的地进行各种组合的试验,尽可能将习题化为已知类型,选择最优解法,选择解题方案,经检验后作修正,最后确定解题计划。
第三阶段是实施计划。
将计划的所有细节实际地付诸实现,通过与已知条件所选择的根据作对比后修正计划,然后着手叙述解答过程的方法,并且书写解答与结果。
第四阶段是检查与总结。
求得最终结果以后,检查并分析结果。
探讨实现解题的各种方法,研究特殊情况与局部情况,找出最重要的知识。
将新知识和经验加以整理使之系统化。
所以:第一阶段的理解问题是解题思维活动的开始。
第二阶段的转换问题是解题思维活动的核心,是探索解题方向和途径的积极的尝试发现过程,是思维策略的选择和调整过程。
第三阶段的计划实施是解决问题过程的实现,它包含着一系列基础知识和基本技能的灵活运用和思维过程的具体表达,是解题思维活动的重要组成部分。
第四阶段的反思问题往往容易为人们所忽视,它是发展数学思维的一个重要方面,是一个思维活动过程的结束包含另一个新的思维活动过程的开始。
通过以下探索途径来提高解题能力:1.研究问题的条件时,在需要与可能的情况下,可画出相应图形或思路图帮助思考。
因为这意味着你对题的整个情境有了清晰的具体的了解。
2.清晰地理解情境中的各个元素;一定要弄清楚其中哪些元素是给定了的,即已知的,哪些是所求的,即未知的。
3.深入地分析并思考习题叙述中的每一个符号、术语的含义,从中找出习题的重要元素,要图中标出(用直观符号)已知元素和未知元素,并试着改变一下题目中(或图中)各元素的位置,看看能否有重要发现。
数学解题思维方法汇总解题是数学学习过程中重要的一环,合理的解题思维方法能够帮助我们更高效地解决数学问题。
本文将对数学解题思维方法进行归纳总结,并为读者提供一些实用的思考技巧。
一、问题分析法问题分析是解题的第一步,它要求我们深入理解问题,抓住关键信息,明确问题的要求。
在分析问题时,可以采用以下几个思维方法:1. 尝试逆向思考:有些问题可以通过倒推的方式来解决。
当我们无法从已知条件出发推导出所求解的情况时,可以尝试从所求解反推回已知条件,找出问题的规律。
2. 使用模型和图像:如果问题较为复杂,可以尝试将问题进行抽象,使用适当的数学模型或图像进行分析。
这有助于我们更好地理解问题的本质,找到解题的思路。
二、形象思维法在解决数学问题时,我们常常通过形象思维来加深对问题的理解。
形象思维能够将抽象的数学概念转化为直观的形象,有助于我们更好地解决问题。
1. 利用图像:对于几何问题或者涉及到物体运动的问题,可以尝试绘制几何图形或者运动图,从而更好地理解问题的条件和要求。
2. 利用模型:可以通过构建适当的数学模型,将抽象的问题转化为具体的模型,通过对模型进行分析解决原始问题。
三、推理思维法推理思维是数学解题的关键环节,它要求我们能够准确地运用数学定理和原理,进行推理和演绎。
1. 使用逻辑推理:逻辑推理对于解决数学问题十分重要。
在解题过程中,我们可以通过运用命题逻辑、条件推理、演绎推理等方法进行推导,找出解题的关键步骤。
2. 应用已知定理:数学问题往往可以通过运用已知定理和公式进行求解。
在解题时,我们要善于发现问题的关键特征,从而能够灵活应用已知的定理和公式。
四、归纳总结法解题过程中,及时总结和归纳是确保解题思路清晰、准确的关键。
1. 归纳特殊情况:有时,我们可以从特殊情况出发,通过总结特殊情况的规律,推导出一般情况的解决方案。
2. 总结规律和模式:数学问题往往具有一定的规律性和模式性,我们可以通过归纳总结问题的规律和模式,从而解决类似的问题。
小学数学解题思维方法公式法:运用定律、公式、规则、法则来解决问题的方法。
它体现的是由一般到特别的演绎思维。
公式法简便、有效,也是小同学学习数学必须学会和掌握的一种方法。
但一定要让同学对公式、定律、规则、法则有一个正确而深入的理解,并能准确运用。
比较法:通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。
比较法要注意:找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。
找联系与区别,这是比较的实质。
必须在同一种关系下(同一种标准)进行比较,这是"比较'的基本条件。
要抓住主要内容进行比较,尽量少用"穷举法'进行比较,那样会使重点不特别。
因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。
2数学解题思维方法一排除对立的结果叫做排除法。
排除法的逻辑原理是:任何事物都有其对立面,在有正确与错误的多种结果中,一切错误的结果都排除了,剩余的只能是正确的结果。
这种方法也叫淘汰法、筛选法或反证法。
这是一种不可缺少的形式思维方法。
特例法:关于涉及一般性结论的题目,通过取特别值或画特别图或定特别位置等特例来解题的方法叫做特例法。
特例法的逻辑原理是:事物的一般性存在于特别性之中。
例:大圆半径是小圆半径的2倍,大圆周长是小圆周长的()倍,大圆面积是小圆面积的()倍。
可以取小圆半径为1,那么大圆半径就是2。
计算一下,就能得出正确结果。
例:正方形的面积和边长成正比例吗?如果正方形的边长为a,面积为s。
那么,s:a=a(比值不定)所以,正方形的面积和边长不成正比例。
综合法:把对象的各个部分或各个方面或各个要素联结起来,并组合成一个有机的整体来研究、推导和一种思维方法叫做综合法。
用综合法解数学题时,通常把各个题知看作是部分(或要素),经过对各部分(或要素)互相之间内在联系一层层分析,逐步推导到题目要求,所以,综合法的解题模式是执因导果,也叫顺推法。
数学解题思维过程
数学解题的思维过程是指从理解问题开始,从经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动。
在数学中,通常可将解题过程分为四个阶段:
第一阶段是审题。
包括认清习题的条件和要求,深入分析条件中的各个元素,在复杂的记忆系统中找出需要的知识信息,建立习题的条件、结论与知识和经验之间的联系,为解题作好知识上的准备。
第二阶段是寻求解题途径。
有目的地进行各种组合的试验,尽可能将习题化为已知类型,选择最优解法,选择解题方案,经检验后作修正,最后确定解题计划。
第三阶段是实施计划。
将计划的所有细节实际地付诸实现,通过与已知条件所选择的根据作对比后修正计划,然后着手叙述解答过程的方法,并且书写解答与结果。
第四阶段是检查与总结。
求得最终结果以后,检查并分析结果。
探讨实现解题的各种方法,研究特殊情况与局部情况,找出最重要的知识。
将新知识和经验加以整理使之系统化。
所以:第一阶段的理解问题是解题思维活动的开始。
第二阶段的转换问题是解题思维活动的核心,是探索解题方向和途径的积极的尝试发现过程,是思维策略的选择和调整过程。
第三阶段的计划实施是解决问题过程的实现,它包含着一系列基础知识和基本技能的灵活运用和思维过程的具体表达,是解题思维活动的重要组成部分。
第四阶段的反思问题往往容易为人们所忽视,它是发展数学思维的一个重要方面,是一个思维活动过程的结束包含另一个新的思维活动过程的开始。
通过以下探索途径来提高解题能力:
(1)研究问题的条件时,在需要与可能的情况下,可画出相应图形或思路图帮助思考。
因为这意味着你对题的整个情境有了清晰的具体的了解。
(2)清晰地理解情境中的各个元素;一定要弄清楚其中哪些元素是给定了的,即已知的,哪些是所求的,即未知的。
(3)深入地分析并思考习题叙述中的每一个符号、术语的含义,从中找出习题的重要元素,要图中标出(用直观符号)已知元素和未知元素,并试着改变一下题目中(或图中)各元素的位置,看看能否有重要发现。
(4)尽可能从整体上理解题目的条件,找出它的特点,联想以前是否遇到过类似题目。
(5)仔细考虑题意是否有其他不同理解。
题目的条件有无多余的、互相矛盾的内容?是否还缺少条件?
(6)认真研究题目提出的目标。
通过目标找出哪些理论的法则同题目或其他元素有联系。
(7)如果在解题中发现有你熟悉的一般数学方法,就尽可能用这种方法的语言表示题的元素,以利于解题思路的展开。
以上途径特别有利于开始解题者能迅速“登堂入室”,找到解题的起步点。
在制定计划寻求解法阶段,最好利用下面这套探索方法:
(1)设法将题目与你会解的某一类题联系起来。
或者尽可能找出你熟悉的、最符合已知条件的解题方法。
(2)记住:题的目标是寻求解答的主要方向。
在仔细分析目标时即可尝试能否用你熟悉的方法去解题。
(3)解了几步后可将所得的局部结果与问题的条件、结论作比较。
用这种办法检查解题途径是否合理,以便及时进行修正或调整。
(4)尝试能否局部地改变题目,换种方法叙述条件,故意简化题的条件(也就是编拟条件简化了的同类题)再求其解。
再试试能否扩大题目条件(编一
个更一般的题目),并将与题有关的概念用它的定义加以替代。
(5)分解条件,尽可能将分成部分重新组合,扩大骒条件的理解。
(6)尝试将题分解成一串辅助问题,依次解答这些辅助问题即可构成所给题目的解。
(7)研究题的某些部分的极限情况,考察这样会对基本目标产生什么影响。
(8)改变题的一部分,看对其他部分有何影响;依据上面的“影响”改变题的某些部分所出现的结果,尝试能否对题的目标作出一个“展望”。
(9)万一用尽方法还是解不出来,你就从课本中或科普数学小册子中找一个同类题,研究分析其现成答案,从中找出解题的有益启示。
************************************************************* 附录:
波利亚给出了详细的“怎样解题”表,在这张表中启发你找到解题途径的一连串
问句与建议,来表示思维过程的正确搜索程序,其解题思想的核心在于不断地变
换问题,连续地简化问题,把数学解题看成为问题化归的过程,即最终归结为熟
悉的基本问题加以解决。