1.定义新运算1
- 格式:doc
- 大小:377.50 KB
- 文档页数:1
定义新运算练习题1.定义一种新的运算*:规定a*b=30×a+20×b,例如5*6=30×5+20×6=270,计算3*8==。
2.定义新运算a△b=(a+b)×(a﹣b),则6.2△3.8=。
3.定义新运算:△表示一种运算符号,其意义是a△b=2.5a﹣b,计算(4△5)△6。
4.如果2△3=2+3+4=9,5△4=5+6+7+8=26,照这样计算,求9△5。
5.定义一种新运算:3△2=3+33=36,5△4=5+55+555+5555=6170,那么7△4的结果是。
6.定义新运算:若2※3=2+3+4,5※4=5+6+7+8,求2※(3※2)的值。
7.规定:符号“△”为选择两数中较大的数,“○”为选择两数中较小的数.例如5△2=5,3○6=3,求[(8○3)△5]×(4○7)。
附加题:8.2▽4=8,5▽3=13,3▽5=11,9▽7=25.按此规律计算,求10▽12。
定义新运算-解析1.定义一种新的运算*:规定a*b=30×a+20×b,例如5*6=30×5+20×6=270,计算3*8==。
【分析】根据规定a*b=30×a+20×b,计算3*8时,a=3,b=8。
运用新定义计算。
【解答】a*b=30×a+20×b3*8=30×3+20×8=2502.定义新运算a△b=(a+b)×(a﹣b),则6.2△3.8=。
【分析】△的运算是两数和与两数差的乘积;据此解答即可。
【解答】6.2△3.8=(6.2+3.8)×(6.2﹣3.8)=10×2.4=243.定义新运算:△表示一种运算符号,其意义是a△b=2.5a﹣b,计算(4△5)△6。
【分析】根据a△b=2.5a﹣b,把4△5改写为2.5×4﹣5,算出结果,再用这个结果的2.5倍减6,即是(4△5)△6的结果。
五年级奥数专题三:定义新运算(1)关键词:运算四则四则运算定义奥数符号意义这些表示年级我们已经学习过加、减、乘、除运算,这些运算,即四则运算是数学中最基本的运算,它们的意义、符号及运算律已被同学们熟知。
除此之外,还会有什么别的运算吗?这两讲我们就来研究这个问题。
这些新的运算及其符号,在中、小学课本中没有统一的定义及运算符号,但学习讨论这些新运算,对于开拓思路及今后的学习都大有益处。
例1 对于任意数a,b,定义运算“*”:a*b=a×b-a-b。
求12*4的值。
分析与解:根据题目定义的运算要求,直接代入后用四则运算即可。
12*4=12×4-12-4=48-12-4=32。
根据以上的规定,求10△6的值。
3,x>=2,求x的值。
分析与解:按照定义的运算,<1,2,3,x>=2,x=6。
由上面三例看出,定义新运算通常是用某些特殊符号表示特定的运算意义。
新运算使用的符号应避免使用课本上明确定义或已经约定俗成的符号,如+,-,×,÷,<,>等,以防止发生混淆,而表示新运算的运算意义部分,应使用通常的四则运算符号。
如例1中,a*b=a×b-a-b,新运算符号使用“*”,而等号右边新运算的意义则用四则运算来表示。
分析与解:按新运算的定义,符号“⊙”表示求两个数的平均数。
四则运算中的意义相同,即先进行小括号中的运算,再进行小括号外面的运算。
按通常的规则从左至右进行运算。
分析与解:从已知的三式来看,运算“”表示几个数相加,每个加数各数位上的数都是符号前面的那个数,而符号后面的数是几,就表示几个数之和,其中第1个数是1位数,第2个数是2位数,第3个数是3位数……按此规定,得35=3+33+333+3333+33333=37035。
从例5知,有时新运算的规定不是很明显,需要先找规律,然后才能进行运算。
例6 对于任意自然数,定义:n!=1×2×… ×n。
1、定义新运算1、基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
2、基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减 乘除的运算, 然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
例题1“△”表示一种新的运算,规定A △B =3A +4B,求2△3。
根据规定,这种新运算的意义就是:A 的3倍加上B 的4倍。
解A △B=3A +4B2△3=2×3+3×4=18试一试1“*”表示一种新的运算,规定A*B=5A-2B ,求3*4。
例题2“★”表示一种新的运算,他的定义是:a ★b=a ×b-a ÷b,求6★3和(6★3)★2。
解 a★b=a×b-a÷b6★3=6×3-6÷3=16利用这个结果,(6★3)★2=16★2=16×2-16÷2=24试一试2“♥”表示一种新运算,a♥b=a×b-(a+b),求4♥5和(4♥5)♥6。
例题31#3=1+2+3=6,5#4=5+6+7+8=26,求9#5?#表示连续相加,#前面的数表示等式要加的第一个数,#后面表示连续自然数的个数。
解9#5=9+10+11+12=13=55试一试31*3=1×2×3, 5*4=5×6×7×8=120, 求2*5=?例题4设yx,为两个不同的数,规定x□y=(x+y)÷2,求(45□55)□60=?解分析,按照新运算的定义就是求两个数和的一半是多少?先算(45□55)=(45+55)÷2=100÷2=50再算(45□55)□60=50 □60=(50+60)÷2=110÷2=55试一试4设yx,为两个不同的数,规定x□y=(x+y)÷4,求4□16=?4、想一想?①、“△”表示一种新运算,例题1中,求3△2,想一想3△2和2△3的得数相等吗?②、“★”表示一种新的运算,例题2中,求(6★3)★2的结果和6★(3★2)的结果是否相等?1) 定义新运算“△”:a △b= a ÷b ×3,求(1)24△6;(2)36△9。
定义新运算定义1、定义新运算是指:用一个符号把字母连接在一起,表示一种新的运算。
注意:(1)做题的关键是要正确理解式子含义,按照式子的计算顺序,将数值代入式子中,转化为一般的四则运算,然后进行计算。
(2)它通常使用特殊的运算符号,如:*、▲、★、◎、、Δ、◆、■等来表示的一种运算。
(3)新定义的算式中,有括号的,要先算括号里面的。
例1、对于任意数a,b有a*b=a×b-a-b。
求12*4的值。
分析与解:根据题目的运算要求,直接代入后用四则运算即可。
12*4=12×4-12-4=48-12-4=32练习一1,设a、b都表示数,规定:a○b=6×a-2×b。
试计算3○4。
例2、假设a ★ b = ( a + b ÷ b 。
求8 ★ 5 。
分析与解:该题的运算顺序为: a ★ b等于两数之和除以后一个数的商。
这里要先算括号里面的和,再算后面的商。
这里a代表数字8,b代表数字5。
8 ★ 5 = (8 + 5)÷ 5 = 2.6练习二对于两个数a与b,规定:a⊕b=a×b-(a+b)。
计算3⊕5。
例3、如果a▲b=a×b-(a+b。
求6▲(9▲2)。
分析与解:根据定义,要先算括号里面的。
括号里的部分已经构成了新运算,其运算结果又与括号外的部分构成新运算。
本题要运用新运算的关系,计算两次。
6▲(9▲2)=6▲[9×2-(9+2)]=6▲7=6×7-(6+7)=42-13=29练习三1、规定a△b=a×b-(a+b)。
求(10△5)+(28△5)的值例4、已知1◎4=1+2+3+4,4◎5=4+5+6+7+8,按此规定,2001◎5=?分析与解:通过观察可以发现,“◎”这个特殊的符号在这道题中所规定的定义是求几个连续的自然数的和。
1◎4表示从1开始连续4个自然数的和,4◎5表示从4开始5个连续自然数的和,2001◎5是表示从2001开始连续5个自然数的和。
定义新运算教案概述:本教案旨在引入一种新的数学运算,以丰富学生的数学知识和提高他们的逻辑思维能力。
通过学习和应用这种新运算,学生将能够发展出创造性和灵活性,并增强他们的解决问题的能力。
第一部分:新运算的介绍1.1 概念及背景新运算是一种经过精心设计的数学计算方法,旨在扩展传统四则运算的范围。
它结合了不同数学概念和原则,使学生能够更全面地思考和解决问题。
1.2 定义和符号在本教案中,新运算被定义为“***”。
它使用特定的符号(例如“$”)表示运算符,在数学表达式中起到连接和操作数的作用。
1.3 运算规则和性质新运算遵循一定的规则和性质,其中包括:- 交换律:$a$ $b$ = $b$ $a$,对于任意的$a$和$b$- 结合律:$(a$ $b)$ $c$ = $a$ $(b$ $c)$,对于任意的$a$、$b$和$c$ - 元素的单位元:$a$ $e$ = $a$,对于任意的$a$,其中$e$表示新运算的单位元- 元素的逆元:$a$ $a^{-1}$ = $e$,对于任意的$a$,其中$a^{-1}$表示$a$的逆元素第二部分:新运算的应用2.1 简单加法与减法通过使用新运算,学生将能够更轻松地执行加法和减法运算。
例如:- $5$ $+$ $3$ = $8$- $7$ $-$ $4$ = $3$2.2 复杂运算与算式简化新运算不仅适用于简单的运算,还可以用于更复杂的计算。
例如,在求解下列算式时,使用新运算可以更简化:- $(2$ $+$ $3)$ $×$ $4$ = $20$- $(6$ $-$ $2)$ $×$ $3$ = $12$2.3 混合运算学生还可以将新运算与传统的四则运算混合使用,以解决更具挑战性的问题。
例如,在下面的例子中,我们同时使用了新运算和传统运算:- $(3$ $+$ $2)$ $×$ $4$ $-$ $10$ = $18$第三部分:新运算的挑战与应用3.1 探索未知数字通过使用新运算,学生可以更灵活地推理和研究未知数字。
定义新运算定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。
一 定义新运算 基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二 定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合模块一、直接运算型【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。
【考点】定义新运算之直接运算 【难度】2星 【题型】计算【解析】 A *B 是这样结果这样计算出来:先计算A +3B 的结果,再计算A +B 的结果,最后两个结果求乘积。
由 A *B =(A +3B )×(A +B )可知: 5*7=(5+3×7)×(5+7) =(5+21)×12 = 26×12 = 312【答案】312【巩固】 定义新运算为a △b =(a +1)÷b ,求的值。
第一讲定义新运算定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些特殊算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、 等,掌握规则,转化为四则运算中的“+、—、×、÷”。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
导学启思例1 假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这里的*运算规则是“两个数的和加上两个数的差”。
1、13*5=(13+5)+(13-5)=18+8=262、5*4=(5+4)+(5-4)=1013*(5*4)=13*10=(13+10)+(13-10)=26试一试1:1、将新运算“*”定义为:a*b=(a+b)×(a-b)。
求27*9。
2、设a*b=a2+2b,那么求10*6和5*(2*8)。
例2 设p、q是两个数,规定:p△q=4×q-(p+q)÷2。
求3△(4△6).【思路导航】这里的△运算规则是“后一个数的4倍减两个数和的一半。
这里要两次运用运算规则,先算括号里面的,再算括号外面的。
3△(4△6).=3△【4×6-(4+6)÷2】=3△19=4×19-(3+19)÷2=76-11=65试一试2:1、设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。
2、设p、q是两个数,规定p△q=p2+(p-q)×2。
求30△(5△3)。
例3 如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44。
那么7*4=?,210*2=?【思路导航】仔细审题,判断这里的*表示的意义。
第一讲 定义新运算专题简析:定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些特殊算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、等,这是与四则运算中的“∆、#、*、·”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
例题1。
假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b 等于a 和b 两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
13*5=(13+5)+(13-5)=18+8=265*4=(5+4)+(5-4)=1013*(5*4)=13*10=(13+10)+(13-10)=26练习11..将新运算“*”定义为:a*b=(a+b)×(a-b).求27*9。
2.设a*b=a ×a+2b ,那么求10*6和5*(2*8)。
3.设a*b=3a -12×b ,求(25*12)*(10*5)。
设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6).3△(4△6).=3△【4×6-(4+6)÷2】=3△19=4×19-(3+19)÷2=76-11=65练习21.设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2.设p 、q 是两个数,规定p △q =p ×p+(p -q )×2。
求30△(5△3)。
3.设M 、N 是两个数,规定M*N =M N +N M ,求10*20-14。
定义新运算导言在数学中,运算是一种数学操作,用于对数值或数值集合进行处理和计算。
常见的运算包括加法、减法、乘法和除法等。
然而,在某些场景下,常规运算无法满足需求,因此需要定义新的运算。
新运算的定义新运算是指不属于常规运算范畴的一种数学操作。
它可以对数值进行加工处理,从而获得满足特定需求的结果。
与常规运算不同的是,新运算可能具有不同的符号、规则和运算法则。
新运算的特点1.创新性:新运算是一种相对于常规运算的创新,它提供了新的数学方式和解决问题的途径。
2.特殊性:新运算通常具有特殊的性质和规则,与常规运算存在差异。
3.应用性:新运算在特定领域或问题中具有较高的应用价值,能够更好地解决特定问题。
新运算的例子例子一:矩阵运算矩阵运算是一种常见的新运算。
它对矩阵进行加、减、乘等操作,从而获得矩阵相加、相减、相乘后的结果。
矩阵运算在线性代数、计算机图形学等领域具有广泛的应用,例如图像处理、机器学习等。
例子二:向量运算向量运算是指对向量进行处理和计算的一种新运算。
它可以进行向量的加法、减法、点积、叉积等操作,从而获得向量的相加、相减、点积、叉积等结果。
向量运算在物理学、力学等领域具有重要的应用,例如力的合成、求解位置等。
新运算的运算法则新运算的运算法则是指确定新运算的规则和操作方式。
它可以保证新运算的正确性和可靠性。
不同的新运算可能有不同的运算法则,以下是一些常见的运算法则:1.封闭性:新运算中的结果仍然属于原有运算的数值集合。
2.结合律和交换律:新运算满足结合律和交换律,可以改变运算顺序或数值顺序而不影响结果。
3.幂等性:多次进行新运算的结果与一次运算的结果相同。
4.分配律:新运算与其他运算之间满足分配律,可以在不同运算之间进行组合。
结语通过定义新运算,我们可以拓展数学领域的研究和应用范围,寻找更加适用于特定问题的数学工具和方法。
新运算的引入和应用将促进数学学科的发展和创新,对于解决实际问题和推动科学进步具有重要的意义。
定义新运算【知识概括】定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
【典型例题】例1、假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b等于a和b两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b,那么求10*6和5*(2*8)。
3.设a*b=3a-b×1/2,求(25*12)*(10*5)。
例2、设p、q是两个数,规定:p△q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
3△(4△6)=3△【4×6-(4+6)÷2】=3△19=4×19-(3+19)÷2=76-11=65练习2:1.设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。
2.设p、q是两个数,规定p△q=p2+(p-q)×2。
求30△(5△3)。
3.设M、N是两个数,规定M*N=M/N+N/M,求10*20-1/4。
例3、如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。