定义新运算
- 格式:doc
- 大小:43.00 KB
- 文档页数:6
小学数学定义新运算一.什么是定义新运算我们已经学过了加、减、乘、除运算。
在有些情况下,常把「有多步含加、减、乘、除的运算」用某种新的符号表示,这就是定义了新的运算。
见到了这种用新的符号所定义的运算后,就按它所规定的「运算程序」进行运算,直到得出最后结果。
例如,设A、B表示自然数,如果定义符号「※」表示的运算如下:A※B=3×A+4×B那么,根据新运算「※」的定义,就可以计算6※7如下:6※7=3×6+4×7=46。
如果定义符号「※」表示的运算为:A※B=A÷B×2+3×A-2,那么,按此定义去计算4※2的话,就有:4※2=4÷2×2+3×4-2=2×2+12-2=14。
二.定义新运算需要注意的几个问题按照新定义的运算求某个算式的结果,关键是要正确理解这种新运算的意义,如上面举例中的运算符号「※」所表示的运算并不是一种固定的算法,而是因题而异,不同的题目有不同的规定,我们应当严格按不同的规定进行运算。
需要注意的是:(1)有括号时,应当先算括号里的;(2)新定义的运算往往不一定具备交换律和结合律,不能随便套用这些运算定律来解题。
(3)上面例举中所定义的运算使用了符号「※」来定义,但并不是说只有「※」才是规定运算的符号,可能用△,#,…等符号。
符号的种类是次要的,符号所定义的运算按照怎样的程序来进行才是主要的。
三.典型例题例1设a,b表示整数(包括0),规定「*」的运算为a*b=a÷b×2+3×a-b,计算:169*13。
分析与解答动手算之前,先让我们弄清「*」是怎么一种运算程序,按规定,a*b的值是用a除以b,把商数乘2之后,再加上a的3倍,最后减去b,这些运算有两个特点:(1)各步运算都是大家熟悉的四则运算;(2)各步运算的先后次序要按规定的顺序办。
那么,根据「*」的规定,我们可以计算得到:169*13=169÷13×2+3×169-13=520。
定义新运算
定义新运算是用某些特殊的符号,表示特定的意义,从而解答某些特殊算式的运算。
在定义新运算中的※,〇,△……与+、-、×、÷是有严格区别的。
解答定义新运算问题,必须先理解先定义的含义,遵循新定义的关系式把问题转化为一般的+、-、×、÷运算问题。
1、定义新运算为a△b=(a+1)÷b,求(3△4)(25△13)7△(53△27)的值。
2、定义运算※为a※b=a×b-(a+b),①求5※7,8※10的值。
②求12※(3※4),(12※3)※4的值。
3、若A*B表示(A+3B)×(A+B),求5*7 3*(8*6)的值。
4、对于两个不相等的自然数,定义运算a #b ,表示将a、b 中较大的数除以较小的数,结果取其余数。
比如9#5=9÷5余数是4,所以9#5=4,6#18=18÷6余数是0所以6#18=0。
求①76#12 35#145的值。
②如果x#13=3,且x<20,那么x 等于多少?
5、如果1※2=1+11 2※3=2+22+222 3※4=3+33+333+333+3333请计算4※7 6 ※5 3※(2※4)
6、规定a△b=3×a-2×b ①求9△11 55△40的值。
②已知4△b=2 求b
7、我规定:7☆5=7×7-5×5,①求10☆7 20☆9
②如果A☆4=84,那么A得多少?
我定义,我做主。
定义新运算的含义是什么定义新运算是指用一个符号和已知运算表达式表示一种新的运算。
定义新运算是什么?以下是店铺为大家整理的关于定义新运算,欢迎大家前来阅读!定义新运算如:当a≥b=b时 ab=bxb 当a当x=2时,求 (1x)-(3x)的值3△2=3+2+6=115△5=5+5+25=35设a*b=﹙a+b﹚÷36*﹙5*4﹚=3定义新运算注意事项(1)解决此类问题,关键是要正确理解新定义的算式含义,严格按照新定义的计算顺序,将数值代入算式中,再把它转化为一般的四则运算,然后进行计算。
(2)我们还要知道,这是一种人为的运算形式。
它是使用特殊的运算符号,如:*、▲、、◎、、Δ、◆、■等来表示的一种运算。
(3)新定义的算式中,有括号的,要先算括号里面的。
定义新运算的例题定义新运算可以作为数学问题,如:例1、x,y表示两个数,规定新运算"*"及"△"如下:x*y=mx+ny,x△y=kxy,其中m,n,k均为自然数,已知1*2=5,(2*3)△4=64,求(1△2)*3的值.分析我们采用分析法,从要求的问题入手,题目要求(1△2)*3的值,首先我们要计算1△2,根据"△"的定义:1△2=k×1×2=2k,由于k的值不知道,所以首先要计算出k的值.k值求出后,1△2的值也就计算出来了,我们设1△2=a.(1△2)*3=a*3,按"*"的定义: a*3=ma+3n,在只有求出m,n时,我们才能计算a*3的值.因此要计算(1△2)* 3的值,我们就要先求出 k,m,n的值.通过1*2 =5可以求出m,n的值,通过(2*3)△4=64求出 k的值.解因为1*2=m×1+n×2=m+2n,所以有m+2n=5.又因为m,n均为自然数,所以解出:①当m=1,n=2时:(2*3)△4=(1×2+2×3)△4=8△4=k×8×4=32k有32k=64,解出k=2.②当m=3,n=1时:(2*3)△4=(3×2+1×3)△4=9△4=k×9×4=36k所以m=l,n=2,k=2.(1△2)*3=(2×1×2)*3=4*3=1×4+2×3=10.例2、假设a b = ( a + b )÷ b 。
定义新运算新运算是一种数学运算方式,通过对数字进行特定的计算规则和操作,得到一个新的数字结果。
下面将介绍新运算以及它的特点和应用。
新运算的定义:新运算是一种基于数字的运算方式,其计算规则和操作不同于传统的四则运算。
它通过对数字的排列、组合和变换,产生出一个全新的数字结果。
新运算的特点:1. 创新性:新运算采用了全新的计算规则和操作方式,与传统的四则运算不同,具有很高的创新性和独特性。
2. 多样性:新运算具有多种不同的运算规则和操作方式,可以根据需要进行选择和应用,适用于各种不同的计算问题。
3. 灵活性:新运算的计算规则和操作可以根据具体需求进行调整和扩展,具有很高的灵活性和可定制性。
4. 应用广泛:新运算可以在各个领域和行业中应用,如科学研究、工程设计、数据分析等,能够解决各种复杂的计算问题。
新运算的应用:1. 科学研究:新运算可以应用于物理学、化学、生物学等领域的科学研究中,可以处理大量的实验数据,分析数据间的关联和规律。
2. 工程设计:新运算可以用于工程设计中的优化问题,通过对不同参数的组合和变换,找到最优解决方案。
3. 数据分析:新运算可以应用于大数据分析中,通过对庞大的数据集进行排列和组合,发现数据中的隐藏规律和趋势。
4. 金融领域:新运算可以应用于金融领域中的风险管理和投资决策,通过对市场数据的分析和计算,提供决策支持和风险评估。
总之,新运算是一种具有创新性和独特性的数学运算方式,通过对数字的排列、组合和变换,产生出一个全新的数字结果。
它具有多样性、灵活性和广泛的应用领域,在科学研究、工程设计、数据分析和金融领域等方面都具有重要的应用价值。
定义新运算知识要点基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
例题讲解模块一、直接运算型1、若*A B 表示()()3A B A B +⨯+,求5*7的值。
2、“△”是一种新运算,规定:a △b =a ×c +b ×d (其中c ,d 为常数),如5△7=5×c +7×d 。
如果1△2=5,2△3=8,那么6△1OOO 的计算结果是________。
3、对于任意的整数x 与y 定义新运算“△”:6=2x y x y x y⨯⨯∆+,求2△9。
4、对于非零自然数a 和b ,规定符号⊗的含义是:a ⊗b =m a b 2a b⨯⨯⨯+(m 是一个确定的整数)。
如果1⊗4=2⊗3,那么3⊗4等于________。
5、[A ]表示自然数A 的约数的个数.例如4有1,2,4三个约数,可以表示成[4]=3.计算:([18][22])[7]+÷= .6、如果规定a ※b =13×a -b ÷8,那么17※24的最后结果是______。
7、“*”表示一种运算符号,它的含义是:()()111x y xy x y A *=+++ ,已知()()11221212113A *=+=⨯++,求19981999*。
8、一般我们都认为手枪指向谁,谁好像是有危险的,下面的规则同学们能看懂吗 规定:警察小偷=警察,警察小偷=小偷. 那么:(猎人小兔)(山羊白菜)= .模块二、反解未知数型9、如果a△b表示(2)a b-⨯,例如3△4(32)44=-⨯=,那么,当a△5=30时, a= .10、规定新运算※:a※b=3a-2b.若x※(4※1)=7,则x= .11、如果a⊙b表示32a b-,例如4⊙5=3×4-2×5=2,那么,当x⊙5比5⊙x大5时,x=12、对于数a、b、c、d,规定,< a、b、c、d >=2ab-c+d,已知< 1、3、5、x >=7,求x的值。
定义新运算附答案定义新运算附答案我们学过的常⽤运算有:+、-、×、÷等.如:2+3=52×3=6都是2和3,为什么运算结果不同呢?主要是运算⽅式不同,实际是对应法则不同.可见⼀种运算实际就是两个数与⼀个数的⼀种对应⽅法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有⼀个唯⼀确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这⼀讲中,我们定义了⼀些新的运算形式,它们与我们常⽤的“+”,“-”,“×”,“÷”运算不相同.我们先通过具体的运算来了解和熟悉“定义新运算”.例1、设a、b都表⽰数,规定a△b=3×a-2×b,①求 3△2, 2△3;②这个运算“△”有交换律吗?③求(17△6)△2,17△(6△2);④这个运算“△”有结合律吗?⑤如果已知4△b=2,求b.分析:解定义新运算这类题的关键是抓住定义的本质,本题规定的运算的本质是:⽤运算符号前⾯的数的3倍减去符号后⾯的数的2倍.解:① 3△2=3×3-2×2=9-4=52△3=3×2-2×3=6-6=0.②由①的例⼦可知“△”没有交换律.③要计算(17△6)△2,先计算括号内的数,有:17△6=3×17-2×6=39;再计算第⼆步39△2=3 × 39-2×2=113,所以(17△6)△2=113.对于17△(6△2),同样先计算括号内的数,6△2=3×6-2×2=14,其次17△14=3×17-2×14=23,所以17△(6△2)=23.④由③的例⼦可知“△”也没有结合律.⑤因为4△b=3×4-2×b=12-2b,那么12-2b=2,解出b=5.例2、定义运算※为 a※b=a×b-(a+b),①求5※7,7※5;②求12※(3※4),(12※3)※4;③这个运算“※”有交换律、结合律吗?④如果3※(5※x)=3,求x.解:①5※7=5×7-(5+7)=35-12=23,7※5=7×5-(7+5)=35-12=23.②要计算12※(3※4),先计算括号内的数,有:3※4=3×4-(3+4)=5,再计算第⼆步12※5=12×5-(12+5)=43,所以 12※(3※4)=43.对于(12※3)※4,同样先计算括号内的数,12※3=12×3-(12+3)=21,其次21※4=21×4-(21+4)=59,所以(12※ 3)※4=59.③由于a※b=a×b-(a+b);b※a=b×a-(b+a)=a×b-(a+b)(普通加法、乘法交换律)所以有a※b=b※a,因此“※”有交换律.由②的例⼦可知,运算“※”没有结合律.④5※x=5x-(5+x)=4x-5;3※(5※x)=3※(4x-5)=3(4x-5)-(3+4x-5)=12x-15-(4x-2)= 8x- 13那么 8x-13=3 解出x=2.例3、定义新的运算a ⊕ b=a×b+a+b.①求6 ⊕ 2,2 ⊕ 6;②求(1 ⊕ 2)⊕ 3,1 ⊕(2 ⊕ 3);③这个运算有交换律和结合律吗?解:① 6 ⊕ 2=6×2+6+2=20,2 ⊕ 6=2×6+2+6=20.②(1 ⊕ 2)⊕ 3=(1×2+1+2)⊕ 3=5 ⊕ 3=5×3+5+3=231 ⊕(2 ⊕ 3)=1 ⊕(2×3+2+3)=1 ⊕ 11=1×11+1+11=23.③先看“⊕”是否满⾜交换律:a ⊕ b=a×b+a+bb ⊕ a=b×a+b+a=a×b+a+b(普通加法与乘法的交换律)所以a ⊕ b=b ⊕ a,因此“⊕”满⾜交换律.再看“⊕”是否满⾜结合律:(a ⊕ b)⊕ c=(a×b+a+b)⊕ c=(a×b+a+b)×c+a×b+a+b+c=abc+ac+bc+ab+a+b+c.a ⊕(b ⊕ c)=a ⊕(b×c+b+c)=a×(b×c+b+c)+a+b×c+b+c=abc+ab+ac+a+bc+b+c=abc+ac+bc+ab+a+b+c.(普通加法的交换律)所以(a ⊕ b)⊕ c=a ⊕(b ⊕ c),因此“⊕”满⾜结合律.说明:“⊕”对于普通的加法不满⾜分配律,看反例:1 ⊕(2+3)=1 ⊕ 5=1×5+1+5=11;1 ⊕ 2+1 ⊕ 3=1×2+1+2+1×3+1+3=5+7=12;因此1 ⊕(2+3)≠ 1 ⊕ 2+1 ⊕ 3.例4、有⼀个数学运算符号“?”,使下列算式成⽴:2?4=8,5?3=13,3?5=11,9?7=25,求7?3=?解:通过对2?4=8,5?3=13,3?5=11,9?7=25这⼏个算式的观察,找到规律: a ?b =2a +b ,因此7?3=2×7+3=17.例5、x 、y 表⽰两个数,规定新运算“*”及“△”如下:x*y=mx+ny ,x △y=kxy ,其中 m 、 n 、k 均为⾃然数,已知 1*2=5,(2*3)△4=64,求(1△2)*3的值.分析:我们采⽤分析法,从要求的问题⼊⼿,题⽬要求1△2)*3的值,⾸先我们要计算1△2,根据“△”的定义:1△2=k ×1×2=2k ,由于k 的值不知道,所以⾸先要计算出k 的值,k 值求出后,l △2的值也就计算出来了.我们设1△2=a , (1△2)*3=a*3,按“*”的定义: a*3=ma+3n ,在只有求出m 、n 时,我们才能计算a*3的值.因此要计算(1△2)*3的值,我们就要先求出 k 、m 、n 的值.通过1*2 =5可以求出m 、n 的值,通过(2*3)△4=64求出 k 的值.解:因为1*2=m ×1+n ×2=m+2n ,所以有m+2n=5.⼜因为m 、n 均为⾃然数,所以解出:①当m=1,n=2时:(2*3)△4=(1×2+2×3)△4 =8△4=k ×8×4=32k 有32k=64,解出k=2. ②当m=3,n=1时:(2*3)△4=(3×2+1×3)△4 =9△4=k ×9×4=36k有36k=64,解出k=971,这与k 是⾃然数⽭盾,因此m=3,n =1,k=971 这组值应舍去. 所以m=l ,n=2,k=2.(1△2)*3=(2×1×2)*3=4*3=1×4+2×3=10.在上⾯这⼀类定义新运算的问题中,关键的⼀条是:抓住定义这⼀点不放,在计算时,严格遵照规定的法则代⼊数值.还有⼀个值得注意的问题是:定义⼀个新运算,这个新运算常常不满⾜加法、乘法所满⾜的运算定律,因此在没有确定新运算是否具有这些性质之前,不能运⽤这些运算律来解题.课后习题m=1n =2m=2n =23(舍去)m=3 n =11.a*b 表⽰a 的3倍减去b 的21,例如: 1*2=1×3-2×21=2,根据以上的规定,计算:①10*6;②7*(2*1). 2.定义新运算为 a ⼀b =b1a +,①求2⼀(3⼀4)的值;②若x ⼀4=1.35,则x =? 3.有⼀个数学运算符号○,使下列算式成⽴: 21○32=63,54○97=4511,65○71=426,求113○54的值.4.定义两种运算“⊕”、“?”,对于任意两个整数a 、b , a ⊕b =a +b +1, a ?b=a ×b -1,①计算4?[(6⊕8)⊕(3⊕5)]的值;②若x ⊕(x ?4)=30,求x 的值.5.对于任意的整数x 、y ,定义新运算“△”, x △y=y×2x ×m y×x ×6+(其中m 是⼀个确定的整数),如果1△2=2,则2△9=?6.对于数a 、b 规定运算“▽”为a ▽b=(a +1)×(1-b ),若等式(a ▽a )▽(a +1)=(a +1)▽(a ▽a )成⽴,求a 的值.7.“*”表⽰⼀种运算符号,它的含义是: x*y=xy 1+))((A y 1x 1++,已知2*1=1×21+))((A 1121++=32,求1998*1999的值.8.a ※b=b÷a ba +,在x ※(5※1)=6中,求x 的值. 9.规定 a △b=a +(a +1)+(a +2)+…+(a +b -1),(a 、b 均为⾃然数,b>a )如果x △10=65,那么x=?10.我们规定:符号◇表⽰选择两数中较⼤数的运算,例如:5◇3=3◇5=5,符号△表⽰选择两数中较⼩数的运算,例如:5△3=3△5=3,计算:)25.2◇106237()9934△3.0()3323△625.0()2617◇6.0(++&&=?课后习题解答1.2.3.所以有5x-2=30,解出x=6.4左边:8.解:由于9.解:按照规定的运算:x△10=x +(x+1)+(x+2)+…+(x+10-1) =10x +(1+2+3+?+9)=10x + 45因此有10x + 45=65,解出x=2.欢迎您的下载,资料仅供参考!致⼒为企业和个⼈提供合同协议,策划案计划书,学习资料等等打造全⽹⼀站式需求。
定义新运算定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。
一 定义新运算 基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二 定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合模块一、直接运算型【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。
【考点】定义新运算之直接运算 【难度】2星 【题型】计算【解析】 A *B 是这样结果这样计算出来:先计算A +3B 的结果,再计算A +B 的结果,最后两个结果求乘积。
由 A *B =(A +3B )×(A +B )可知: 5*7=(5+3×7)×(5+7) =(5+21)×12 = 26×12 = 312【答案】312【巩固】 定义新运算为a △b =(a +1)÷b ,求的值。
定义新运算新运算是一种数学运算,旨在拓展数学领域的计算方法,以应用于更广泛的场景。
本文将探讨新运算的定义及其应用领域,包括数值运算、集合运算和符号运算等方面。
首先,我们从数值运算方面来定义新运算。
传统数学运算包括加法、减法、乘法和除法等,而新运算将进一步扩展这些运算符号,并引入更多的数学概念。
例如,我们可以定义一种新的运算符号,表示取余数。
在传统运算中,我们使用“%”表示取余数,而在新运算中,我们可以引入符号“|”来表示取余数。
这将使得我们在处理实际问题时更加灵活和方便。
在集合运算方面,新运算也有着独特的定义和应用。
传统的集合运算包括并集、交集和差集等,而新运算将引入更多的集合操作符号。
例如,我们可以定义一种新的符号,表示集合的对称差。
在传统集合运算中,对称差需要通过交集和差集来计算,而在新运算中,我们可以引入符号“△”来直接表示集合的对称差。
这将大大简化集合运算的复杂度。
除了数值运算和集合运算,新运算还可以应用于符号运算。
传统的符号运算包括代数运算和逻辑运算等,而新运算将引入更多的符号概念和运算规则。
例如,我们可以定义一种新的符号,表示求导操作。
在传统的符号运算中,求导需要通过极限的概念来进行计算,而在新运算中,我们可以引入符号“′”来直接表示求导操作。
这将极大地简化符号运算的复杂性,并提高计算效率。
另外,新运算还可以应用于图论、代数几何和数论等多个数学分支。
例如,在图论中,我们可以定义一种新的运算符号,表示图的连通。
在传统的图论中,判断图的连通性需要通过图的遍历算法来计算,而在新运算中,我们可以引入符号“∼”来表示图的连通性。
这将使得图论的研究更加简洁和高效。
综上所述,新运算是一种通过引入新的运算符号和运算规则来拓展数学领域的计算方法。
它可以应用于数值运算、集合运算和符号运算等多个方面,并在计算效率和简洁性上提供更好的解决方案。
虽然新运算还处于初级阶段,但随着数学的发展和需求的增加,它有望得到更广泛的应用。
定义新运算导言在数学中,运算是一种数学操作,用于对数值或数值集合进行处理和计算。
常见的运算包括加法、减法、乘法和除法等。
然而,在某些场景下,常规运算无法满足需求,因此需要定义新的运算。
新运算的定义新运算是指不属于常规运算范畴的一种数学操作。
它可以对数值进行加工处理,从而获得满足特定需求的结果。
与常规运算不同的是,新运算可能具有不同的符号、规则和运算法则。
新运算的特点1.创新性:新运算是一种相对于常规运算的创新,它提供了新的数学方式和解决问题的途径。
2.特殊性:新运算通常具有特殊的性质和规则,与常规运算存在差异。
3.应用性:新运算在特定领域或问题中具有较高的应用价值,能够更好地解决特定问题。
新运算的例子例子一:矩阵运算矩阵运算是一种常见的新运算。
它对矩阵进行加、减、乘等操作,从而获得矩阵相加、相减、相乘后的结果。
矩阵运算在线性代数、计算机图形学等领域具有广泛的应用,例如图像处理、机器学习等。
例子二:向量运算向量运算是指对向量进行处理和计算的一种新运算。
它可以进行向量的加法、减法、点积、叉积等操作,从而获得向量的相加、相减、点积、叉积等结果。
向量运算在物理学、力学等领域具有重要的应用,例如力的合成、求解位置等。
新运算的运算法则新运算的运算法则是指确定新运算的规则和操作方式。
它可以保证新运算的正确性和可靠性。
不同的新运算可能有不同的运算法则,以下是一些常见的运算法则:1.封闭性:新运算中的结果仍然属于原有运算的数值集合。
2.结合律和交换律:新运算满足结合律和交换律,可以改变运算顺序或数值顺序而不影响结果。
3.幂等性:多次进行新运算的结果与一次运算的结果相同。
4.分配律:新运算与其他运算之间满足分配律,可以在不同运算之间进行组合。
结语通过定义新运算,我们可以拓展数学领域的研究和应用范围,寻找更加适用于特定问题的数学工具和方法。
新运算的引入和应用将促进数学学科的发展和创新,对于解决实际问题和推动科学进步具有重要的意义。
每日十分钟“定义新运算”1、定义新运算:规定运算:1++-=*b a ab b a ,则4*)3(-=举一反三:(1)用“☆”定义一种新运算:对于任意有理数a 、b ,都有a ☆b=ab+ a 2, 则(-3)☆2 =(2)规定一种新运算:a * b =22a b b ab--,则5 *(-2)= (3)、现规定一种新运算“*”:a *b =b a ,如3*2=23=9,则(21)*3= 2、定义计算“∆”,对于两个有理数a ,b ,有a ∆b=a +b-a b ,例如:-3∆2=5,则(-2∆3) ∆0= 举一反三:(1)定义一种新运算:x*y=,如2*1==2,则(4*2)*(﹣1)= .(2)定义新运算“※”:对于任意有理数a 、b ,都有a ※b=2a 2+b.例如3※4=2×32+4=22,那么当m 为有理数时,m ※(m ※2)=(3)用“⌦”定义新运算: 对于任意的有理数a 、b , 都有 a ⌦b = b 2 +1.如7⌦4 = 42 +1 = 17. 那么 5⌦3 = ,当m 为有理数时, 则m ⌦(m ⌦2) =(4)、如果规定符号“﹡”的意义是a ﹡b =aba b +,求2﹡(-3)﹡4的值 3、设一种运算程序是x ⊗y =a (a 为常数),如果(x +1)⊗y =a +1;x ⊗(y +1)=a -2.已知1⊗1=2,那么2012⊗2012=解:由x ⊕y=a ,(x+1)⊕y=a+1,x ⊕(y+1)=a-2,及1⊕1=2,得2⊕1=2+1=3,2⊕2=3-2=1,3⊕2=2,3⊕3=0,4⊕3=1,4⊕4=-1,5⊕4=0,5⊕5=-2,6⊕5=-1,6⊕6=-3,…∴2012⊕2012=-2009.故答案为-20094、用“«”“»”定义新运算:对于任意实数a ,b ,都有a «b =a ,和a »b =b ,例如:3«2=3,3»2=2,则(2012 »2011)«(2010»2009)=5、,,,a b c d 为有理数,现规定一种运算:a c b d =ad bc -,那么当2(1)x - 45=18时, x 的值是多少?6、 “!”是一种数学运算符号,1!=1,2!=1×2=2,3!=1×2×3=6,4!=1×2×3×4=24, 5!= ……则!98!100=继续巩固:1、把(-12)-(-13)+(-14)-(+15)+(+16)统一成加法的形式是,写成省略加号的形式是 ,读作.2、已知有理数a,b,c在数轴上的位置如下图所示,(1) 用 < ,>,= 填空: a+c 0, c-b 0, b+a 0 abc 0(2) 化简:a c c b b a++--+。
学习奥数的优点
1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。
2、训练学生良好的数学思维习惯和思维品质。
要使经过奥数训练的学生,思维更捷,考虑问题比别人更深层次。
3、锻炼学生优良的意志品质。
可以培养持之以恒的耐心和克服困难的信心,
以及战胜难题的勇气。
可以养成坚韧不拔的毅力
4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。
第二十三周定义新运算
专题简析:
我们学过常用的运算加、减、乘、除等,如6+2=8,6×2=12
等。
都是2和6,为什么运算结果不同呢?主要是运算方式不同,
实质上是对应法则不同。
由此可见,一种运算实际就是两个数与一
个数的一种对应方法。
对应法则不同就是不同的运算。
当然,这个
对应法则应该是对应任意两个数。
通过这个法则都有一个唯一确定
的数与它们对应。
这一周,我们将定义一些新的运算形式,它们与我们常用的加、
减、乘、除运算是不相同的。
例1:设a、b都表示数,规定:a△b表示a的3倍减去b的2倍,即:a△b = a×3-b×2。
试计算:(1)5△6;(2)6△5。
分析与解答:解这类题的关键是抓住定义的本质。
这道题规定的运算本质是:运算符号前面的数的3倍减去符号后面的数的2倍。
(1)5△6=5×3-6×2=3
(2)6△5=6×3-5×2=8
显然,本例定义的运算不满足交换律,计算中不能将△前后的数交换。
练习一
1,设a、b都表示数,规定:a○b=6×a-2×b。
试计算3○4。
2,设a、b都表示数,规定:a*b=3×a+2×b。
试计算:(1)(5*6)*7 (2)5*(6*7)
3,有两个整数是A、B,A▽B表示A与B的平均数。
已知A ▽6=17,求A。
例2:对于两个数a与b,规定a⊕b=a×b+a+b,试计算6⊕2。
分析与解答:这道题规定的运算本质是:用运算符号前后两个数的积加上这两个数。
6⊕2=6×2+6+2=20
练习二
1,对于两个数a与b,规定:a⊕b=a×b-(a+b)。
计算3⊕5。
2,对于两个数A与B,规定:A☆B=A×B÷2。
试算6☆4。
3,对于两个数a与b,规定:a⊕b= a×b+a+b。
如果5⊕x=29,求x。
例3:如果2△3=2+3+4,5△4=5+6+7+8,按此规律计算3△5。
分析与解答:这道题规定的运算本质是:从运算符号前的数加起,每次加的数都比前面的一个数多1,加数的个数为运算符号后面的数。
所以,3△5=3+4+5+6+7=25
练习三
1,如果5▽2=2×6,2▽3=2×3×4,计算:3。
2,如果2▽4=24÷(2+4),3▽6=36÷(3+6),计算8▽4。
3,如果2△3=2+3+4,5△4=5+6+7+8,且1△x=15,求x。
例4:对于两个数a与b,规定a□b=a(a+1)+(a+2)+…(a+b-1)。
已知x□6=27,求x。
分析与解答:经仔细分析,可以发现这道题规定运算的本质仍然是:从运算符号前面的数加起,每次加的数都比它相邻的前一个数多1,加数的个数为运算符号后面的数,原式即x+(x+1)+(x+2)+…+(x+5)=27,解这个方程,即可求出x=2。
练习四
1,如果2□3=2+3+4=9,6□5=6+7+8+9+10=40。
已知x □3=5973,求x。
2,对于两个数a与b,规定a□b=a+(a+1)+(a+2)+…+(a+b-1),已知95□x=585,求x。
3,如果1!=1,2!=1×2=2,3!=1×2×3=6,按此规律计算5!。
例5: 2▽4=8,5▽3=13,3▽5=11,9▽7=25。
按此规律计算:。
分析与解答:仔细观察和分析这几个算式,可以发现下面的规律:a ▽b=2a+b ,依此规律:
7▽3=7×2+3=17。
练 习 五
1,有一个数学运算符号“▽”,使下列算式成立:6▽2=12,4▽3=13,3▽4=15,5▽1=8。
按此规律计算:8▽4。
2,有一个数学运算符号“□”使下列算式成立:21□6332=,6
5□42671
=,54□451197=。
按此规律计算:83□112。
3,对于两个数a 、b ,规定a ▽b=b ×x -a ×2,并且已知82▽65=31,计算:29▽57。