方程的根与函数的零点 优秀教案
- 格式:doc
- 大小:83.77 KB
- 文档页数:4
《方程的根与函数的零点》教学设计方案教学活动1求方程的实数根,画出函数的图像;并观察他们之间的联系?问题解决:让学生上黑板板演教师:用几何画板说明这二者之间的关系,并引出函数零点的概念设计意图:通过认识前面一次函数与直线、二次函数与其图像的关系,学生利用一般到特殊到特殊的认知规律对零点的概念有个初步的认识,从而借机引入本课。
教学活动2 二、探究一1、(让学生看多媒体屏幕)函数的零点:对于函数y=f(x),我们把使f(x)=0成立的实数x 叫做函数y=f(x)的零点。
设计意图:通过多媒体屏幕,让学生了解零点概念的具体定义。
2、(用几何画板和学生分析二次函数图像与二次方程根的关系,得到函数的零点、方程的根、函数f(x)图像与x轴的交点之间的关系。
)方程f(x)=0有实数根<=>函数y=f(x)的图像与x轴有交点<=>函数y=f(x)有零点设计意图:通过观察分析,学生在掌握以上三者关系的基础上,深刻体会到函数与方程的关系,渗透函数与方程的思想。
3、巩固练习(屏幕展示)求下列函数的零点(1)(2)设计意图:学生认识了前面两个问题后,学生学会理解求函数零点的实质。
三、探究二1、问题一:利用几何画板,初步认识二次函数存在零点的特点。
设计意图:通过数与形的结合,学生初步认识零点存在的特点,为教学活动3下面的问题层层引入做好铺垫。
再者让学生体会数学结合的思想。
2、问题二:(在上一个问题的基础上,提出这个问题)仅满足f(a)·f(b)<0可以确定有零点吗?教师引导语:看下面这个问题例:(1)分析该函数是否有零点?(2)该函数存在两个函数之积小于0的两点吗?(3)函数除满足f(a)·f(b)<0条件外,还要满足什么条件才能判断函数在某区间存在零点?(上面三个问题注意播放,让学生一个一个去探究体会)设计意图:通过以上具体问题的探究,学生很零点存在的充分性。
3、(大屏幕展示判断零点的充分条件)函数零点得判定方法:如果函数f(x)在区间[a,b]上的图像是连续不断的曲线,且有f(a)·f(b)<0,那么函数在区间(a,b)内有零点,即存在,使得f(c)=0,这个c也是方程f(x)=0的根。
方程的根与函数的零点(精选7篇)方程的根与函数的零点篇1第一课时: 3.1.1教学要求:结合二次函数的图象,推断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;把握零点存在的判定条件.教学重点:体会函数的零点与方程根之间的联系,把握零点存在的判定条件.教学难点:恰当的使用信息工具,探讨函数零点个数.教学过程:一、复习预备:思索:一元二次方程 +bx+c=o(a 0)的根与二次函数y=ax +bx+c的图象之间有什么关系?.二、讲授新课:1、探讨函数零点与方程的根的关系:① 探讨:方程x -2x-3=o 的根是什么?函数y= x -2x-3的图象与x轴的交点?方程x -2x+1=0的根是什么?函数y= x -2x+1的图象与x轴的交点?方程x -2x+3=0的根是什么?函数y= x -2x+3的图象与x轴有几个交点?② 依据以上探讨,让同学自己归纳并发觉得出结论:→推广到y=f(x)呢?一元二次方程 +bx+c=o(a 0)的根就是相应二次函数y=ax +bx+c的图象与x轴交点横坐标.③ 定义零点:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.④ 争论:y=f(x)的零点、方程f(x)=0的实数根、函数y=f(x) 的图象与x 轴交点的横坐标的关系?结论:方程f(x)=0有实数根函数y=f(x) 的图象与x轴有交点函数y=f(x)有零点⑤ 练习:求下列函数的零点;→ 小结:二次函数零点状况2、教学零点存在性定理及应用:① 探究:作出的图象,让同学们求出f(2),f(1)和f(0)的值, 观看f(2)和f(0)的符号②观看下面函数的图象,在区间上______(有/无)零点; _____0(<或>). 在区间上______(有/无)零点; _____0(<或>). 在区间上______(有/无)零点; _____0(<或>).③定理:假如函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c (a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.④ 应用:求函数f(x)=lnx+2x-6的零点的个数. (试争论一些函数值→分别用代数法、几何法)⑤小结:函数零点的求法代数法:求方程的实数根;几何法:对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.⑥ 练习:求函数的零点所在区间.3、小结:零点概念;零点、与x轴交点、方程的根的关系;零点存在性定理三、巩固练习:1. p97, 1,题 2,题(老师计算机演示,同学回答)2. 求函数的零点所在区间,并画出它的大致图象.3. 求下列函数的零点:;;;.4.已知:(1)为何值时,函数的图象与轴有两个零点;(2)假如函数至少有一个零点在原点右侧,求的值.5. 作业:p102, 2题;p125 1题其次课时: 3.1.2用二分法求方程的近似解教学要求:依据详细函数图象,能够借助计算器用二分法求相应方程的近似解. 通过用二分法求方程的近似解,使同学体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.教学重点:用二分法求方程的近似解.教学重点:恰当的使用信息工具.教学过程:一、复习预备:1. 提问:什么叫零点?零点的等价性?零点存在性定理?零点概念:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.方程f(x)=0有实数根函数y=f(x) 的图象与x轴有交点函数y=f(x)有零点假如函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c (a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.2. 探究:一元二次方程求根公式?三次方程?四次方程?材料:高次多项式方程公式解的探究史料:在十六世纪,已找到了三次和四次函数的求根公式,但对于高于4次的函数,类似的努力却始终没有胜利,到了十九世纪,依据阿贝尔(abel)和伽罗瓦(galois)的讨论,人们熟悉到高于4次的代数方程不存在求根公式,亦即,不存在用四则运算及根号表示的一般的公式解.同时,即使对于3次和4次的代数方程,其公式解的表示也相当简单,一般来讲并不相宜作详细计算.因此对于高次多项式函数及其它的一些函数,有必要寻求其零点的近似解的方法,这是一个在计算数学中非常重要的课题二、讲授新课:1. 教学二分法的思想及步骤:① 出示例:有12个小球,质量匀称,只有一个是比别的球重的,你用天平称几次可以找出这个球的,要求次数越少越好. (让同学们自由发言,找出最好的方法)解:第一次,两端各放六个球,低的那一端肯定有重球其次次,两端各放三个球,低的那一端肯定有重球第三次,两端各放一个球,假如平衡,剩下的就是重球,否则,低的就是重球.其实这就是一种二分法的思想,那什么叫二分法呢?② 探究:的零点所在区间?如何找出这个零点?→ 师生用二分法探究③ 定义二分法的概念:对于在区间[a,b]上连续不断且f(a).f(b)0的函数y=f(x),通过不断的把函数的零点所在的区间一分为二,使区间的两个端点逐步靠近零点,进而得到零点近似值的方法叫二分法(bisection)④ 探究:给定精度ε,用二分法求函数的零点近似值的步骤如下:a.确定区间,验证,给定精度ε;b. 求区间的中点;c. 计算:若,则就是函数的零点;若,则令(此时零点);若,则令(此时零点);d. 推断是否达到精度ε;即若,则得到零点零点值a(或b);否则重复步骤2~4.2. 教学例题:① 出示例:借助计算器或计算机用二分法求方程2 +3x=7的近似解. (师生共练)② 练习:求函数的一个正数零点(精确到)3. 小结:二分法的概念, 二分法的步骤;注意二分法思想三、巩固练习:1. p100, 1,题 2,题; 2. 求方程的解的个数及其大致所在区间.3. 用二分法求的近似值;4. 求方程的实数解个数:;5. 作业:p102 3,4题,阅读p105框图方程的根与函数的零点篇2一、教学内容解析本节课的主要内容有函数零点的的概念、函数零点存在性判定定理。
一、《方程的根与函数的零点》二、教学目标:1. 了解方程的根与函数的零点的概念及关系;2. 掌握求解一元二次方程的方法;3. 学会利用函数的零点判断方程的解的情况;4. 能够运用方程的根与函数的零点解决实际问题。
三、教学重点与难点:1. 重点:方程的根与函数的零点的概念及关系,求解一元二次方程的方法;2. 难点:利用函数的零点判断方程的解的情况,运用方程的根与函数的零点解决实际问题。
四、教学方法:1. 采用问题驱动法,引导学生思考方程与函数之间的关系;2. 利用数形结合法,让学生直观地理解函数的零点与方程的根;3. 运用实例分析法,培养学生解决实际问题的能力。
五、教学内容:1. 方程的根与函数的零点的概念介绍;2. 求解一元二次方程的公式法与因式分解法;3. 利用函数的零点判断方程的解的情况;4. 方程的根与函数的零点在实际问题中的应用实例。
教案内容依次按照教学步骤、教学活动、教学评价进行设计。
六、教学步骤:1. 引入新课:通过回顾前面的知识,引导学生思考方程与函数之间的关系,引出本节课的主题——方程的根与函数的零点。
2. 讲解概念:讲解方程的根与函数的零点的概念,让学生理解两者之间的关系。
3. 求解一元二次方程:引导学生学习求解一元二次方程的公式法与因式分解法,并通过例题让学生掌握这两种方法。
4. 利用函数的零点判断方程解的情况:讲解如何利用函数的零点判断方程的解的情况,并通过图形让学生直观地理解。
5. 实际问题应用:通过实例分析,让学生学会运用方程的根与函数的零点解决实际问题。
七、教学活动:1. 小组讨论:让学生分组讨论方程的根与函数的零点之间的关系,并分享各自的观点。
2. 例题讲解:让学生上台演示求解一元二次方程的过程,并讲解解题思路。
3. 函数零点判断:让学生通过图形判断给定方程的解的情况。
4. 实际问题解决:让学生分组讨论实际问题,并运用方程的根与函数的零点找出解决方案。
八、教学评价:1. 课堂提问:通过提问了解学生对equation 的根与function 的零点的概念的理解程度。
方程的根与函数的零点教案第一章:方程的根与函数的零点概念引入1.1 教学目标让学生理解方程的根与函数的零点的概念。
让学生掌握方程的根与函数的零点之间的关系。
培养学生运用数形结合的思想方法解决问题的能力。
1.2 教学内容引入方程的根的概念,引导学生理解方程的根是使方程左右两边相等的未知数的值。
引入函数的零点的概念,引导学生理解函数的零点是使函数值为零的未知数的值。
引导学生理解方程的根与函数的零点之间的关系。
1.3 教学活动通过实际例子,让学生初步理解方程的根与函数的零点的概念。
引导学生进行思考和讨论,深化对方程的根与函数的零点之间关系的理解。
布置练习题,巩固学生对方程的根与函数的零点的理解和运用。
第二章:一元二次方程的根与二次函数的零点2.1 教学目标让学生掌握一元二次方程的根与二次函数的零点之间的关系。
让学生学会运用一元二次方程的根的判别式解决实际问题。
培养学生运用数形结合的思想方法解决问题的能力。
2.2 教学内容引导学生理解一元二次方程的根与二次函数的零点之间的关系。
引导学生掌握一元二次方程的根的判别式及其应用。
引导学生运用一元二次方程的根的判别式解决实际问题。
2.3 教学活动通过实际例子,让学生理解一元二次方程的根与二次函数的零点之间的关系。
引导学生进行思考和讨论,深化对一元二次方程的根的判别式的理解和运用。
布置练习题,巩固学生对一元二次方程的根与二次函数的零点的理解和运用。
第三章:方程的根与函数的零点的判定定理3.1 教学目标让学生掌握方程的根与函数的零点的判定定理。
培养学生运用判定定理判断方程的根与函数的零点的情况。
3.2 教学内容引导学生掌握方程的根与函数的零点的判定定理。
引导学生运用判定定理判断方程的根与函数的零点的情况。
3.3 教学活动通过实际例子,让学生理解方程的根与函数的零点的判定定理。
引导学生进行思考和讨论,深化对判定定理的理解和运用。
布置练习题,巩固学生对判定定理的掌握。
第四章:方程的根与函数的零点的求解方法4.1 教学目标让学生掌握方程的根与函数的零点的求解方法。
方程的根与函数的零点教学教案一、教学目标1. 让学生理解方程的根与函数的零点的概念及它们之间的关系。
2. 培养学生运用函数的零点判断方程根的存在性及个数的能力。
3. 通过对实际问题的探究,提高学生运用数学知识解决实际问题的能力。
二、教学内容1. 方程的根与函数的零点的定义。
2. 函数的零点的判定定理。
3. 实际问题中的应用。
三、教学重点与难点1. 教学重点:方程的根与函数的零点的概念及它们之间的关系,函数的零点的判定定理。
2. 教学难点:函数的零点的判定定理在实际问题中的应用。
四、教学方法1. 采用问题驱动的教学方法,引导学生通过自主探究、合作交流来掌握方程的根与函数的零点的概念及它们之间的关系。
2. 利用数形结合的方法,帮助学生直观地理解函数的零点的判定定理。
3. 通过实际问题的引入,培养学生运用数学知识解决实际问题的能力。
五、教学过程1. 引入:通过简单的一次方程、二次方程的求解,引导学生思考方程的根与函数的零点的关系。
2. 讲解:介绍方程的根与函数的零点的定义,讲解函数的零点的判定定理,并通过示例进行说明。
3. 实践:让学生尝试解决一些实际问题,如判断函数的零点个数,求解方程的根等。
5. 作业:布置一些相关的练习题,巩固所学知识。
六、教学评价1. 评价目标:检查学生对方程的根与函数的零点的概念的理解,以及运用函数的零点判断方程根的存在性及个数的能力。
2. 评价方法:通过课堂提问、练习题和课后作业进行评价。
3. 评价内容:a. 方程的根与函数的零点的定义;b. 函数的零点的判定定理的应用;c. 实际问题中的应用。
七、教学反思1. 反思内容:a. 学生对方程的根与函数的零点的概念的理解程度;b. 学生运用函数的零点判断方程根的存在性及个数的能力;c. 教学方法的使用及效果;d. 学生的学习兴趣和参与程度。
2. 改进措施:a. 针对学生的薄弱环节,加强相关知识的讲解和练习;b. 调整教学方法,以更有效地帮助学生理解和掌握知识;c. 关注学生的学习兴趣,增加实际问题的引入,提高学生的学习积极性。
方程的根与函数的零点教学教案一、教学目标1. 理解方程的根与函数的零点的概念。
2. 学会使用因式分解、配方法、求根公式等方法求解一元二次方程。
3. 能够运用函数的零点判断方程的解。
4. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1. 方程的根与函数的零点的概念。
2. 一元二次方程的解法:因式分解、配方法、求根公式。
3. 函数的零点与方程的解的关系。
三、教学重点与难点1. 教学重点:一元二次方程的解法,函数的零点与方程的解的关系。
2. 教学难点:一元二次方程的配方法和求根公式的运用。
四、教学方法与手段1. 采用问题驱动法,引导学生主动探究方程的根与函数的零点的关系。
2. 使用多媒体课件,展示一元二次方程的解法过程。
3. 进行小组讨论,培养学生的合作能力。
五、教学过程1. 导入:通过生活中的实例,引导学生思考方程的根与函数的零点的关系。
2. 新课讲解:讲解方程的根与函数的零点的概念,引导学生理解一元二次方程的解法。
3. 案例分析:分析具体的一元二次方程,运用因式分解、配方法、求根公式等方法求解。
4. 小组讨论:让学生进行小组讨论,分享解题心得,培养学生的合作能力。
5. 课堂练习:布置相关的练习题,巩固所学知识。
6. 总结与反思:总结方程的根与函数的零点的关系,引导学生思考如何运用函数的零点判断方程的解。
教学反思:通过本节课的教学,学生是否能够理解方程的根与函数的零点的概念?是否能够掌握一元二次方程的解法?是否能够运用函数的零点判断方程的解?这些问题需要在课后进行反思和评估,以便更好地调整教学方法和策略。
对于学生在解题过程中遇到的问题,需要进行个别辅导和指导,提高学生的解题能力。
六、教学评价1. 评价目标:检查学生对方程的根与函数的零点的理解,以及对一元二次方程解法的掌握。
2. 评价方法:课堂练习、课后作业、小组讨论、个人展示。
3. 评价内容:学生的解题能力、合作能力、思考问题的能力。
七、教学准备1. 教学资源:教材、多媒体课件、练习题。
方程的根与函数的零点教学设计一、教学目标(一)知识与技能:1.结合实际生活中的实例——气温变化图理解函数零点的定义,明确函数的零点与方程的根的联系.2.掌握并会用函数零点的存在性定理.(二)过程与方法:自主发现、探究实践,体会函数的零点与方程的根之间的联系.(三)情感、态度、价值观:在函数与方程的联系中体验转化思想的价值和作用.二、重点、难点:重点:体会函数的零点与方程的根之间的联系,掌握函数零点的存在性定理.难点:探究发现函数零点的存在性.三、教学方法:启发式教学、探究式教学、合作式教学、多媒体教学。
四、教学过程:(一)课题引入通过第二章的学习,我们已经认识了指数函数、对数函数、幂函数、简单的分段函数的图象和性质,而且现实生活中有很多的函数模型。
下面我们先来看一个图——某地一天24小时内的气温变化图。
我们知道,时间的变化是连续的,气温的变化也是连续的,而且温度是随时间变化而变化的,实际上温度是时间的函数,那么这个函数和横轴有什么关系呢?图象和横轴有交点,这个交点有非常重要的作用,这时函数值为0,这就是我们今天要讲的内容(板书)——方程的根和函数的零点。
看书上对零点是怎么定义的。
(二)新课讲授1、对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点。
思考:零点是一个点么?不是,零点是一个实数!那么为什么一个实数我们要叫零点呢?零点实际上是体现数和形的特征——“零”是指函数值为零,“点”体现的是函数图像和x轴的交点,再结合图像我们会发现:函数y=f(x)有零点函数y=f(x)的图象与x轴有交点方程f(x)=0有实数根。
这也是我们判断函数是否有零点的主要方法。
练习1:求下列函数的零点.(1);(2);(3)通过这个练习巩固判断函数零点的方法,并且从中我们可以看出有的函数有一个零点,如(1);有的函数有不止一个零点,如(2);有的函数没有零点,如(3);而且这3个函数都可以通过相应的方程有无实根来判断,但是这种方法在(4)的身上就无效,因为这个方程对我们来说有困难,那么,对于任一个函数,我们首要解决的问题就是如何判断其有无零点,由此引出零点存在性定理。
一、教学目标:1. 让学生理解方程的根与函数的零点的概念及其联系。
2. 让学生掌握求解一元二次方程的公式法、因式分解法等方法,并能运用这些方法解决实际问题。
3. 让学生了解函数的零点与方程根的关系,并能运用函数的零点判断方程的根的存在性。
二、教学内容:1. 方程的根的概念:解、根、重根、复数根等。
2. 求解一元二次方程的方法:公式法、因式分解法。
3. 函数的零点的概念:函数在某点的函数值为0的点。
4. 函数的零点与方程根的关系:函数的零点个数与方程的根的个数相同。
5. 利用函数的零点判断方程的根的存在性。
三、教学重点与难点:1. 教学重点:方程的根的概念,求解一元二次方程的方法,函数的零点的概念,函数的零点与方程根的关系。
2. 教学难点:函数的零点与方程根的关系的运用。
四、教学方法与手段:1. 采用问题驱动法,引导学生主动探究方程的根与函数的零点的关系。
2. 利用多媒体课件,直观展示函数的零点的性质,增强学生的直观感受。
3. 运用实例分析,让学生深入理解方程的根与函数的零点的联系。
五、教学过程:1. 引入新课:通过讲解实际问题,引导学生思考方程的根与函数的零点的关系。
2. 讲解概念:讲解方程的根的概念,让学生理解解、根、重根、复数根等基本概念。
3. 演示求解方法:利用多媒体课件,演示求解一元二次方程的公式法、因式分解法。
4. 引导学生探究函数的零点:让学生观察函数图像,引导学生发现函数的零点的性质。
5. 讲解函数的零点与方程根的关系:讲解函数的零点个数与方程的根的个数相同这一性质。
6. 运用实例分析:通过实例分析,让学生掌握利用函数的零点判断方程的根的存在性的方法。
7. 课堂练习:布置练习题,让学生巩固所学知识。
8. 总结与反思:对本节课的内容进行总结,引导学生思考方程的根与函数的零点在实际问题中的应用。
9. 作业布置:布置课后作业,巩固所学知识。
六、教学策略:1. 案例教学:通过具体的数学案例,让学生理解并掌握方程的根与函数的零点的概念及其联系。
高中数学优秀备课教案“方程的根与函数的零点”优秀教学设计“方程的根与函数的零点”教学设计(1)绍兴市稽山中学王志江一、内容和内容解析本节课是在学生学习了《基本初等函数(Ⅰ)》的基础上,学习函数与方程的第一课时,本节课中通过对二次函数图象的绘制、分析,得到零点的概念,从而进一步探索函数零点存在性的判定,这些活动就是想让学生在了解初等函数的基础上,利用计算机描绘函数的图象,通过对函数与方程的探究,对函数有进一步的认识,解决方程根的存在性问题,为下一节《用二分法求方程的近似解》做准备.从教材编写的顺序来看,《方程的根与函数的零点》是必修1第三章《函数的应用》一章的开始,其目的是使学生学会用二分法求方程近似解的方法,从中体会函数与方程之间的联系.利用函数模型解决问题,作为一条主线贯穿了全章的始终,而方程的根与函数的零点的关系、用二分法求方程的近似解,是在建立和运用函数模型的大背景下展开的.方程的根与函数的零点的关系、用二分法求方程的近似解中均蕴涵了“函数与方程的思想”和“数形结合的思想”,建立和运用函数模型中蕴含的“数学建模思想”,是本章渗透的主要数学思想.从知识的应用价值来看,通过在函数与方程的联系中体验数学中的转化思想的意义和价值,体验函数是描述宏观世界变化规律的基本数学模型,体会符号化、模型化的思想,体验从系统的角度去思考局部问题的思想.基于上述分析,确定本节的教学重点是:了解函数零点的概念,体会方程的根与函数零点之间的联系,掌握函数零点存在性的判断.二、目标和目标解析1.通过对二次函数图象的描绘,了解函数零点的概念,渗透由具体到抽象思想,领会函数零点与相应方程实数根之间的关系,2.零点知识是陈述性知识,关键不在于学生提出这个概念。
而是理解提出零点概念的作用,沟通函数与方程的关系。
3.通过对现实问题的分析,体会用函数系统的角度去思考方程的思想,使学生理解动与静的辨证关系.掌握函数零点存在性的判断.4.在函数与方程的联系中体验数形结合思想和转化思想的意义和价值,发展学生对变量数学的认识,体会函数知识的核心作用.三、教学问题诊断分析1.零点概念的认识.零点的概念是在分析了众多图象的基础上,由图象与轴的位置关系得到的一个形象的概念,学生可能会设法画出图象找到所有任意函数的可能存在的所有零点,但是并不是所有函数的图象都能具体的描绘出,所以在概念的接受上有一点的障碍.2.零点存在性的判断.正因为f(a)·f(b)<0且图象在区间[a,b]上连续不断,是函数f(x)在区间[a,b]上有零点的充分而非必要条件,容易引起思维的混乱就是很自然的事了.3.零点(或零点个数)的确定.学生会作二次函数的图象,但是要作出一般的函数图象(或图象的交点)就比较困难,而在这一节课最重要的恰恰就是利用函数图象来研究函数的零点问题.这样就在零点(或零点个数)的确定上给学生带来一定的困难.基于上述分析,确定本节课的教学难点是:准确认识零点的概念,在合情推理中让学生体会到判定定理的充分非必要性,能利用适当的方法判断零点的存在或确定零点.四、教学支持条件分析考虑到学生的知识水平和理解能力,教师可借助计算机工具和构建现实生活中的模型,从激励学生探究入手,讲练结合,直观演示能使教学更富趣味性和生动性.通过让学生观察、讨论、辨析、画图,亲身实践,在函数与方程的联系中体验数形结合思想、转化思想的意义和价值,发展学生对变量数学的认识,体会函数知识的核心作用.五、教学过程设计(一)引入课题问题引入:求方程3x2+6 x-1=0的实数根。
方程的根与函数的零点教学教案教学目标:1. 理解方程的根与函数的零点的概念。
2. 学会使用因式分解、配方法、求根公式等方法求解一元二次方程。
3. 能够运用函数的零点判断方程的解。
教学内容:第一章:方程的根与函数的零点概念1.1 方程的根的概念1.2 函数的零点的概念1.3 根与零点的关系第二章:一元二次方程的解法2.1 因式分解法2.2 配方法2.3 求根公式第三章:判别式与方程的解3.1 判别式的概念3.2 判别式与方程解的关系3.3 判别式的应用第四章:函数的零点与方程的解4.1 函数零点存在性定理4.2 函数零点的判断方法4.3 函数零点与方程解的应用第五章:实际问题与方程的根5.1 实际问题转化为方程的问题5.2 求解实际问题中的方程根5.3 方程根的实际应用教学方法:1. 采用问题驱动的教学方法,引导学生主动探索方程的根与函数的零点的关系。
2. 通过实例讲解,让学生理解并掌握一元二次方程的解法。
3. 利用数形结合的方法,让学生直观地理解函数的零点与方程的解的关系。
教学评估:1. 通过课堂练习和作业,检查学生对方程的根与函数的零点的理解和掌握程度。
2. 布置综合练习题,考察学生运用方程的根与函数的零点解决实际问题的能力。
教学资源:1. 教学PPT,展示方程的根与函数的零点的概念和解法。
2. 数形结合软件,展示函数的零点与方程的解的关系。
3. 实际问题案例,供学生分析和解决。
教学计划:1. 第一章:2课时2. 第二章:3课时3. 第三章:2课时4. 第四章:3课时5. 第五章:2课时通过本章的学习,学生应能够理解方程的根与函数的零点的概念,掌握一元二次方程的解法,并能够运用函数的零点判断方程的解。
学生应能够将方程的根与函数的零点应用于解决实际问题。
第六章:方程的根与函数图像6.1 方程根与函数零点的关系6.2 利用函数图像判断方程根的存在性6.3 函数图像在求解方程中的应用第七章:一元二次方程的实数根与判别式7.1 判别式与实数根的关系7.2 判别式在求解方程中的应用7.3 判别式在实际问题中的应用第八章:不等式与方程的根8.1 不等式与方程根的关系8.2 利用方程根解决不等式问题8.3 不等式方程在实际问题中的应用第九章:方程的根与函数的单调性9.1 方程根与函数单调性的关系9.2 利用函数单调性求解方程9.3 函数单调性在实际问题中的应用10.1 回顾本章学习内容10.2 分析学习中的难点与重点10.3 提高解题技巧与策略教学方法:1. 通过分析函数图像,让学生直观地理解方程的根与函数的零点的关系。
方程的根与函数的零点
教学目标:
知识与技能:
(1) 理解函数(结合二次函数)零点的概念,领会函数零点与相应方程要的关系,掌握零点存在的判定条件。
(2)培养学生的观察能力。
(3)培养学生的抽象概括能力。
过程与方法
(1)通过观察二次函数图象,并计算函数在区间端点上的函数值之积的特点,找到连续函数在某个区间上存在零点的判断方法。
(2)让学生归纳整理本节所学知识。
情感、态度与价值观
在函数与方程的联系中体验数学中的转化思想的意义和价值。
批 注 教学重难点:零点的概念及存在性的判定;零点的确定。
教学方法:学生在老师的引导下,通过阅读教材,自主学习、思考、交流、讨论和概括,从而完成本节课的教学目标。
教学过程:
一、创设情景,揭示课题
1.提出问题:一元二次方程 ax 2+bx+c=0 (a ≠0)的根与二次函数 y=ax 2+bx+c (a ≠0)的图象有什么关系?
2.先来观察几个具体的一元二次方程的根及其相应的二次函数的图象:
(用投影仪给出)
①方程0322=--x x 与函数322--=x x y
②方程0122=+-x x 与函数122+-=x x y
③方程0322=+-x x 与函数322+-=x x y
轴有两个交点,二次函数有两个零点。
(2)△=0,方程02=++c bx ax 有两相等实根(二重根),二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点。
(3)△<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点。
3.零点存在性的探索:
(Ⅰ)观察二次函数32)(2--=x x x f 的图象:
① 在区间]1,2[-上有零点______;
=-)2(f _______,=)1(f _______,
)2(-f ·)1(f _____0(<或>=)。
② 在区间]4,2[上有零点______;
)2(f ·)4(f ____0(<或>=)。
(Ⅱ)观察下面函数)(x f y =的图象
① 在区间],[b a 上______(有/无)零点;
)(a f ·)(b f _____0(<或>=)。
② 在区间],[c b 上______(有/无)零点;
)(b f ·)(c f _____0(<或>=)。
③ 在区间],[d c 上______(有/无)零点;
)(c f ·)(d f _____0(<或>=)。
由以上两步探索,你可以得出什么样的结论?
怎样利用函数零点存在性定理,断定函数在某给定区间上是否存在零点?
4.生:分析函数,按提示探索,完成解答,并认真思考。
师:引导学生结合函数图象,分析函数在区间端点上的函数值的符号情况,与函数零点是否存在之间的关系。
生:结合函数图象,思考、讨论、总结归纳得出函数零点存在的条件,并进行交流、评析。
师:引导学生理解函数零点存在定理,分析其中各条件的作用。