方程有根和函数零点的关系
- 格式:doc
- 大小:23.50 KB
- 文档页数:1
方程的根与函数的零点(精选7篇)方程的根与函数的零点篇1第一课时: 3.1.1教学要求:结合二次函数的图象,推断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;把握零点存在的判定条件.教学重点:体会函数的零点与方程根之间的联系,把握零点存在的判定条件.教学难点:恰当的使用信息工具,探讨函数零点个数.教学过程:一、复习预备:思索:一元二次方程 +bx+c=o(a 0)的根与二次函数y=ax +bx+c的图象之间有什么关系?.二、讲授新课:1、探讨函数零点与方程的根的关系:① 探讨:方程x -2x-3=o 的根是什么?函数y= x -2x-3的图象与x轴的交点?方程x -2x+1=0的根是什么?函数y= x -2x+1的图象与x轴的交点?方程x -2x+3=0的根是什么?函数y= x -2x+3的图象与x轴有几个交点?② 依据以上探讨,让同学自己归纳并发觉得出结论:→推广到y=f(x)呢?一元二次方程 +bx+c=o(a 0)的根就是相应二次函数y=ax +bx+c的图象与x轴交点横坐标.③ 定义零点:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.④ 争论:y=f(x)的零点、方程f(x)=0的实数根、函数y=f(x) 的图象与x 轴交点的横坐标的关系?结论:方程f(x)=0有实数根函数y=f(x) 的图象与x轴有交点函数y=f(x)有零点⑤ 练习:求下列函数的零点;→ 小结:二次函数零点状况2、教学零点存在性定理及应用:① 探究:作出的图象,让同学们求出f(2),f(1)和f(0)的值, 观看f(2)和f(0)的符号②观看下面函数的图象,在区间上______(有/无)零点; _____0(<或>). 在区间上______(有/无)零点; _____0(<或>). 在区间上______(有/无)零点; _____0(<或>).③定理:假如函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c (a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.④ 应用:求函数f(x)=lnx+2x-6的零点的个数. (试争论一些函数值→分别用代数法、几何法)⑤小结:函数零点的求法代数法:求方程的实数根;几何法:对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.⑥ 练习:求函数的零点所在区间.3、小结:零点概念;零点、与x轴交点、方程的根的关系;零点存在性定理三、巩固练习:1. p97, 1,题 2,题(老师计算机演示,同学回答)2. 求函数的零点所在区间,并画出它的大致图象.3. 求下列函数的零点:;;;.4.已知:(1)为何值时,函数的图象与轴有两个零点;(2)假如函数至少有一个零点在原点右侧,求的值.5. 作业:p102, 2题;p125 1题其次课时: 3.1.2用二分法求方程的近似解教学要求:依据详细函数图象,能够借助计算器用二分法求相应方程的近似解. 通过用二分法求方程的近似解,使同学体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.教学重点:用二分法求方程的近似解.教学重点:恰当的使用信息工具.教学过程:一、复习预备:1. 提问:什么叫零点?零点的等价性?零点存在性定理?零点概念:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.方程f(x)=0有实数根函数y=f(x) 的图象与x轴有交点函数y=f(x)有零点假如函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c (a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.2. 探究:一元二次方程求根公式?三次方程?四次方程?材料:高次多项式方程公式解的探究史料:在十六世纪,已找到了三次和四次函数的求根公式,但对于高于4次的函数,类似的努力却始终没有胜利,到了十九世纪,依据阿贝尔(abel)和伽罗瓦(galois)的讨论,人们熟悉到高于4次的代数方程不存在求根公式,亦即,不存在用四则运算及根号表示的一般的公式解.同时,即使对于3次和4次的代数方程,其公式解的表示也相当简单,一般来讲并不相宜作详细计算.因此对于高次多项式函数及其它的一些函数,有必要寻求其零点的近似解的方法,这是一个在计算数学中非常重要的课题二、讲授新课:1. 教学二分法的思想及步骤:① 出示例:有12个小球,质量匀称,只有一个是比别的球重的,你用天平称几次可以找出这个球的,要求次数越少越好. (让同学们自由发言,找出最好的方法)解:第一次,两端各放六个球,低的那一端肯定有重球其次次,两端各放三个球,低的那一端肯定有重球第三次,两端各放一个球,假如平衡,剩下的就是重球,否则,低的就是重球.其实这就是一种二分法的思想,那什么叫二分法呢?② 探究:的零点所在区间?如何找出这个零点?→ 师生用二分法探究③ 定义二分法的概念:对于在区间[a,b]上连续不断且f(a).f(b)0的函数y=f(x),通过不断的把函数的零点所在的区间一分为二,使区间的两个端点逐步靠近零点,进而得到零点近似值的方法叫二分法(bisection)④ 探究:给定精度ε,用二分法求函数的零点近似值的步骤如下:a.确定区间,验证,给定精度ε;b. 求区间的中点;c. 计算:若,则就是函数的零点;若,则令(此时零点);若,则令(此时零点);d. 推断是否达到精度ε;即若,则得到零点零点值a(或b);否则重复步骤2~4.2. 教学例题:① 出示例:借助计算器或计算机用二分法求方程2 +3x=7的近似解. (师生共练)② 练习:求函数的一个正数零点(精确到)3. 小结:二分法的概念, 二分法的步骤;注意二分法思想三、巩固练习:1. p100, 1,题 2,题; 2. 求方程的解的个数及其大致所在区间.3. 用二分法求的近似值;4. 求方程的实数解个数:;5. 作业:p102 3,4题,阅读p105框图方程的根与函数的零点篇2一、教学内容解析本节课的主要内容有函数零点的的概念、函数零点存在性判定定理。
《方程的根与函数的零点》说课稿一、教材分析1.地位与作用本节内容为人教版《普通高中课程标准实验教科书》A版必修1第三章《函数的应用》第一节《函数与方程》的第一课时主要内容是函数零点概念、函数零点与相对应方程根的关系,函数零点存有性定理,是一节概念课。
新教材新增了二分法,也因而设置了本节课,所以本节课首先是为“用二分法求方程的近似解”打基础,零点概念与零点存有性定理是二分法的必备知识。
从研究方法来说,零点概念的形成和零点存有定理的发现,符合从特殊到一般的理解规律,有利于培养学生的概括归纳水平,也为数形结合思想提供了广阔的平台,2.教学重点基于上述分析,确定本节的教学重点是:了解函数零点的概念掌握函数零点存有性定理。
二、学情分析1.学生具备必要的知识与心理基础通过前面的学习,学生已经了解一些基本初等函数的模型,具备一定的看图识图的水平,这为本节课利用函数图象,判断方程根的存有性提供了一定的知识基础。
2.学生缺乏函数与方程联系的观点高一学生在函数的学习中,将函数孤立起来,理解不到函数在高中中的核心地们,例如:一元二次方程根的分布问题,学生自然会想到韦达定理,而不是看二次函数图象,函数与方程相联系的观点的建立,函数应用意识的初步树立就成了本节课必须承载的任务3.零点定理的矛盾零点存有性定理的获得与应用,必须让学生从一定量的具体实例中操作感知,通过更多的举例来验证。
定理只为零点的存有提供充分非必要条件,所以定理的逆命题,否命题都不成立,在函数连续性,简单逻辑用语来学习的情况下,学生对定理的理解不够深入,这就要求教师引导学生体验各种成立与不成立情况,从正面、反面、侧面等不同的角度审视定理的条件与适用范围。
4.数学难点基于上述分析,确定本节教学难点:对零点存有的定理的准确理解。
三、目标分析依据新课标中心的内容与要求,以及学生实践情况。
指定数学目标如下:1 . 知识与技能目标①. 了解函数零点的概念:能够结合具体方程(如:二次方程)说明方程的根,函数的零点,函数图象与X轴的交点三者关系。