生物化学笔记之第四章 酶
- 格式:doc
- 大小:233.50 KB
- 文档页数:37
生物化学 第四章 酶1、什么是酶?(酶的定义是什么)?酶的化学本质是什么?(1)酶是由活细胞产生的对特异底物具有高效催化作用的蛋白质和核酸(2) 化学本质:蛋白质2、什么是单体酶?寡聚酶?多酶复合体?多功能酶?单体酶:由一条多肽链构成的酶,溶菌酶;寡聚酶:由多个相同或不同亚基以非共价键连接的酶,磷酸化酶a ;多聚复合体:由几种酶靠非共价键彼此嵌合而成。
可一次催化连锁反应的复合体,丙酮酸脱氢酶系;多功能酶:一条多肽链上同时具有多种不同催化活性的酶,生物进化中基因融合的产物,DNA 聚合酶3、简述酶的分类?单纯酶、结合酶的定义是什么?酶蛋白、辅助因子的作用? 酶的分类:单体酶、寡聚酶、多酶复合体及多功能酶单纯酶:仅由多肽链组成,如淀粉、脲酶、核糖核酸酶等结合酶:由蛋白质部分和非蛋白质部分组成,其催化作用依赖于两部分的共同参与,如氨基转移酶、碳酸酐酶、乳酸脱氢酶等。
酶蛋白的作用:决定反应专一性辅助因子的作用:决定反应的种类与性质4、辅助因子的分类及分类依据是什么?各自(辅酶、辅基)的作用分别由哪些? 辅助因子的分类:辅酶和辅基。
分类依据:按照其与酶蛋白结合的紧密程度及作用特点不同辅酶的作用:与酶蛋白共价键结合紧密,不可用透析、超滤方法除去 辅基的作用:与酶蛋白非共价键结合不牢固,可用透析、超滤方法除去5、什么是酶的活性中心?酶的活性中心包括哪些基团?这些基团的功能是什么? 酶的活性中心:酶分子中必需基团相对集中,形成一个与底物特异性结合并催化其反应生成产物的具有特定三维结构的区域。
活性中心的基团 (1)结合基团:可与底物结合(2)催化基团:催化底物发生化学反应6、什么是酶原?什么是酶原激活?酶原激活的机制是什么?简述酶原激活的生理意义?酶原:是细胞内合成或初分泌时处于无活性状态的酶的前体 酶原激活:在一定条件下,酶原向有活性酶转化的过程。
酶原激活的生理意义:(1)酶原是酶的安全转运形式,避免细胞产生的酶对细胞进行自身消化,并使酶在特定的部位和环境中发挥作用,保证体内代谢正常进行。
第一章绪论一、生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。
二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物.2.动态生物化学阶段:是生物化学蓬勃发展的时期。
就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。
3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。
三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。
2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。
其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。
3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。
4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。
5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。
第二章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位.构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α—亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L—α—氨基酸。
2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His).二、肽键与肽链:肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α—氨基经脱水而形成的共价键(-CO—NH-)。
第一章蛋白质的结构与功能1.20种基本氨基酸中,除甘氨酸外,其余都是L-α-氨基酸.2.支链氨基酸(人体不能合成:从食物中摄取):缬氨酸亮氨酸异亮氨酸3.两个特殊的氨基酸:脯氨酸:唯一一个亚氨基酸甘氨酸:分子量最小,α-C原子不是手性C原子,无旋光性.4.色氨酸:分子量最大5.酸性氨基酸:天冬氨酸和谷氨酸碱性氨基酸:赖氨酸、精氨酸和组氨酸6.侧链基团含有苯环:苯丙氨酸、酪氨酸和色氨酸7.含有—OH的氨基酸:丝氨酸、苏氨酸和酪氨酸8.含有—S的氨基酸:蛋氨酸和半胱氨酸9.在近紫外区(220—300mm)有吸收光能力的氨基酸:酪氨酸、苯丙氨酸、色氨酸10.肽键是由一个氨基酸的α—羧基与另一个氨基酸的α—氨基脱水缩合形成的酰胺键11.肽键平面:肽键的特点是N原子上的孤对电子与碳基具有明显的共轭作用。
使肽键中的C-N键具有部分双键性质,不能自由旋转,因此。
将C、H、O、N原子与两个相邻的α-C 原子固定在同一平面上,这一平面称为肽键平面12.合成蛋白质的20种氨基酸的结构上的共同特点:氨基都接在与羧基相邻的α—原子上13.是天然氨基酸组成的是:羟脯氨酸、羟赖氨酸,但两者都不是编码氨基酸14.蛋白质二级结构的主要形式:①α—螺旋②β—折叠片层③β—转角④无规卷曲。
α—螺旋特点:以肽键平面为单位,α—C为转轴,形成右手螺旋,每3.6个氨基酸残基螺旋上升一圈,螺径为0.54nm,维持α-螺旋的主要作用力是氢键15.举例说明蛋白质结构与功能的关系①蛋白质的一级结构决定它的高级结构②以血红蛋白为例说明蛋白质结构与功能的关系:镰状红细胞性贫血患者血红蛋白中有一个氨基酸残基发生了改变。
可见一个氨基酸的变异(一级结构的改变),能引起空间结构改变,进而影响血红蛋白的正常功能。
但一级结构的改变并不一定引起功能的改变。
③以蛋白质的别构效应和变性作用为例说明蛋白质结构与功能的关系:a.别构效应,某物质与蛋白质结合,引起蛋白质构象改变,导致功能改变。
酶酶(enzyme)是生物催化剂(biocatalyst)。
酶的化学本质:主要是蛋白质,也有少数是RNA(核酶)。
由细胞内合成的;酶的催化性质:底物(S)、产物(P)和酶(E)——酶促反应酶与非酶催化剂的共同性质1.只能催化热力学允许的反应2.反应完成后本身不被消耗或变化,即可以重复使用3.对正反应和逆反应的催化作用相同4.不改变平衡常数,只加快到达平衡的速度或缩短到达平衡的时间。
酶促反应与非酶促反应的不同性质1.酶促反应的速率高很多2.酶促反应呈现出饱和动力学3.酶促反应有最适温度和pH值。
酶的命名如果酶的底物有两种,那么两种底物均需表明,中间用“:”分开。
例如草酸氧化酶(习惯名称)的系统名称为草酸:氧氧化酶。
如果酶的其中一个底物是水,可将水省略不写。
例如乙酰辅酶A水解酶(习惯名称)的系统名称为乙酰辅酶A:水解酶。
酶的分类:酶分为七大类:依次为氧化还原酶类(oxido-reductases)、转移酶类(transferases)、水解酶类(hydrolases)、裂合酶类(lyases)、异构酶类(isomerases)、连接酶类(ligases)或合成酶类(synthetases)和转位酶(translocases)。
根据化学组成:单纯酶(simple enzyme),缀合酶/结合酶(conjugated enzyme)单纯酶(如核糖核酸酶和胃蛋白酶)是指酶中只含有蛋白质,不含其他成分。
结合酶(如转氨酶、细胞色素氧化酶和乳酸脱氢酶)是指酶中除了蛋白质外,还含有一些非蛋白质成分。
结合酶中的蛋白质称为脱辅酶(apoenzyme),非蛋白质成分称为辅助因子(cofactor)。
酶蛋白和辅助因子本身无催化活性,只有完整结合形成全酶(holoenzyme)后,才具有活性。
在催化反应中,酶蛋白和辅助因子所起的作用是不同的,酶催化反应的专一性取决于酶蛋白,而辅助因子对电子、原子或某些化学基团起传递作用。
辅助因子包括金属离子和有机小分子化合物。
第四章酶酶是一类具有高效率、高度专一性、活性可调节的高分子生物催化剂。
1957巴斯德提出酒精发酵是酵母细胞活动的结果。
1 分子Glc→2分子乙醇+2分子CO2 从Glc开始,经过12种酶催化,12步反应,生成乙醇。
1897 Buchner兄弟证明发酵与细胞的活动无关,不含细胞的酵母汁也能进行乙醇发酵。
1913 Michaelis和Menten提出米氏学说—酶促动力学原理。
1926 Sumner首次从刀豆中提出脲酶结晶,并证明具有蛋白质性质。
1969 化学合成核糖核酸酶。
1967-1970 从E.coli中发现第I、第II类限制性核酸内切酶。
1986 Cech发现四膜虫细胞大核期间26S rRNA前体具有自我剪接功能。
ribozyme ,deoxyribozymeE.coRI5’——GAA TTC——3’3’——CTTAAG——5’限制作用修饰作用5’——GAATTC——3’5’——GAA TTC——3’3’——CTTAAG——5’ 3’——CTTAAG——5’第一节酶学概论一、酶的生物学意义大肠杆菌生命周期20分钟,生物体内化学反应变得容易和迅速进行的根本原因是体内普通存在生物催化剂—酶。
没有酶,生长、发育、运动等等生命活动就无法继续。
限制性核酸内切酶(限制-修饰)二、酶的概念及其作用特点1、酶是一种生物催化剂酶是一类具有高效率、高度专一性、活性可调节的高分子生物催化剂。
生物催化剂:酶(enzyme),核(糖)酶(ribozyme),脱氧核(糖)酶(deoxyribozyme)12、酶催化反应的特点(1)、催化效率高酶催化反应速度是相应的无催化反应的108-1020倍,并且至少高出非酶催化反应速度几个数量级。
(2)、专一性高酶对反应的底物和产物都有极高的专一性,几乎没有副反应发生。
(3)、反应条件温和温度低于100℃,正常大气压,中性pH环境。
(4)、活性可调节根据据生物体的需要,许多酶的活性可受多种调节机制的灵活调节,包括:别构调节、酶的共价修饰、酶的合成、活化与降解等。
(5)、酶的催化活性离不开辅酶、辅基、金属离子3、酶与非生物催化剂相比的几点共性:①催化效率高,用量少(细胞中含量低)。
②不改变化学反应平衡点。
③降低反应活化能。
P234 图4-1 非催化过程及催化过程自由能的变化④反应前后自身结构不变。
催化剂改变了化学反应的途径,使反应通过一条活化能比原途径低的途径进行,催化剂的效应只反映在动力学上(反应速度),不影响反应的热力学(化学平衡)。
三、酶的化学本质(一)酶的蛋白质本质经典概念:所有的酶都是蛋白质,酶是具有催化功能的蛋白质,因此酶具有蛋白质的一切共性。
1、酶的蛋白质组成有些酶仅由蛋白质组成,例如,脲酶、溶菌酶、淀粉酶、脂肪酶、核糖核酸酶等2有些酶不仅含有蛋白质(酶蛋白),还含有非蛋白质成分(辅助因子),只有酶蛋白与辅助因子结合形成复合物(全酶)才表现出酶活性,如超氧化物歧化酶Cu2+、Zn2+)、乳酸脱氢酶(NAD+)酶的专一性由酶蛋白的结构决定,辅助因子传递电子或某些化学基团。
2、酶的辅助因子酶的辅助因子主要有金属离子(Fe2+、Fe3+、Cu+、Cu2+、Mn2+、、Mn3+、Zn2+、Mg2+、K+、Na+、Mo6+、Co2+等)和有机化合物。
辅酶:与酶蛋白结合较松,可透析除去。
辅基:与酶蛋白结合较紧。
酶辅助因子CuZn-SOD Cu2+Zn2+Mn-SOD Mn2+过氧化物酶Fe2+或Fe3+II型限制性核酸内切酶Mg2+羧肽酶Zn2+P235 表4-1 一些酶的辅助因子(金属离子)P237 表4-2 基团反应中的辅酶和辅基。
酶蛋白决定酶专一性,辅助因子决定酶促反应的类型和反应的性质。
比如,NAD+可与多种酶蛋白结合,构成专一性强的乳酸脱氢酶、醇脱氢酶、苹果酸脱氢酶、异柠檬酸脱氢酶。
生物体内酶种类很多,而辅助因子种类却很少,原因是一种辅助因子可与多种酶蛋白结合。
(二)ribozyme核酶(具有催化功能的RNA)1980以前,已知所有的生物催化剂,其化学本质都是蛋白质。
80年代初,美国科罗拉多大学博尔德分校的Thomas Cech和美国耶鲁大学Sidney Altman各自独立发现RNA具有生物催化功能,此发现被认为是近十年生化领域最令人鼓舞的发现,此二人分亨1989诺贝尔化学奖。
ribozyme种类:①自我剪接ribozyme ②自我剪切ribozyme ③催化分子间反应ribozyme 后边细讲四、按酶蛋白的亚基组成及结构特点分类1、单体酶由一条或多条共价相连的肽链组成的酶分子3牛胰RNase 124a.a 单链鸡卵清溶菌酶129a.a 单链胰凝乳蛋白酶三条肽链单体酶种类较少,一般多催化水解反应。
2、寡聚酶由两个或两个以上亚基组成的酶,亚基可以相同或不同,一般是偶数,亚基间以非共价键结合。
①含相同亚基的寡聚酶苹果脱胱氢酶(鼠肝),2个相同的亚基②含不同亚基的寡聚酶琥珀酸脱氢酶(牛心),αβ2个亚基寡聚酶中亚基的聚合,有的与酶的专一性有关,有的与酶活性中心形成有关,有的与酶的调节性能有关。
大多数寡聚酶是胞内酶,而胞外酶一般是单体酶。
3、多酶复合体由两个或两个以上的酶,靠非共价键结合而成,其中每一个酶催化一个反应,所有反应依次进行,构成一个代谢途径或代谢途径的一部分。
如脂肪酸合成酶复合体。
例如:大肠杆菌丙酮酸脱氢酶复合体由三种酶组成①丙酮酸脱氢酶(E1)以二聚体存在2×9600②二氢硫辛酸转乙酰基酶(E2)70000③二氢硫辛酸脱氢酶(E3)以二聚体存在2×56000复合体:12个E1二聚体24×9600024个E2单体24×700006个E3二聚体12×56000总分子量560万4、多酶融合体一条多肽链上含有两种或两种以上催化活性的酶,这往往是基因融合的产物。
例如:天冬氨酸激酶I---高丝氨酸脱氢酶I融合体(双头酶)该酶是四聚体α4,每条肽链含两个活性区域:N-端区域是Asp激酶,C端区域是高Ser脱氢酶。
五、酶在细胞中的分布一个细胞内含有上千种酶,互相有关的酶往往组成一个酶体系,分布于特定的细胞组分中,因此某些调节因子可以比较特异地影响某细胞组分中的酶活性,而不使其它组分中的酶受影响。
41. 分布于细胞核的酶核被膜酸性磷酸酶染色质三磷酸核苷酶核仁核糖核酸酶核内可溶性部分酵解酶系、乳酸脱氢酶2. 分布于细胞质的酶参与糖代谢的酶酵解酶系磷酸戊糖途径酶系参与脂代谢的酶脂肪酸合成酶复合体参与a.a蛋白质的酶Asp氨基转移酶参与核酸合成的酶核苷激酶核苷酸激酶3. 分布于内质网的酶光滑内质网胆固醇合成酶系粗糙内质网蛋白质合成酶系(细胞质一侧)4. 分布于线粒体的酶外膜:酰基辅酶A合成酶内膜:NADH脱氢酶基质:三羧酸循环酶系脂肪酸β-氧化酶系5. 分布于溶酶体的酶水解蛋白质的酶水解糖苷类的酶水解核酸的酶水解脂类的酶6. 标志酶有些酶只分布于细胞内某种特定的组分中,核:尼克酰胺单核苷酸腺苷酰转移酶,功能:DNA、RNA生物合成线粒体:琥珀酸脱氢酶(电子转移、三羧酸循环)溶酶体:酸性磷酸酶(细胞成分的水解)微粒体:(核蛋白体、多核蛋白体、内质网)Glc-6-磷酸酶上清液:乳酸脱氢酶第二节酶的国际分类及命名一、习惯命名1961年6以前使用的酶沿用习惯命名51.(绝大多数酶)依据底物来命名如:催化蛋白质水解的酶称蛋白酶。
催化淀粉水解的酶称淀粉酶。
2. 依据催化反应的性质命名如:水解酶、转氨酶3 结合上述两个原则命名,琥珀酸脱氢酶。
4. 有时加上酶的来源如:胃蛋白酶、牛胰凝乳蛋白酶习惯命名较简单,但缺乏系统性。
二、国际系统命名系统名称应明确标明酶的底物及催化反应的性质。
如:草酸氧化酶(习惯名),系统名称:草酸:氧氧化酶又如:谷丙转氨酶(习惯名),系统名:丙氨酸:α-酮戊二酸氨基转移酶反应:丙氨酸+α--酮戊二酸→Glu+丙酮酸三、国际系统分类法及编号(EC编号)原则:将所有酶促反应按性质分为六类,分别用1、2、3、4、5、6表示。
再根据底物中被作用的基团或键的特点,将每一大类分为若干个亚类,编号用1、2、3……,每个亚类又可分为若干个亚一亚类,用编号1、2、3……表示。
每一个酶的编号由4个数字组成,中间以“·”隔开。
第一个数字表示大类,第二个数字表示亚类,第三个表示亚-亚类,第四个数字表示在亚-亚中的编号。
1、氧化还原酶类催化氧化还原反应:A·2H+B=A+B·2H乳酸:NAD+氧化还原酶(EC1.1.1.27),习惯名:乳酸脱氢酶图2、转移酶类AB+C=A+BCAla:酮戊二酸氨基移换酶(EC2.6.1.2),习惯名:谷丙转氨酶图63、水解酶类催化水解反应,包括淀粉酶、核酸酶、蛋白酶、脂酶。
亮氨酸氨基肽水解酶(EC3.4.1.1),习惯名:Ile氨肽酶。
4、裂合酶类(裂解酶)催化从底物上移去一个基团而形成双键的反应或其逆反应二磷酸酮糖裂合酶(EC4.1.2.7),习惯名:醛缩酶5、异构酶(EC5.3.1.9)催化同分异构体相互转化,6-磷酸Glc异构酶6、合成酶(连接酶)催化一切必须与A TP分解相偶联、并由两种物质合成一种物质的反应。
P241 表4-8 酶的国际分类——大类和亚类举例:乙醇脱氢酶的分类编号是EC1.1.1.1 ,乳酸脱氢酶EC1.1.1.27 ,苹果酸脱氢酶EC1.1.1.37第一个数字表示大类:氧化还原第二个数字表示反应基团:醇基第三个数字表示电子受体:NAD+或NADP+第四个数字表示此酶底物:乙醇,乳酸,苹果酸。
前面三个编号表明这个酶的特性:反应性质、底物性质(键的类型)及电子或基团的受体,第四个编号用于区分不同的底物。
酶的物种和组织的差异来自不同物种或同一物种不同组织或不同细胞器的同一种酶,虽然它们催化同一个生化反应,但它们的一级结构可能不相同,有时反应机制也可能不同,可是无论是酶的系统命名法还是习惯命名法,对这些均不加以区别,而定为相同的名称,这是因为命名酶的根据是酶所催化的反应。
例如,SOD不管来源如何,均催化如下反应2O2-+2H+→H2O2+O2H2O2再由过氧化氢酶催化、分解它们有同一个名称和酶的编号EC1.15.1.1实际此酶可分三类:CuZn-SOD 真核生物细胞质中Mn-SOD 真核生物线粒体中Fe-SOD7即使同是CuZn-SOD,来自牛红细胞与猪红细胞的,其一级结构也有很大不同。
因此,在讨论一个具体的酶时,应对它的来源与名称一并加以说明。
第三节酶促反应动力学酶促反应动力学是研究酶促反应的速度以及影响酶促反应速度的各种因素,包括低物浓度、酶浓度、pH、温度、激活剂与抑制剂、等。
一、酶的量度酶的含量不能直接用重量和摩尔数表示(不纯、失活、分子量不知),而采用酶的活力单位表示1、酶活力与酶促反应速度酶活力:用在一定条件下,酶催化某一反应的反应速度表示。