2017-2018学年高中数学人教B版必修5学案:2.2等差数列名师导航学案及
- 格式:doc
- 大小:44.00 KB
- 文档页数:2
§2.2 等差数列1.等差数列的判定(1)a n -a n -1=d (n ≥2,d 为常数)⇔{a n }是公差为d 的等差数列; (2)2a n =a n -1+a n +1 (n ≥2)⇔{a n }是等差数列;(3)a n =kn +b (k ,b 为常数)⇔{a n }是公差为k 的等差数列(n ≥1);(4)S n =An 2+Bn (A ,B 为常数)⇔{a n }是公差为2A 的等差数列(n ≥1).例如:已知等差数列{a n }的前n 项和S n =(n -1)2+λ,则λ的值是________. 解析 S n =(n -1)2+λ=n 2-2n +(1+λ), ∵{a n }是等差数列,∴1+λ=0,λ=-1. 答案 -12.等差数列的通项公式将a n =a 1+(n -1)d 可整理为a n =dn +(a 1-d ),它是关于n 的一次函数(d ≠0)或常函数(d =0),它的图象是一条射线上的一群横坐标为正整数的孤立的点,公差d 是该射线所在直线的斜率.例如:等差数列{a n }中,若a n =m ,a m =n (m ≠n ),则a m +n =______. 解析 由点(n ,a n ),(m ,a m ),(m +n ,a m +n )三点共线, ∴a m +n -a n (m +n )-n =a m -a n m -n .即a m +n -m m =n -m m -n=-1,易得a m +n =0. 答案 03.等差数列的前n 项和公式(1)将公式S n =na 1+n (n -1)2d 变形可得S n =d2n 2+⎝⎛⎭⎫a 1-d 2n .故当d ≠0时,等差数列前n 项和公式是关于n 的二次函数,它的图象是抛物线y =d2x 2+⎝⎛⎭⎫a 1-d 2x 上横坐标为正整数的一群孤立点.(2)S n n =d2n +⎝⎛⎭⎫a 1-d 2是关于n 的一次函数(d ≠0)或常函数(d =0). 当涉及等差数列前n 项和S n 的计算问题时,有时设S n =An 2+Bn 的形式更简便快捷. 例如:等差数列{a n }中,若S p =q ,S q =p (p ≠q ),则S p +q =__________. 解析 设S n =An 2+Bn ,则⎩⎪⎨⎪⎧S p =Ap 2+Bp =q (1)S q =Aq 2+Bq =p (2) 由(1)-(2)得Ap 2+Bp -Aq 2-Bq =q -p , ∴A (p 2-q 2)+B (p -q )=q -p , ∵p ≠q ,∴A (p +q )+B =-1. ∵S p +q =A (p +q )2+B (p +q ) =[A (p +q )+B ]·(p +q ) =-(p +q ). 答案 -(p +q ) 4.等差数列的性质(1)若数列{a n }和{b n }均是等差数列,则{ma n +kb n }仍为等差数列,其中m 、k 均为常数. (2)若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m +a n =a p +a q .(3)等差数列中依次k 项的和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列,公差为k 2d (d 是原数列公差).(4)若{a n }与{b n }均为等差数列,且前n 项和分别为S n 与S ′n ,则a m b m =S 2m -1S ′2m -1.(5)等差数列{a n }中,奇数项的和记作S 奇,偶数项的和记作S 偶,则S n =S 奇+S 偶.当n 为偶数时:S 偶-S 奇=n2d ;当n 为奇数时:S 奇-S 偶=a 中,S 奇=n +12a 中,S 偶=n -12a 中,S 奇S 偶=n +1n -1.(其中a 中是等差数列的中间一项)例如:已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是________.解析 S 偶-S 奇=n2d =5d ,∴5d =30-15=15,∴d =3.答案 35.等差数列前n 项和的最值求等差数列前n 项和的最值的常用方法: (1)通项法当a 1>0,d <0时,数列{a n }只有前面有限项为非负数,从某项开始所有项均为负数,因此,S n 有最大值,当n 满足不等式组⎩⎪⎨⎪⎧ a n ≥0a n +1<0时,S n 取到这个最大值;当a 1<0,d >0时,数列{a n }只有前面有限项为非正数,从某项开始所有项均为正数,因此,S n 有最小值,当n 满足不等式组⎩⎪⎨⎪⎧a n ≤0a n +1>0时,S n 取到这一最小值.(2)二次函数法由于S n =d2n 2+⎝⎛⎭⎫a 1-d 2n ,n ∈N *是关于n 的二次函数式,故可转化为求二次函数的最值问题,但要注意数列的特殊性n ∈N *.例如:{a n }是等差数列,a 1>0,a 2 009+a 2 010>0,a 2 009·a 2 010<0,则使前n 项和S n 最大时,n 的值是________;使前n 项和S n >0成立时,n 的最大值是________.答案 2 009 4 018一、等差数列的判断方法方法链接:判定等差数列的常用方法: (1)定义法:a n +1-a n =d (常数)(n ∈N *);(2)通项公式法:a n =kn +b (k ,b 为常数) (n ∈N *); (3)中项公式法:2a n +1=a n +a n +2 (n ∈N *);(4)前n 项和法:S n =An 2+Bn (A 、B 为常数),n ∈N *.例1 数列{a n }的前n 项和S n 满足:S n =n (a 1+a n )2,判断{a n }是否为等差数列?并证明你的结论.解 {a n }是等差数列,证明如下:因为a n =S n -S n -1=n (a 1+a n )2-(n -1)(a 1+a n -1)2(n ≥2),所以a n +1=(n +1)(a 1+a n +1)2-n (a 1+a n )2,所以a n +1-a n =12[(n +1)(a 1+a n +1)-2n (a 1+a n )+(n -1)(a 1+a n -1)]=12[(n +1)a n +1-2na n +(n -1)a n -1] (n ≥2), 即(n -1)(a n +1-2a n +a n -1)=0,所以a n +1+a n -1=2a n (n ≥2), 所以数列{a n }为等差数列.二、等差数列中基本量的运算方法链接:在等差数列中,五个重要的量,只要已知三个量,就可求出其他两个量,其中a 1和d 是两个基本量,利用通项公式与前n 项和公式,求出a 1和d ,等差数列就确定了.例2 在等差数列{a n }中,(1)已知a 6=10,S 5=5,求a 8和S 8;(2)已知前3项和为12,前3项积为48,且d >0,求a 1; (3)已知前3项依次为a,4,3a ,前k 项和S k =2 550,求a 及k . 解 (1)∵a 6=10,S 5=5, ∴⎩⎪⎨⎪⎧a 1+5d =105a 1+10d =5. 解方程组得a 1=-5,d =3, ∴a 8=a 6+2d =10+2×3=16,S 8=8×(a 1+a 8)2=44.(2)设数列的前三项分别为a -d ,a ,a +d ,依题意有: ⎩⎪⎨⎪⎧(a -d )+a +(a +d )=12(a -d )·a ·(a +d )=48, ∴⎩⎪⎨⎪⎧a =4a (a 2-d 2)=48, ∴⎩⎪⎨⎪⎧a =4d =±2. ∵d >0,∴d =2,a -d =2.∴a 1=2. (3)设公差为d ,则由题意得⎩⎪⎨⎪⎧a +3a =8,d =4-a ,ka +k (k -1)2d =2 550,∴⎩⎪⎨⎪⎧a =2,d =2,k =50或k =-51(舍去).因此,a =2,k =50.三、等差数列的性质及运用方法链接:等差数列有一些重要的性质,例如: (1)若m +n =p +q ,则a m +a n =a p +a q ; (2)若m +n =2p ,则a m +a n =2a p ;(3)若{a n }是等差数列,则S k ,S 2k -S k ,S 3k -S 2k 也成等差数列.(其S k 为前k 项和)(4)若等差数列{a n }的前n 项和为S n ,等差数列{b n }的前n 项和为T n ,则a n b n =S 2n -1T 2n -1.熟练运用这些性质,可以提高解题速度,获得事半功倍的功效.例3 (1)设等差数列{a n }的前n 项和为S n ,若S 9=72,求a 2+a 4+a 9的值; (2)已知等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,求证:①a n b n =S 2n -1T 2n -1;②a n b m =2m -12n -1·S 2n -1T 2m -1.(1)解 由S 9=9(a 1+a 9)2=72,∴a 1+a 9=16,∴a 1+a 9=2a 5=16,∴a 5=8,∴a 2+a 4+a 9=a 1+a 5+a 9=3a 5=24.(2)证明 ①a n b n =2a n 2b n =a 1+a 2n -1b 1+b 2n -1=(a 1+a 2n -1)2n -12(b 1+b 2n -1)2n -12=S 2n -1T 2n -1.②a n b m =2a n 2b m =a 1+a 2n -1b 1+b 2m -1=(a 1+a 2n -1)2n -12·2m -12(b 1+b 2m -1)2m -12·2n -12=2m -12n -1·S 2n -1T 2m -1.四、等差数列前n 项和的最值 方法链接:等差数列前n 项和最值问题除了用二次函数求解外,还可用下面的方法讨论:若d >0,a 1<0,S n 有最小值,需⎩⎪⎨⎪⎧a n ≤0,a n +1≥0;若a 1>0,d <0,S n 有最大值,需⎩⎪⎨⎪⎧a n ≥0,a n +1≤0.n 取正整数.例4 (1)首项为正数的等差数列,前n 项和为S n ,且S 3=S 11,问n 为何值时,S n 最大?(2)等差数列{a n }中,a 1=-60,a 17=-12,求{|a n |}的前30项和及前n 项和.解 (1)设首项为a 1,公差为d ,则由题意知,d <0,点P (n ,S n )在抛物线y =d2x 2+⎝⎛⎭⎫a 1-d 2x 上,其对称轴方程为x =7(由S 11=S 3知),故(7,S 7)是抛物线的顶点,∴n =7时,S n 最大.(2)设公差为d ,则由a 1+16d =a 17,得d =3>0,因此a n =3n -63.点Q (n ,a n )在增函数y =3x -63的图象上.令y =0则得x =21,故当n ≥22时,a n >0;当1≤n ≤21且n ∈N *时,a n ≤0, 于是|a 1|+|a 2|+…+|a 30|=-a 1-a 2-…-a 21+a 22+a 23+…+a 30 =a 1+a 2+…+a 30-2(a 1+a 2+…+a 21) =765.记T n =|a 1|+|a 2|+…+|a n |, 则由上面的求解过程知: 当1≤n ≤21,n ∈N *时, T n =|a 1|+|a 2|+…+|a n | =-a 1-a 2-…-a n =(123-3n )n 2=-32n 2+1232n .当n >21,n ∈N *时,T n =|a 1|+|a 2|+…+|a 20|+|a 21|+…+|a n | =-(a 1+a 2+…+a 21)+a 22+a 23+…+a n =(a 1+a 2+…+a n )-2(a 1+a 2+…+a 21) =32n 2-1232n +1 260. ∴数列{|a n |}的前n 项和T n=⎩⎨⎧-32n 2+1232n (1≤n ≤21,n ∈N *),32n 2-1232n +1 260 (n >21,n ∈N *).五、关于等差数列的探索性问题方法链接:对于与等差数列有关的探索性问题,先由前三项成等差数列确定参数后,再利用定义验证或证明所得结论.例5 已知数列{a n }中,a 1=5且a n =2a n -1+2n -1 (n ≥2且n ∈N *). (1)求a 2,a 3的值;(2)是否存在实数λ,使得数列⎩⎨⎧⎭⎬⎫a n +λ2n 为等差数列?若存在,求出λ的值;若不存在,请说明理由.解 (1)∵a 1=5,∴a 2=2a 1+22-1=13, a 3=2a 2+23-1=33.(2)假设存在实数λ,使得数列⎩⎨⎧⎭⎬⎫a n +λ2n 为等差数列.则a 1+λ2,a 2+λ22,a 3+λ23成等差数列,∴2×a 2+λ22=a 1+λ2+a 3+λ23,∴13+λ2=5+λ2+33+λ8.解得λ=-1.当λ=-1时,⎝ ⎛⎭⎪⎫a n +1-12n +1-⎝⎛⎭⎫a n -12n=12n +1[(a n +1-1)-2(a n -1)] =12n +1(a n +1-2a n +1) =12n +1[(2a n +2n +1-1)-2a n +1] =12n +1×2n +1=1. 综上可知,存在实数λ=-1,使得数列⎩⎨⎧⎭⎬⎫a n +λ2为等差数列,且首项是2,公差是1.六、关于等差数列的创新型问题方法链接:关于等差数列的创新型试题,常以图表、数阵、新定义等形式出现.解决此类问题时通过对图表的观察、分析、提炼,挖掘出题目蕴含的有用信息,利用所学等差数列的有关知识加以解决.ij(1)写出a 45的值;(2)写出a ij 的计算公式.解 (1)通过观察“等差数阵”发现:第一行的首项为4,公差为3;第二行首项为7,公差为5.归纳总结出:第一列(每行的首项)是以4为首项,3为公差的等差数列,即3i +1,各行的公差是以3为首项,2为公差的等差数列,即2i +1.所以a 45在第4行,首项应为13,公差为9,进而得出a 45=49.(2)该“等差数阵”的第一行是首项为4,公差为3的等差数列:a 1j =4+3(j -1); 第二行是首项为7,公差为5的等差数列: a 2j =7+5(j -1); ……第i 行是首项为4+3(i -1),公差为2i +1的等差数列, 因此,a ij =4+3(i -1)+(2i +1)(j -1)=2ij +i +j =i (2j +1)+j .1.审题不细心,忽略细节而致错例1 首项为-24的等差数列,从第10项起开始为正数,求公差d 的取值范围.[错解] a 10=a 1+9d =-24+9d >0,∴d >83.[点拨] 忽略了“开始”一词的含义,题目强调了第10项是该等差数列中的第一个正项,应有a 9≤0.[正解] 设a n =-24+(n -1)d , 由⎩⎪⎨⎪⎧a 9=-24+(9-1)d ≤0a 10=-24+(10-1)d >0, 解不等式得:83<d ≤3.温馨点评 审题时要细心,包括问题的细节,有时细节决定解题的成败.2.忽略公式的基本特征而致错例2 已知两个等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,且对一切正整数n 都有S n T n =5n +32n +7,试求a 9b 9的值. [错解] 设S n =(5n +3)k ,T n =(2n +7)k ,k ≠0, 则a 9=S 9-S 8=(5×9+3)k -(5×8+3)k =5k , b 9=T 9-T 8=(2×9+7)k -(2×8+7)k =2k ,所以a 9b 9=52.[点拨] 此解答错在根据条件S n T n =5n +32n +7,设S n =(5n +3)k ,T n =(2n +7)k ,这是把等差数列前n 项和误认为是关于n 的一次函数,没有准确把握前n 项和公式的特点.[正解] 因为{a n }和{b n }是公差不为0的等差数列, 故设S n =n (5n +3)k ,T n =n (2n +7)k ,k ≠0,则 a 9=S 9-S 8=9×(5×9+3)k -8×(5×8+3)k =88k ,b 9=T 9-T 8=9×(2×9+7)k -8×(2×8+7)k=41k ,所以a 9b 9=8841.温馨点评 等差数列的前n 项和S n =d2n 2+⎝⎛⎭⎫a 1-d 2n ,当d ≠0时,是关于n 的二次函数式,且常数项为零,当d =0时,S n =na 1,但是本题不属于这种情况(否则S n T n =na 1nb 1=a 1b 1与S nT n=5n +32n +7矛盾). 3.对数列的特点考虑不周全而致错例3 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 有最大值,并求出它的最大值.[错解] 设公差为d ,∵S 10=S 15,∴10×20+10×92d =15×20+15×142d ,得120d =-200,即d =-53,∴a n =20-(n -1)·53,当a n >0时,20-(n -1)·53>0,∴n <13.∴n =12时,S n 最大,S 12=12×20+12×112×⎝⎛⎭⎫-53=130.∴当n =12时,S n 有最大值S 12=130.[点拨] 解中仅解不等式a n >0是不正确的,事实上应解a n ≥0,a n +1≤0.[正解] 由a 1=20,S 10=S 15,解得公差d =-53.∵S 10=S 15,∴S 15-S 10=a 11+a 12+a 13+a 14+a 15=0, ∵a 11+a 15=a 12+a 14=2a 13=0,∴a 13=0. ∵公差d <0,a 1>0,∴a 1,a 2,…,a 11,a 12均为正数, 而a 14及以后各项均为负数.∴当n =12或13时,S n 有最大值为S 12=S 13=130.4.忽略题目中的隐含条件而致错例4 一个凸n 边形的各内角度数成等差数列,其最小角为120°,公差为5°,求凸n 边形的边数.[错解] 一方面凸n 边形的内角和为S n ,S n =120°n +n (n -1)2×5°.另一方面,凸n 边形内角和为(n -2)×180°.所以120n +n (n -1)2×5=(n -2)×180.化简整理得:n 2-25n +144=0. 所以n =9或n =16.即凸n 边形的边数为9或16.[点拨] 凸n 边形的每个内角都小于180°.当n =16时,最大内角为120°+15°×5°=195°>180°应该舍掉.[正解] 凸n 边形内角和为(n -2)×180°,所以120n +n (n -1)2×5=(n -2)×180解得:n =9或n =16.当n =9时,最大内角为120°+8°×5°=160°<180°; 当n =16时,最大内角为120°+15×5°=195°>180°舍去. 所以凸n 边形的边数为9.例 一个等差数列的前10项之和为100,前100项之和为10,求前110项之和. 分析 本题可从基本方法入手,先求a 1,d ,再求前110项之和,为了简化计算,也可利用等差数列前n 项和的性质.解 方法一 设等差数列{a n }的公差为d ,前n 项和为S n ,则S n =na 1+n (n -1)2d .由已知得⎩⎨⎧10a 1+10×92d =100, ①100a 1+100×992d =10. ②①×10-②整理得d =-1150,代入①,得a 1=1 099100,∴S 110=110a 1+110×1092d=110×1 099100+110×1092×⎝⎛⎭⎫-1150=110⎝⎛⎭⎫1 099-109×11100=-110. 故此数列的前110项之和为-110. 方法二 设S n =an 2+bn . ∵S 10=100,S 100=10,∴⎩⎪⎨⎪⎧102a +10b =100,1002a +100b =10,解得⎩⎨⎧a =-11100,b =11110.∴S n =-11100n 2+11110n .∴S 110=-11100×1102+11110×110=-110.方法三 设等差数列的首项为a 1,公差为d ,则⎩⎨⎧S p =pa 1+p (p -1)2d =q , ①(p ≠q )S q=qa 1+q (q -1)2d =p . ②①-②得(p -q )a 1+(p -q )(p +q -1)2d=-(p -q ). 又p ≠q ,∴a 1+p +q -12d =-1,∴S p +q =(p +q )a 1+(p +q )(p +q -1)2d=(p +q )(-1), ∴S 110=-110.方法四 数列S 10,S 20-S 10,S 30-S 20,…,S 100-S 90,S 110-S 100 成等差数列,设其公差为D .前10项的和10S 10+10×92·D =S 100=10,解得D =-22,∴S 110-S 100=S 10+(11-1)D =100+10×(-22)=-120. ∴S 110=-120+S 100=-110.方法五 ∵S 100-S 10=a 11+a 12+…+a 100 =90(a 11+a 100)2=90(a 1+a 110)2.又S 100-S 10=10-100=-90,∴a 1+a 110=-2.∴S 110=110(a 1+a 110)2=-110.1.已知等差数列{a n }中,a 3a 7=-16,a 4+a 6=0,求{a n }的前n 项和S n . 解 设{a n }的公差为d ,则 ⎩⎪⎨⎪⎧(a 1+2d )(a 1+6d )=-16,a 1+3d +a 1+5d =0, 即⎩⎪⎨⎪⎧ a 21+8da 1+12d 2=-16,a 1=-4d , 解得⎩⎪⎨⎪⎧a 1=-8,d =2,或⎩⎪⎨⎪⎧a 1=8,d =-2.因此S n =-8n +n (n -1)=n (n -9), 或S n =8n -n (n -1)=-n (n -9).2.设{a n }是公差不为零的等差数列,S n 为其前n 项和,满足a 22+a 23=a 24+a 25,S 7=7. (1)求数列{a n }的通项公式及前n 项和S n ;(2)试求所有的正整数m ,使得a m a m +1a m +2为数列{a n }中的项.解 (1)由题意,设等差数列{a n }的通项公式为 a n =a 1+(n -1)d ,d ≠0.由a 22+a 23=a 24+a 25得a 22-a 25=a 24-a 23,由性质得-3d (a 4+a 3)=d (a 4+a 3),因为d ≠0 所以a 4+a 3=0,即2a 1+5d =0.① 又因为S 7=7,所以a 1+3d =1.② 由①②可得a 1=-5,d =2.所以数列{a n }的通项公式a n =2n -7,S n =na 1+n (n -1)2d =n 2-6n .(2)因为a m a m +1a m +2=(a m +2-4)(a m +2-2)a m +2=a m +2-6+8a m +2为数列{a n }中的项,故8a m +2为整数. 又由(1)知a m +2为奇数,所以a m+2=2m-3=±1,即m=1,2.经检验,符合题意的正整数只有m=2.赏析试题考查了等差数列的有关知识,起点较低,落点较高,难度控制得恰到好处.第(2)问要求考生有一定的分析问题解决问题的能力.。
2.2 等差数列(第1课时)学习目标掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题.让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般”这一研究过程,培养他们观察、分析、归纳、推理的能力.通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯.合作学习一、设计问题,创设情境1.通常情况下,从地面到11km 的高空,气温随高度的变化而变化符合一定的规律,请你根据下表估计一下7km 高空的温度.思考:依据前面的规律,填写2,3题:2.1,4,7,10,( ),16,…3.2,0,-2,-4,-6,( ),…它们共同的规律是什么?从第2项起,每一项与前一项的差等于同一个常数,我们把有这一特点的数列叫做等差数列.二、信息交流,揭示规律4.等差数列的定义一般地,如果一个数列从第2项起, ,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差,公差通常用字母d 表示.思考:(1)定义中的关键词有哪些?(2)公差d 是哪两个数的差?5.等差数列定义的数学表达式:试一试:它们是等差数列吗?(1)1,3,5,7,9,2,4,6,8,10,…;(2)5,5,5,5,5,5,…;(3)-1,-3,-5,-7,-9,…;(4)数列{a n},a n+1-a n=3.6.等差数列的通项公式探究1:等差数列的通项公式(求法一:不完全归纳法)如果等差数列{a n}的首项是a1,公差是d,那么这个等差数列中的a2,a3,a4如何表示?a n呢? 根据等差数列的定义可得:a2-a1=d,a3-a2=d,a4-a3=d,….所以a2=a1+d,a3=a2+d=(a1+d)+d=a1+2d,a4=a3+d=(a1+2d)+d=a1+3d,…由此得a n=.因此等差数列的通项公式就是:a n=a1+(n-1)d,n∈N*.探究2:等差数列的通项公式(求法二:叠加法)根据等差数列的定义可得:将以上n-1个式子相加所得到的等差数列的通项公式为a n=a1+(n-1)d,n∈N*.三、运用规律,解决问题7.(1)求等差数列8,5,2,…的第20项.(2)等差数列-5,-9,-13,…的第几项是-401?8.某市出租车的计价标准为1.2元/km,起步价为10元,即最初的4km(不含4km)计费10元.如果某人乘坐该市的出租车去往14km处的目的地,且一路通畅,等候时间为0,则需要支付多少车费?9.在等差数列中,已知a5=10,a12=31,求首项a1与公差d.四、变式训练,深化提高10.已知等差数列{a n}中,a3=9,a9=3,求公差d.11.在等差数列{a n}中,a1=13,a3=12,若a n=2,求n.12.等差数列{a n}中,a1+a5=10,a4=7,求数列{a n}的公差.五、反思小结,观点提炼参考答案一、设计问题,创设情境1.22.133.-8二、信息交流,揭示规律4.每一项与它的前一项的差等于同一个常数思考(答案略)5.a n-a n-1=d(d是与n无关的常数,n∈N*)试一试:(2)(3)(4)是,(1)不是.6.a1+(n-1)d三、运用规律,解决问题7.(1)解:因为a1=8,a2=5,所以d=a2-a1=-3,n=20.于是a20=a1+(n-1)d=8+(20-1)×(-3)=-49.(2)解:因为a1=-5,a2=-9,所以d=a2-a1=-4,于是-401=-5+(n-1)×(-4)解得n=100,所以-401是该数列的第100项.8.解:根据题意,当该市出租车的行程大于或等于4km时,每增加1km,乘客需要支付1.2元.所以,可以建立一个等差数列{a n}来计算车费.令a1=11.2,表示4km处的车费,公差d=1.2.那么,当出租车行至14km处时,n=11,此时需要支付车费a11=11.2+(11-1)×1.2=23.2(元).答:需要支付车费23.2元.9.解:由a n=a1+(n-1)d,得解得四、变式训练,深化提高10.解:等差数列{a n}中,由等差数列的通项公式,可得a3=a1+2d,a9=a1+8d.解得,d=-1.即等差数列的公差d=-1.11.分析:根据a1=13,a3=12,利用等差数列的通项公式求得d的值,然后根据首项和公差写出数列的通项公式,让其等于2得到关于n的方程,求出方程的解即可得到n的值.解:由题意得a3=a1+2d=12,把a1=13代入求得d=-,则a n=13+(n-1)=-n+,由a n=2,得-n+=2,解得n=23.12.分析:设数列{a n}的公差为d,则由题意可得2a1+4d=10,a1+3d=7,由此解得d的值.解:设数列{a n}的公差为d,则由a1+a5=10,a4=7,可得2a1+4d=10,a1+3d=7,解得d=2.。
§2.2等差数列(第1课时)●学习目标了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列; 正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项●学习重点等差数列的概念,等差数列的通项公式。
●学习难点等差数列的性质●学习过程Ⅰ.问题情境上两节课我们学习了数列的定义及给出数列和表示的数列的几种方法——列举法、通项公式、递推公式、图象法.这些方法从不同的角度反映数列的特点。
下面我们看这样一些例子。
课本P41页的4个例子:①0,5,10,15,20,25,…②48,53,58,63③18,15.5,13,10.5,8,5.5④10072,10144,10216,10288,10366观察:请仔细观察一下,看看以上四个数列有什么共同特征?·共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);(误:每相邻两项的差相等——应指明作差的顺序是后项减前项)Ⅱ.认知新课1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示)。
⑴.公差d一定是由后项减前项所得,而不能用前项减后项来求;⑵.对于数列{},若-=d (与n无关的数或字母),n≥2,n∈N,则此数列是等差数列,d 为公差。
思考:数列①、②、③、④的通项公式存在吗?如果存在,分别是什么?2.等差数列的通项公式:【或】等差数列定义是由一数列相邻两项之间关系而得若一等差数列的首项是,公差是d,则据其定义可得:即:即:即:……由此归纳等差数列的通项公式可得:∴已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。
由上述关系还可得:即:则:=即等差数列的第二通项公式∴d=[范例探究]例1⑴求等差数列8,5,2…的第20项⑵-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?解:⑴由n=20,得⑵由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得成立解之得n=100,即-401是这个数列的第100项例3已知数列{}的通项公式,其中、是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?分析:由等差数列的定义,要判定是不是等差数列,只要看(n≥2)是不是一个与n无关的常数。
2.2 等差数列知识梳理1.等差数列的定义一般地,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫等差数列的公差,通常用字母d 表示,定义的表达式为a n+1-a n =d(n ∈N +).2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d,那么它的通项公式为a n =a 1+(n-1)d.3.等差中项若三个数a 、A 、b 成等差数列,则A 叫做a 、b 的等差中项,且A=2b a +. 4.等差数列前n 项和公式S n =2)(1n a a n +或na 1+2)1(d n n -. 5.等差数列的单调性等差数列{a n }的公差为d,若d >0,则数列为递增数列,且当a 1<0时,前n 项和S n 有最小值;若d <0,则数列为递减数列,且当a 1>0时,前n 项和S n 有最大值.6.等差数列的常用性质已知数列{a n }是等差数列,首项为a 1,公差为d.(1)若m+n=p+q,则a m +a n =a p +a q ;推论:若m+n=2p,则a m +a n =2a p .(2)等差数列中连续m 项的和组成的新数列是等差数列,公差等于m 2d,即 S m ,S 2m -S m ,S 3m -S 2m ,…为等差数列,则有S 3m =3(S 2m -S m ).(3)从等差数列中抽取等距离的项组成的数列是一个等差数列.如a1,a4,a7,a10,…(下标成等差数列).知识导学等差数列是一种特殊的数列,所以学习前先对上节有关数列的概念、性质进行回顾,同时复习前面学习过的一次函数的形式与图象,并且思考一次函数与等差数列的区别.本节内容的重点是等差数列的定义和等差数列的通项公式及前n项和公式,要能够运用公式解决简单问题,在实际解题中注意有关技巧的运用.在理解定义时,要重视两点:一是“从第二项起”,二是“同一常数”,同时要对a,d的取值对单调性的影响加以分析,以加深对概念的理解和知识的巩固.疑难突破1.如何去判断或证明一个数列为等差数列呢?剖析:判断一个数列是否为等差数列,最基本也最常用的就是看这个数列是否符合等差数列的定义.一般有以下五种方法:(1)定义法:a n+1-a n=d(常数)(n∈N+)⇔{a n}是等差数列;(2)递推法:2a n+1=a n+a n+2(n∈N+)⇔{a n}是等差数列;(3)性质法:利用性质来判断;(4)通项法:a n=pn+q(p、q为常数)⇔{a n}是等差数列;(5)求和法:S n=An2+Bn(A、B为常数,S n为{a n}的前n项和)⇔{a n}是等差数列. 其中(4)(5)两种方法主要应用于选择、填空题中,在解答题中判断一个数列是否是等差数列,一般用(1)(2)(3)这三种方法,而方法(3)还经常与(1)(2)混合运用.证明数列{a n}是等差数列有两种基本方法:(1)利用等差数列的定义,证明a n+1-a n(n≥1)为常数;(2)利用等差中项的性质,即证明2a n =a n-1+a n+1(n ≥2).2.如何求等差数列前n 项和的最值?剖析:可从以下两个方面思考:(1)利用前n 项和公式,转化为一元二次函数的最值问题.S n =na 1+n d a n d d n n )2(22)1(12-+=-,当d ≠0时,此式可看作二次项系数为2d ,一次项系数为a 1-2d ,常数项为0的二次函数,其图象为抛物线y=2d x 2+(a 1-2d )x 上的点集,坐标为(n,S n )(n ∈N +),因此,由二次函数的性质立即可以得出结论:当d >0时,S n 有最小值;当d <0时,S n 有最大值.(2)结合数列的特征,运用函数单调性的思路.当d >0时,则数列为递增数列,且当a 1<0时,一定会出现某一项,在此之前的项都是非正数,而后面的项都是正数,前n 项和S n 有最小值;当d <0时,则数列为递减数列,且当a 1>0时,一定会出现某一项,在此之前的项都是非负数,而后面的项都是负数,前n 项和S n 有最大值.显然最值问题很容易判断.第二种思路运算量小.。
复 2:数列有几种表示方法?分是哪几种方法?二、新学◆ 学研究研究任一:等差数列的观点1:同学仔察,看看以下四个数列有什么共同特点?①0,5,10,15,20,25,⋯② 48,53, 58,63③ 18,15.5,13,10.5, 8, 5.5④ 10072,10144,10216,10288, 10360新知:1.等差数列:一般地,假如一个数列从第起,每一与它一的等于同一个常数,个数列就叫做等差数列,个常数就叫做等差数列的,常用字母表示 .2.等差中:由三个数 a,A, b 成的等差数列,数叫做数和的等差中,用等式表示A=研究任二:等差数列的通公式2:数列①、②、③、④的通公式存在?假如存在,分是什么?若一等差数列a n的首是a1,公差是d,据其定可得:a2a1 a3a2 a4a3,即:,即:,即:a2a1a3a2d a1a4a3d a1⋯⋯由此等差数列的通公式可得:a n∴已知一数列等差数列,只需知其首a1和公差 d,即可求得其通a n.◆ 典型例例 1 ⑴求等差数列 8,5,2⋯的第 20 ;⑵- 401 能否是等差数列 -5, -9,-13⋯的?假如是,是第几?式:(1)求等差数列 3, 7, 11,⋯⋯的第 10.(2)100 能否是等差数列 2,9,16,⋯⋯的?假如是,是第几?假如不是,明原因 .小:要求出数列中的,关是求出通公式;要想判断一数能否某一数列的此中一,关是要看能否存在一正整数 n ,使得a n等于一数 .例 2 已知数列 { a n } 的通公式a n pn q,此中p、q是常数,那么个数列能否必定是等差数列?假如,首与公差分是多少?式:已知数列的通公式 a n 6n 1 ,个数列能否必定是等差数列?假如,首与公差分是什么?小:要判断 a n能否是等差数列,只需看a n a n 1(n≥2)能否是一个与n没关的常数 .例 3. 在等差数列a n中,⑴已知 a1 2 ,d=3,n=10,求 a n;⑵已知⑶已知a1 3 , a n21 ,d=2,求n;a112 , a627 ,求d;⑷已知 d=-1,a78 ,求 a1 3◆ 手1. 等差数列 1,- 3,- 7,- 11,⋯,求它的通公式和第20 .2.在等差数列a n的首是a510, a1231,求数列的首与公差.3.三个数成等差数列 ,它的和 18,它的平方和116,求三个数 .三、学小1.等差数列定: a n an 1d(n≥2);2.等差数列通公式 a n a1(n1)d (n≥1).◆ 知拓展1.等差数列通公式a n a1( n 1)d 或 a n a m( n m)d .剖析等差数列的通公式,可知其一次函数,象上表直y a1 ( x 1)d 上的一些隔平均的孤立点 .2.若三个数成等差数列,且已知和,可三个数 a d,a,a d .若四个数成等差数列,可四个数 a 3d, a d,a d ,a 3d .3. 等差数列的第 1 项是7,第7 项是- 1,则它的第 5 项是().A. 2B. 3C. 4D. 64. 在△ ABC 中,三个内角 A, B, C 成等差数列,则∠ B=.5. 等差数列的相邻 4 项是 a+1, a+3,b,a+b,那么 a=,b=.。
第二节 等差数列一、等差数列定义:二、通项公式:推导方法:推论:d n m a a n m )(-+=例1、知三求一1、若31,31-==d a ,则n a =_______ 2、若27,1261==a a ,则d=_______ 3、若17,573==a a ,则n a =_______4、若2,21,31===d a a n ,则n=_______5、若,19,1074==a a 则=1a ______,d=______6、98,8341==a a ,则数列有多少项在300到500之间?例2、判断某数是不是数列中的项已知数列 ,10,7,4,1,2----,①判断49,21--是否是数列中的项;②求数列的第10项,15项,1+n 项;③判断55-,n 38-是数列的第几项?三、通项性质(1)等差数列}{n a 中,d n m a a n m )(-+=(2)等差数列}{n a 中,如果q p n m +=+,则q p n m a a a a +=+推广一、推广二、(等距性)例3、利用数列性质求数列中的项1、若572=+a a ,则=+81a a ____,=+63a a _______。
2、(05福建)若1,16497==+a a a ,则=12a _____。
3、若1282=+a a ,则5a =_______。
4、若45076543=++++a a a a a ,则=+82a a _____。
5、若10113=+a a ,则1542a a a ++=_______。
6、(05全国)如果数列}{n a 是等差数列,则( )A 、5481a a a a +<+B 、5481a a a a +=+C 、5481a a a a +>+D 、5481a a a a =练习2.(1)若3a +11a =10,则2a +4a +15a = (2)若15S =90,则8a =(3)45076543=++++a a a a a ,则=+82a a(4)21512841=+---a a a a a ,则15S =四、等差中项:五、判定和证明证明方法:(1)定义(2)中项性质判定:例4、判断下列数列是否是等差数列?① ,8,6,4,2,1 ② ,7,7,7,7,7③n m n m n m m +++2,2,, ④d a a d a +-,, ⑤n a n 23-= ⑥1+=n n a n ⑦122+=n a n 例5、等差数列首项是1a ,公差是d ,判断下列是否是等差数列?如果是,求首项和公差;如果不是,说明理由。
2.2等差数列(二)【教学目标】1.能根据等差数列的定义推出等差数列的常用性质.2.能运用等差数列的性质解决有关问题.【教学过程】一、创设情景教师首先提出问题:通过学生对课本的预习,让学生通过观看《2.2 等差数列(二)》课件“复习回顾”部分,对上节课的内容进行简单回顾,从而引出本节课的学习内容.二、自主学习教材整理等差数列的性质阅读教材P39探究及练习第4,5题,完成下列问题.1.等差数列的图象等差数列的通项公式a n=a1+(n-1)d,当d=0时,a n是一固定常数;当d≠0时,a n相应的函数是一次函数;点(n,a n)分布在以d为斜率的直线上,是这条直线上的一列孤立的点.2.等差数列的性质(1){a n}是公差为d的等差数列,若正整数m,n,p,q满足m+n=p+q,则a m+a n=a p +a q.①特别地,当m+n=2k(m,n,k∈N*)时,a m+a n=2a k.②对有穷等差数列,与首末两项“等距离”的两项之和等于首末两项的和,即a1+a n=a2+a n-1=…=a k+a n-k+1=….(2)从等差数列中,每隔一定的距离抽取一项,组成的数列仍为等差数列.(3)若{a n}是公差为d的等差数列,则①{c+a n}(c为任一常数)是公差为d的等差数列;②{ca n}(c为任一常数)是公差为cd的等差数列;③{a n+a n+k}(k为常数,k∈N*)是公差为2d的等差数列.(4)若{a n},{b n}分别是公差为d1,d2的等差数列,则数列{pa n+qb n}(p,q是常数)是公差为pd1+qd2的等差数列.(5){a n}的公差为d,则d>0⇔{a n}为递增数列;d<0⇔{a n}为递减数列;d=0⇔{a n}为常数列.三、合作探究问题1已知等差数列{a n}的首项a1和公差d能表示出通项a n=a1+(n-1)d,如果已知第m项a m和公差d,又如何表示通项a n?提示:设等差数列的首项为a 1,则a m =a 1+(m -1)d ,变形得a 1=a m -(m -1)d ,则a n =a 1+(n -1)d =a m -(m -1)d +(n -1)d =a m +(n -m )d .问题2 由思考1可得d =a n -a 1n -1,d =a n -a m n -m,你能联系直线的斜率解释一下这两个式子的几何意义吗?提示:等差数列通项公式可变形为a n =dn +(a 1-d ),其图象为一条直线上孤立的一系列点,(1,a 1),(n ,a n ),(m ,a m )都是这条直线上的点.d 为直线的斜率,故两点(1,a 1),(n ,a n )连线的斜率d =a n -a 1n -1.当两点为(n ,a n ),(m ,a m )时,有d =a n -a m n -m. 问题3 还记得高斯怎么计算1+2+3+…+100的吗?推广到一般的等差数列,你有什么猜想?提示:利用1+100=2+99=….在有穷等差数列中,与首末两项“等距离”的两项之和等于首项与末项的和.即a 1+a n =a 2+a n -1=a 3+a n -2=….问题4 若{a n }是公差为d 的等差数列,那么{a n +a n +2}是等差数列吗?若是,公差是多少?提示:∵(a n +1+a n +3)-(a n +a n +2)=(a n +1-a n )+(a n +3-a n +2)=d +d =2d .∴{a n +a n +2}是公差为2d 的等差数列.探究点1 等差数列推广通项公式的应用例1 在等差数列{a n }中,已知a 2=5,a 8=17,求数列的公差及通项公式.提示:因为a 8=a 2+(8-2)d ,所以17=5+6d ,解得d =2.又因为a n =a 2+(n -2)d ,所以a n =5+(n -2)×2=2n +1.名师点评: 灵活利用等差数列的性质,可以减少运算.探究点2 等差数列与一次函数的关系例2 已知数列{a n }的通项公式a n =pn +q ,其中p ,q 为常数,那么这个数列一定是等差数列吗?若是,首项和公差分别是多少?提示:取数列{a n }中任意相邻两项a n 和a n -1(n >1),求差得a n-a n-1=(pn+q)-[p(n-1)+q]=pn+q-(pn-p+q)=p.它是一个与n无关的常数,所以{a n}是等差数列.由于a n=pn+q=q+p+(n-1)p,所以首项a1=p+q,公差d=p.名师点评:本题可以按照解析几何中的直线问题求解,但是,如果换个角度,利用构造等差数列模型来解决,更能体现出等差数列这一函数特征,这种解答方式的转变,同学们要在学习中体会,在体会中升华.探究点3等差数列性质的应用例3已知等差数列{a n}中,a1+a4+a7=15,a2a4a6=45,求此数列的通项公式.提示:方法一因为a1+a7=2a4,a1+a4+a7=3a4=15,所以a4=5.又因为a2a4a6=45,所以a2a6=9,即(a4-2d)(a4+2d)=9,(5-2d)(5+2d)=9,解得d=±2.若d=2,a n=a4+(n-4)d=2n-3;若d=-2,a n=a4+(n-4)d=13-2n.方法二设等差数列的公差为d,则由a1+a4+a7=15,得a1+a1+3d+a1+6d=15,即a1+3d=5,①由a2a4a6=45,得(a1+d)(a1+3d)(a1+5d)=45,将①代入上式,得(a1+d)×5×(5+2d)=45,即(a1+d)×(5+2d)=9,②解①,②组成的方程组,得a1=-1,d=2或a1=11,d=-2,即a n=-1+2(n-1)=2n-3或a n=11-2(n-1)=-2n+13.引申探究1.在例3中,不难验证a1+a4+a7=a2+a4+a6,那么,在等差数列{a n}中,若m+n+p=q+r+s,m,n,p,q,r,s∈N*,是否有a m+a n+a p=a q+a r+a s?提示:设公差为d,则a m=a1+(m-1)d,a n=a1+(n-1)d,a p=a1+(p-1)d,a q=a1+(q-1)d,a r=a1+(r-1)d,a s=a1+(s-1)d,∴a m+a n+a p=3a1+(m+n+p-3)d,a q+a r+a s=3a1+(q+r+s-3)d,∵m+n+p=q+r+s,∴a m+a n+a p=a q+a r+a s.2.在等差数列{a n}中,已知a3+a8=10,则3a5+a7=______.提示:∵a3+a8=10,∴a3+a3+a8+a8=20.∵3+3+8+8=5+5+5+7,∴a3+a3+a8+a8=a5+a5+a5+a7,即3a5+a7=2(a3+a8)=20.名师点评:解决等差数列运算问题的一般方法:一是灵活运用等差数列{a n}的性质;二是利用通项公式,转化为等差数列的首项与公差的求解,属于通项方法;或者兼而有之.这些方法都运用了整体代换与方程的思想.四、当堂检测1.在等差数列{a n }中,已知a 3=10,a 8=-20,则公差d 等于( )A .3B .-6C .4D .-32.在等差数列{a n }中,已知a 4=2,a 8=14,则a 15等于( )A .32B .-32C .35D .-353.在等差数列{a n }中,已知a 4+a 5=15,a 7=12,则a 2等于( )A .3B .-3 C.32 D .-32提示:1.B 2.C 3.A五、课堂小结本节课我们学习过哪些知识内容?提示:1.等差数列{a n }中,每隔相同的项抽出来的项按照原来的顺序排列,构成的新数列仍然是等差数列.2.在等差数列{a n }中,首项a 1与公差d 是两个最基本的元素,有关等差数列的问题,如果条件与结论间的联系不明显,则均可根据a 1,d 的关系列方程组求解,但是,要注意公式的变形及整体计算,以减少计算量.。
2.2 等差数列学习目标:1.理解等差数列的概念,掌握等差数列的通项公式,了解等差数列的性质.2.能在具体问题情境中识别数列的等差关系,并能用有关知识解决相应的问题.学习过程:一、等差数列的通项公式例1:若{a n}是等差数列,a15=8,a60=20,求a75.总结方法一:先求出a1,d,然后求a75;方法二:应用通项公式的变形公式a n=a m +(n-m)d求解.变式训练1:在等差数列{a n}中,已知a m=n,a n=m,求a m+n的值.二、等差数列的性质例2:已知等差数列{a n}中,a1+a4+a7=15,a2a4a6=45,求此数列的通项公式.总结要求通项公式,需要求出首项a1和公差d,由a1+a4+a7=15,a2a4a6=45直接求解很困难,我们可以换个思路,利用等差数列的性质,注意到a1+a7=a2+a6=2a4问题就简单了.变式训练2:成等差数列的四个数之和为26,第二个数与第三个数之积为40,求这四个数.三、等差数列的判断例3:已知数列{a n }满足a 1=4,a n =4-4a n -1 (n ≥2),令b n =1a n -2.(1)求证:数列{b n }是等差数列; (2)求数列{a n }的通项公式.总结:判断一个数列{a n }是否是等差数列,关键是看a n +1-a n 是否是一个与n 无关的常数.变式训练3:若1b +c ,1c +a ,1a +b 是等差数列,求证:a 2,b 2,c 2成等差数列.课堂小结:1.证明数列{a n }为等差数列的方法(1)定义法:a n +1-a n =d (d 为常数,n ≥1)⇔{a n }为等差数列或a n -a n -1=d (d 为常数, n ≥2)⇔{a n }为等差数列.(2)等差中项法:2a n +1=a n +a n +2⇔{a n }是等差数列.(3)通项法:a n =pn +q (p 、q ∈R )⇔{a n }是等差数列,只要说明a n 为n 的一次函数, 就可下结论说{a n }是等差数列.2.三个数成等差数列可设为:a -d ,a ,a +d 或a ,a +d ,a +2d ;四个数成等差数列可设为:a -3d ,a -d ,a +d ,a +3d 或a ,a +d ,a +2d ,a +3d . 课堂检测:1.在等差数列{a n }中,a 1+3a 8+a 15=120,则2a 9-a 10的值为( ) A .24 B .22 C .20 D .-8 2.已知等差数列{a n }中,a 2=-9,a 3a 2=-23,则a n 为( )A .14n +3B .16n -4C .15n -39D .15n +83.等差数列{a n }的公差d <0,且a 2·a 4=12,a 2+a 4=8,则数列{a n }的通项公式是( ) A .a n =2n -2 (n ∈N *) B .a n =2n +4 (n ∈N *) C .a n =-2n +12 (n ∈N *) D .a n =-2n +10 (n ∈N *)4.等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8等于( ) A .45 B .75 C .180 D .3005.一个等差数列的首项为a 1=1,末项a n =41 (n ≥3)且公差为整数,那么项数n 的取值个数是( )A .6B .7C .8D .不确定6.若m ≠n ,两个等差数列m 、a 1、a 2、n 与m 、b 1、b 2、b 3、n 的公差分别为d 1和d 2,则d 1d 2的值为______. 7.已知⎩⎨⎧⎭⎬⎫1a n 是等差数列,且a 4=6,a 6=4,则a 10=______.8.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14的等差数列,则|m -n |=________.9.等差数列{a n }的公差d ≠0,试比较a 4a 9与a 6a 7的大小.10.已知数列{a n }满足a 1=15,且当n >1,n ∈N *时,有a n -1a n =2a n -1+11-2a n,设b n =1a n ,n ∈N *.(1)求证:数列{b n }为等差数列.(2)试问a 1a 2是否是数列{a n }中的项?如果是,是第几项; 如果不是,请说明理由.参考答案学习过程:例1:解:设{a n }的公差为d .方法一 由题意知⎩⎪⎨⎪⎧a 15=a 1+14d =8,a 60=a 1+59d =20,解得⎩⎨⎧a 1=6415,d =415.所以a 75=a 1+74d =6415+74×415=24.方法二 因为a 60=a 15+(60-15)d ,所以d =a 60-a 1560-15=20-860-15=415,所以a 75=a 60+(75-60)d =20+15×415=24.变式训练1:解:方法一 设公差为d ,则d =a m -a n m -n =n -mm -n =-1,从而a m +n =a m +(m +n -m )d =n +n ·(-1)=0.方法二 设等差数列的通项公式为a n =an +b (a ,b 为常数),则⎩⎪⎨⎪⎧a m =am +b =n ,a n =an +b =m ,得a =-1,b =m +n .所以a m +n =a (m +n )+b =0. 例2:解:因为a 1+a 7=2a 4,a 1+a 4+a 7=3a 4=15, 所以a 4=5.又因为a 2a 4a 6=45,所以a 2a 6=9,即(a 4-2d )(a 4+2d )=9,(5-2d )(5+2d )=9,解得d =±2. 若d =2,a n =a 4+(n -4)d =2n -3; 若d =-2,a n =a 4+(n -4)d =13-2n .变式训练2:解:设这四个数为a -3d ,a -d ,a +d ,a +3d ,则由题设得⎩⎪⎨⎪⎧(a -3d )+(a -d )+(a +d )+(a +3d )=26,(a -d )(a +d )=40 ∴⎩⎪⎨⎪⎧4a =26,a 2-d 2=40. 解得⎩⎨⎧a =132,d =32或⎩⎨⎧a =132,d =-32.所以这四个数为2,5,8,11或11,8,5,2.例3:(1)证明:∵a n =4-4a n -1(n ≥2),∴a n +1=4-4a n (n ∈N *).∴b n +1-b n =1a n +1-2-1a n -2=12-4a n-1a n -2=a n 2(a n -2)-1a n -2=a n -22(a n -2)=12.∴b n +1-b n =12,n ∈N *.∴{b n }是等差数列,首项为12,公差为12.(2)解:b 1=1a 1-2=12,d =12.∴b n =b 1+(n -1)d =12+12(n -1)=n2.∴1a n -2=n 2,∴a n =2+2n .变式训练3:证明:∵1b +c ,1c +a ,1a +b 是等差数列,∴1b +c +1a +b =2c +a .∴(a +b )(c +a )+(b +c )(c +a )=2(a +b )(b +c ) ∴(c +a )(a +c +2b )=2(a +b )(b +c )∴2ac +2ab +2bc +a 2+c 2=2ab +2ac +2bc +2b 2 ∴a 2+c 2=2b 2,∴a 2,b 2,c 2成等差数列. 课堂检测:1.【答案】A2.【答案】C【解析】∵a 2=-9,a 3a 2=-23,∴a 3=-23×(-9)=6,∴d =a 3-a 2=15,∴a n =a 2+(n -2)d =-9+(n -2)·15=15n -39. 3.【答案】D【解析】由⎩⎪⎨⎪⎧a 2·a 4=12,a 2+a 4=8,d <0,⇒⎩⎪⎨⎪⎧ a 2=6,a 4=2,⇒⎩⎪⎨⎪⎧a 1=8,d =-2,所以a n =a 1+(n -1)d ,即a n =8+(n -1)(-2),得a n =-2n +10. 4.【答案】C【解析】方法一 设{a n }首项为a 1,公差为d ,a 3+a 4+a 5+a 6+a 7=a 1+2d +a 1+3d +a 1+4d +a 1+5d +a 1+6d =5a 1+20d 即5a 1+20d =450,a 1+4d =90,∴a 2+a 8=a 1+d +a 1+7d =2a 1+8d =180. 方法二 ∵a 3+a 7=a 4+a 6=2a 5=a 2+a 8,∴a 3+a 4+a 5+a 6+a 7=52(a 2+a 8)=450,∴a 2+a 8=180. 5.【答案】B【解析】由a n =a 1+(n -1)d ,得41=1+(n -1)d ,d =40n -1为整数.则n =3,5,6,9,11,21,41共7个. 6.【答案】43【解析】n -m =3d 1,d 1=13(n -m ).又n -m =4d 2,d 2=14(n -m ).∴d 1d 2=13(n -m )14(n -m )=43. 7.【答案】125【解析】1a 6-1a 4=14-16=2d ,即d =124.所以1a 10=1a 6+4d =14+16=512,所以a 10=125.8.【答案】12【解析】由题意设这4个根为14,14+d ,14+2d ,14+3d .则14+⎝⎛⎭⎫14+3d =2,∴d =12,∴这4个根依次为14,34,54,74, ∴n =14×74=716,m =34×54=1516或n =1516,m =716,∴|m -n |=12.9.解:设a n =a 1+(n -1)d ,则a 4a 9-a 6a 7=(a 1+3d )(a 1+8d )-(a 1+5d )(a 1+6d )=(a 21+11a 1d +24d 2)-(a 21+11da 1+30d 2)=-6d 2<0,所以a 4a 9<a 6a 7. 10.(1)证明:当n >1,n ∈N *时,a n -1a n =2a n -1+11-2a n ⇔1-2a n a n =2a n -1+1a n -1⇔1a n -2=2+1a n -1⇔1a n -1a n -1=4⇔b n -b n -1=4,且b 1=1a 1=5. ∴{b n }是等差数列,且公差为4,首项为5.(2)解:由(1)知b n =b 1+(n -1)d =5+4(n -1)=4n +1.∴a n =1b n =14n +1,n ∈N *.∵a 1=15,a 2=19,∴a 1a 2=145.令a n =14n +1=145,∴n =11.即a 1a 2=a 11,∴a 1a 2是数列{a n }中的项,是第11项.。
2.2 等差数列
知识梳理
1.等差数列的定义
一般地,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫等差数列的公差,通常用字母d 表示,定义的表达式为a n+1-a n =d(n∈N +).
2.等差数列的通项公式
如果等差数列{a n }的首项为a 1,公差为d,那么它的通项公式为a n =a 1+(n-1)d.
3.等差中项
若三个数a 、A 、b 成等差数列,则A 叫做a 、b 的等差中项,且A=
2b a +. 4.等差数列前n 项和公式
S n =2
)(1n a a n +或na 1+2)1(d n n -. 5.等差数列的单调性
等差数列{a n }的公差为d,若d >0,则数列为递增数列,且当a 1<0时,前n 项和S n 有最小值;
若d <0,则数列为递减数列,且当a 1>0时,前n 项和S n 有最大值.
6.等差数列的常用性质
已知数列{a n }是等差数列,首项为a 1,公差为d.
(1)若m+n=p+q,则a m +a n =a p +a q ;
推论:若m+n=2p,则a m +a n =2a p .
(2)等差数列中连续m 项的和组成的新数列是等差数列,公差等于m 2d,即
S m ,S 2m -S m ,S 3m -S 2m ,…为等差数列,则有S 3m =3(S 2m -S m ).
(3)从等差数列中抽取等距离的项组成的数列是一个等差数列.
如a 1,a 4,a 7,a 10,…(下标成等差数列).
知识导学
等差数列是一种特殊的数列,所以学习前先对上节有关数列的概念、性质进行回顾,同时复习前面学习过的一次函数的形式与图象,并且思考一次函数与等差数列的区别.本节内容的重点是等差数列的定义和等差数列的通项公式及前n 项和公式,要能够运用公式解决简单问题,在实际解题中注意有关技巧的运用.在理解定义时,要重视两点:一是“从第二项起”,二是“同一常数”,同时要对a,d 的取值对单调性的影响加以分析,以加深对概念的理解和知识的巩固.
疑难突破
1.如何去判断或证明一个数列为等差数列呢?
剖析:判断一个数列是否为等差数列,最基本也最常用的就是看这个数列是否符合等差数列的定义.一般有以下五种方法:
(1)定义法:a n+1-a n =d(常数)(n∈N +)⇔{a n }是等差数列;
(2)递推法:2a n+1=a n +a n+2(n∈N +)⇔{a n }是等差数列;
(3)性质法:利用性质来判断;
(4)通项法:a n =pn+q(p 、q 为常数)⇔{a n }是等差数列;
(5)求和法:S n =An 2+Bn(A 、B 为常数,S n 为{a n }的前n 项和)⇔{a n }是等差数列.
其中(4)(5)两种方法主要应用于选择、填空题中,在解答题中判断一个数列是否是等差数列,一般用(1)(2)(3)这三种方法,而方法(3)还经常与(1)(2)混合运用.
证明数列{a n }是等差数列有两种基本方法:
(1)利用等差数列的定义,证明a n+1-a n (n≥1)为常数;
(2)利用等差中项的性质,即证明2a n =a n-1+a n+1(n≥2).
2.如何求等差数列前n 项和的最值?
剖析:可从以下两个方面思考:
(1)利用前n 项和公式,转化为一元二次函数的最值问题.
S n =na 1+
n d a n d d n n )2(22)1(12-+=-,当d≠0时,此式可看作二次项系数为2
d ,一次项系数为a 1-2d ,常数项为0的二次函数,其图象为抛物线y=2d x 2+(a 1-2d )x 上的点集,坐标为(n,S n )(n∈N +),因此,由二次函数的性质立即可以得出结论:当d >0时,S n 有最小值;当d <0时,S n 有最大值.
(2)结合数列的特征,运用函数单调性的思路.当d >0时,则数列为递增数列,且当a 1<0时,一定会出现某一项,在此之前的项都是非正数,而后面的项都是正数,前n 项和S n 有最小值;当d <0时,则数列为递减数列,且当a 1>0时,一定会出现某一项,在此之前的项都是非负数,而后面的项都是负数,前n 项和S n 有最大值.显然最值问题很容易判断.第二种思路运算量小.。