2014最新人教版八年级数学下册期末考试卷及答案[1]
- 格式:doc
- 大小:1.95 MB
- 文档页数:6
数 学 试 卷一﹑选择题(每小题5分,共20分,每小题只有一个正确答案)1、能判定四边形是平行四边形的条件是( )A .一组对边平行,另一组对边相等B .一组对边相等,一组邻角相等C .一组对边平行,一组邻角相等D .一组对边平行,一组对角相等2、在平面直角坐标系中,已知点A (0,2),B (32-,0),C (0,2-),D (32,0),则以这四个点为顶点的四边形ABCD 是( )A .矩形B .菱形C .正方形D .梯形3、一个三角形三边的长分别为15cm ,20cm 和25cm ,则这个三角形最长边上的高为( )A.15cmB.20cmC.25cmD.12cm4、如图所示,有一张一个角为600的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形是( )A.邻边不等的矩形B.等腰梯形C.有一角是锐角的菱形D.正方形二、填空题(每小题5分,共15分,将正确答案直接填在空格的横线上) 5、某种感冒病毒的直径为0.0000000031米,用科学记数法表示为 米.6、如图,□ABCD 中,AE,CF 分别是∠BAD,∠BCD 的角平分线,请添加一个条件 使四边形AECF 为菱形.7、若一个三角形的三边满足222c b a -=,则这个三角形是三、解答题(每小题10分,共20分,写出详细的解题过程)8、先化简,再求值:412)211(22-++÷+-x x x x ,其中3-=xABC DF 14题9、一个游泳池长48米,小方和小朱进行游泳比赛,从同一处(A点)出发,小方平均速度为3米/秒,小朱为3.1米/秒.但小朱一心想快,不看方向沿斜线(AC方向)游,而小方直游(AB 方向),两人到达终点的位置相距14米.按各人的平均速度计算,谁先到达终点,为什么?四、解答题(共45分,写出详细的解答过程)a b c其中a b c10、(15分)观察下表所给出的三个数,,(1)观察各组数的共同点:(6分)①各组数均满足 .②最小数a是数,其余的两个数b、c是的正整数;③最小数a的等于另外两个数b、c的和.a=时,求b、c的值.(4分)(2)根据以上的观察,当2111、(10分)如图所示,铁路路基横断面为等腰梯形ABCD ,斜坡BC 的坡度3:4()BF i i CF ==,路基高3BF cm =,底CD 宽为18cm ,求路基顶AB 的宽 。
新人教版2014-2015学年八年级下期末数学试题2015.8.6一、选择题(每小题3分,满分36分)1.(2015春•博兴县期末)下列二次根式中,是最简二次根式的是()A.B.C。
D.2.(2015春•博兴县期末)下列各组数中,能构成直角三角形的是()A.4,5,6 B.1,1,C.6,8,11 D.5,12,23 3.(2003•南宁)下列命题正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形4.(2015春•博兴县期末)下列函数,y随x增大而减小的是()A.y=x B.y=x﹣1 C.y=x+1 D.y=﹣x+1 5.(2015•蓬溪县校级模拟)下列四个等式:①;②(﹣)2=16;③()2=4;④.正确的是()A.①②B.③④C.②④D.①③6.(2015•滨州)顺次连接矩形ABCD各边中点,所得四边形必定是()A.邻边不等的平行四边形B.矩形C正方形D.菱形7.(2015春•博兴县期末)函数y=kx+2,经过点(1,3),则y=0时,x=()A.﹣2 B.2 C.0 D.±28.(2015春•博兴县期末)等边三角形的边长为2,则该三角形的面积为()A.B.C.D.39.(2015春•博兴县期末)初二(1)班5位同学在“爱心捐助”捐款活动中,捐款如下(单位:元):4,6,8,16,16,那么这组数据的中位数、众数分别为()A.6,16 B.7,16 C.8,16 D.12,16 10.(2015春•博兴县期末)已知a<b,则化简二次根式的正确结果是()A.B. C ,D.11.(2015春•博兴县期末)如图,直线y=kx+b经过点A(2,1),则下列结论中正确的是()A当y≤2时,x≤1 B.当y≤1时,x≤2C.当y≥2时,x≤1D.当y≥1时,x≤212.(2015春•博兴县期末)平行四边形ABCD的周长32,5AB=3BC,则对角线AC的取值范围为()A.6<AC<10 B.6<AC<16 C.10<AC<16 D.4<AC<16二、填空题:(每小题4分,满分24分)13.(4分)(2015•滨州)计算(+)(﹣)的结果为.(2015春•博兴县期末)如图,菱形ABCD的边长为8cm,∠BAD=60°,14.(4分)则对角线AC的长为.15.(4分)(2015春•博兴县期末)有一个三角形的两边长是4和5,要使这个三角形成为直角三角形,则第三边长为.16.(4分)(2015•滨州)把直线y=﹣x﹣1沿x轴向右平移2个单位,所得直线的函数解析式为.17.(4分)(2015•滨州)如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后端点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为,.17题图 18题图18.(4分)(2015春•博兴县期末)如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要米.三、解答题:(满分60分)19.(10分)(2015春•博兴县期末)计算:(1)×(2)(3﹣)(1+)20.(8分)(2015春•博兴县期末)如图,已知AC=4,BC=3,BD=12,AD=13,∠ACB=90°,试求阴影部分的面积.21.(9分)(2011•潮州校级模拟)已知一次函数的图象过点(3,5)与点(﹣4,﹣9),求这个一次函数的解析式.22.(10分)(2015春•博兴县期末)王老师为了从班级里数学比较优秀的甲、乙两位同学中选拔一人参加“全国初中数学希望杯竞赛”,对两位同学进行了5次测验,测验成绩情况如图表所示:.请利用图表中提供的数据,解答下列问题:(1)根据图中分别写出甲、乙五次的成绩:甲:;乙:.(2)填写完成下列表格:平均成绩中位数众数方差甲13 无 4乙13(3)请你根据上面的信息,运用所学的统计知识,帮助王老师做出选择,并简要说明理由..23.(10分)(2015春•博兴县期末)如图,平行四边形ABCD的对角线AC,BD交于点0,E,F在AC上,G,H在BD上,且AF=CE,BH=DG.求证:FG∥HE.24.(13分)(2015春•博兴县期末)如图,直线OC、BC的函数关系式分别是y1=x和y2=﹣2x+6,动点P(x,0)在OB上运动(0<x<3),过点P作直线m与x轴垂直.(1)求点C的坐标,并回答当x取何值时y1>y2?(2)设△COB中位于直线m左侧部分的面积为s,求出s与x之间函数关系式.(3)当x为何值时,直线m平分△COB的面积?八年级(下)期末数学试题答案一、选择题1.故选;B. 2.故选:B. 3.故选:D. 4.故选D. 5.故选:D.6.故选:D. 7.故选A. 8.故选C 9.故选C. 10.故选A.11.故选:B. 12.故选D.二、填空题:13.故答案为:﹣1. 14.故答案为8cm15.3或. 16.故答案为y=﹣x+1. 17.故答案为:(10,3)18.故答案为7.三、解答题:本大题共6小题,满分60分19.解答:解:(1)原式=﹣=4﹣;(2)原式=(3﹣)•(1+)=(3﹣)•==2.20.解答:解:连接AB,∵∠ACB=90°,∴AB==5,∵AD=13,BD=12,∴AB2+BD2=AD2,∴△ABD为直角三角形,阴影部分的面积=AB×BD﹣AC×BC=30﹣6=24.答:阴影部分的面积是24.21.解答:解:设一次函数为y=kx+b(k≠0),(1分)因为它的图象经过(3,5),(﹣4,﹣9),所以解得:,所以这个一次函数为y=2x﹣1.(5分)22.解答:解:(1)用折线统计图得甲的成绩为:10,13,12,14,16;乙的成绩为:13,14,12,12,14;(2)甲的平均数=(10+13+12+14+16)=13,乙的成绩按由小到大排列为:12,12,13,14,14,所以乙的中位数为13,众数为12和14,方差=[(12﹣13)2+[(12﹣13)2+[(13﹣13)2+[(14﹣13)2+[(14﹣13)2]=0.8;(3)选乙去竞赛.理由如下:甲乙两人的平均数相同,中位数相等,但乙的成绩比较稳定,所以选乙去.故答案为10,13,12,14,16;13,14,12,12,14;13,13,12和14,0.8.23.解答:证明:如右图所示,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AF=CE,BH=DG,∴AF﹣OA=CE﹣OC,BH﹣OB=DG﹣OD,∴OF=OE,OG=OH,∴四边形EGFH是平行四边形,∴GF∥HE.24.解答:解:(1)依题意得解方程组,得,∴C点坐标为(2,2);根据图示知,当x>2时,y1>y2;(2)如图,过C作CD⊥x轴于点D,则D(2,0),∵直线y2=﹣2x+6与x轴交于B点,∴B(3,0),①当0<x≤2,此时直线m左侧部分是△P′Q′O,∵P′(x,0),∴OP′=x,而Q′在直线y1=x上,∴P′Q′=x,∴s=x2(0<x≤2);②当2<x<3,此时直线m左侧部分是四边形OPQC,∵P(x,0),∴OP=x,∴PB=3﹣x,而Q在直线y2=﹣2x+6上,∴PQ=﹣2x+6,∴S=S△BOC﹣S△PBQ==﹣x2+6x﹣6(2<x<3);(3)直线m平分△BOC的面积,则点P只能在线段OD,即0<x<2.又∵△COB的面积等于3,故x2=3×,解之得x=.∴当x=时,直线m平分△COB的面积.。
精品文档⋯ 2014-2015 学年度(下)八年级 期末质量检测⋯⋯ 数 学⋯ ⋯⋯(满分: 150 分;考试时间: 120 分钟 )⋯⋯ 注意:本试卷分为“试题”和“答题卡”两部分,答题时请按答题卡中的“注 ⋯⋯ 意事项”要求认真作答,答案写在答题卡上的相应位置.绩 ⋯成 ⋯ 一、精心选一选:本大题共 8 小题,每小题 4 分,共 32 分.线 1、下列计算正确的是( ⋯ ) ⋯ A . 2 3 4 2 6 5 B . 8 4 2⋯⋯ C . 27 3 3 D . ( 3)2 3⋯⋯2、顺次连接对角线相等的四边形的各边中点,所得图形一定是() ⋯ ⋯A .矩形B .直角梯形C .菱形号 ⋯座⋯⋯ 3、甲、乙、丙、丁四人进行射击测试,每人订222⋯方差分别为 s 甲 0.56 , s 乙 0.60 , s 丙⋯A .甲B .乙C .丙⋯D .正方形10 次射击成绩的平均数均是 9.2 环,0.45 ,则成绩最稳定的是( )⋯ 4、一组数据 4,5,6, 7, 7, 8 的中位数和众数分别是()⋯⋯A .7,7B .7,6.5C . 5.5, 7D .6.5,7⋯名 ⋯ 5、若直线 y=kx+b 经过第一、二、四象限,则 k,b 的取值范围是() (A)姓 ⋯⋯ k>0, b>0(B) k>0,b<0(C) k<0,b>0(D) k<0,b<0装⋯ 6、如图,把直线 L 沿 x 轴正方向向右平移 2 个单位得到⋯⋯ 直线 L ′,则直线 L /的解析式为()⋯ A. y 2x 1B.y 2x4⋯ ⋯ C. y2x 2D. y2x2⋯级 ⋯ 7、如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ ABC 折班 ⋯⋯叠,使点 B 与点 A 重合,折痕为 DE ,则 BE 的长为()⋯( A )4 cm(B )5 cm (C )6 cm( D ) 10 cmCADD0.50 , s 丁2D .丁.精品文档8、如图,ABC 和DCE 都是边长为 4 的等边三角形,点 B 、 C 、 E 在同一条直线上,连接BD ,则 BD 的长为()(A ) 3 (B) 2 3 (C) 3 3 (D) 4 3二、细心填一填:本大题共8 小题,每小题 4 分,共 32 分.9、计算12 3 的结果是.10 、实数p 在数轴上的位置如图所示,化简( p 1)2( p 2) 2_______ 。
线订装绩成号座名姓级班2014-2015 学年度(下)八年级期末质量检测数学(满分: 150 分;考试时间: 120 分钟 )注意:本试卷分为“试题”和“答题卡”两部分,答题时请按答题卡中的“注意事项”要求仔细作答,答案写在答题卡上的相应地点.一、精心选一选:本大题共8 小题,每题 4 分,共 32 分.1、以下计算正确的选项是()A.23 42 65B.842C.27 3 3D. ( 3)232、按序连结对角线相等的四边形的各边中点,所得图形必定是()A.矩形B.直角梯形C.菱形D.正方形3、甲、乙、丙、丁四人进行射击测试,每人10 次射击成绩的均匀数均是环,方差分别为 s甲20.56 , s乙20.60 , s丙20.50 , s丁20.45 ,则成绩最稳固的是()A.甲B.乙C.丙D.丁4、一组数据 4,5,6,7,7,8 的中位数和众数分别是()A.7,7 B.7,6.5C., 7 D., 75、若直线 y=kx+b 经过第一、二、四象限,则k,b 的取值范围是()(A)k>0,b>0(B)k>0,b<0(C)k<0,b>0(D)k<0,b<06、如图,把直线 L 沿 x 轴正方向向右平移 2 个单位获得直线 L′,则直线 L /的分析式为()y 2x 1. y 2x4y 2x 2 . y2x27、如图是一张直角三角形的纸片,两直角边AC= 6 cm、BC=8cm,现将△ ABC 折叠,使点 B 与点 A 重合,折痕为 DE,则 BE 的长为()(A )4 cm (B)5 cm(C)6 cm(D)10 cmC A D8、如D图,ABC 和A B DCE 都是边EE B C第7题(第8题长为 4 的等边三角形,点 B 、 C 、 E 在同一条直线上,连结BD ,则 BD 的长为()(A)3(B) 2 3(C)3 3(D)4 3二、仔细填一填:本大题共8 小题,每题 4 分,共 32 分.9、计算12 3 的结果是.10、实数 p 在数轴上的地点以下图,化简( p 1) 2( p 2) 2_______ 。
2013——2014学年度第二学期期末检测八年级数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分,卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷共8页,满分为120分,考试时间为120分钟. 卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上;考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如没有答题卡可将答案选在括号内。
一、选择题(本大题共16个小题,1-6每小题2分,7-16每小题3分,共42分.在每个小题给出的四个选项中,只有一项是符合题目要求的) 1.数据:2,1,0,3,4的平均数是( ) A .0 B .1 C .2 D .32.方程x x 22=的解为 ( ) A . 0 B . 2 C . 0或-2 D .0或2 3.若2-x 是二次根式,则x 的取值范围是( )A .x≥0B .x≤2C .x >2D .x≥2 4.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能..判定 这个四边形是平行四边形的是( ) A .AB ∥DC ,AD ∥BC B .AB=DC ,AD=BC C .AO=CO ,BO=DOD .AB ∥DC ,AD=BC5.函数y =3x +1的图象一定通过( ) A .(3,5) B .(-2,3) C .(2,7)D .(4,10)题号 一 二 三2122 23 24 25 26 得分6.下列计算正确的是 ( )A .235+=B .236=·C .84=D .2(3)3-=-7.如图:在平行四边形ABCD 中,∠BAD 的平分线AE 交DC 于E ,若∠DEA =25o , 则∠B 的度数( )A . 165°B . 130°C .100°D .115°8.为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽取50株,分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙的方差分别是3.5、10.9,则下列说法正确的是( )A .甲秧苗出苗更整齐B .乙秧苗出苗更整齐C .甲、乙出苗一样整齐D .无法确定甲、乙出苗谁更整齐9.用配方法解关于x 的一元二次方程0322=--x x ,配方正确的是( )A .()412=-x B .()412=+x C .()212=-x D .()212=+x10.已知油箱中有油25升,每小时耗油5升,则剩油量P (升)与耗油时间t (小时)之间的函数关系式为( ) A .P =25+5tB .P =25-5tC .P =t525 D .P =5t -2511.有以下图形:平行四边形、矩形、等腰三角形、等边三角形、菱形,其中既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个 12.已知一元二次方程x 2-6x+C=0有一个根为2,则另一根...为( ) A .2 B .3 C .4 D .813.若矩形的对角线长为8cm ,两条对角线的一个交角为600,则该矩形的面积为( ) A .83 cm 2 B .163 cm 2 C .16 cm 2 D .32 cm 214.如图,在正方形ABCD 的外侧,作等边三角形ADE ,连接BE ,则∠AEB 的度数为( )A .10°B .15°C .20°D .12.5°D ACBE15. 目前我国建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是( ) A .438(1+x )2=389 B .389(1+x )2=438C .389(1+2x )2=438 D .438(1+2x )2=38916.如图1,已知点E 、F 、G 、H 是矩形ABCD 各边的中点,AB=6,AD=8. 动点M 从点E 出发,沿E →F →G →H →E 匀速运动,设点M 运动的路程为x , 点M 到矩形的某一个顶点的距离为y , 如果y 关于x 的函数图象如图2所示,则矩形的这个顶点是H GFED CB A20Oyx3图1 图2 A .点A B. 点B C. 点C D. 点D卷Ⅱ(非选择题,共78分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上 .得分 评卷人17、在□ABCD 中,∠A+∠C=200°,则∠B=____ __.18、对于任意不相等的两个数a 、b ,定义一种运算※如下:a ※b =ba ba -+,如3※2=52323=-+.那么12※8= . 19、在矩形ABCD 中,由9个边长均为1的正方形组成的“L 型”模板如图放置,此时量得CF=3,则BC 边的长度为_____________.20、有一面积为150m 2的长方形鸡场,鸡场的一边靠墙(墙长为18m ),另三边用竹篱笆围成,如果竹篱笆的长为35m ,则鸡场中较长的边长为 m.二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)FED CBA三、解答题(本大题共8个小题共66分。
班级 姓名 座号 成绩……………………………装…………………………订……………………………线………………………………2014-2015学年度(下)八年级期末质量检测数 学(满分:150分;考试时间:120分钟)注意:本试卷分为“试题”和“答题卡”两部分,答题时请按答题卡中的“注意事项”要求认真作答,答案写在答题卡上的相应位置. 一、精心选一选:本大题共8小题,每小题4分,共32分. 1、下列计算正确的是( ) A .234265= B 82=C 2733=D 2(3)3-=-2、顺次连接对角线相等的四边形的各边中点,所得图形一定是( ) A .矩形B .直角梯形C .菱形D .正方形3、甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为0.56s =2甲,0.60s =2乙,20.50s =丙,20.45s =丁,则成绩最稳定的是( )A .甲B .乙C .丙D .丁4、一组数据4,5,6,7,7,8的中位数和众数分别是()A .7,7B .7,6.5C .5.5,7D .6.5,75、若直线y=kx+b 经过第一、二、四象限,则k,b 的取值范围是 ( ) (A) k>0, b>0 (B) k>0,b<0 (C) k<0,b>0 (D) k<0,b<06、如图,把直线L 沿x 轴正方向向右平移2个单位得到 直线L ′,则直线L /的解析式为( ) A.12+=x y B.42-=x y C.22y x =- D.22+-=x y7、如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( ) (A )4 cm (B )5 cm (C )6 cm (D )10 cmA第7题BCDEDBA (第8题ABCD E FC8、如图,ABC ∆和DCE ∆都是边长为4的等边三角形,点B 、C 、E 在同一条直线上,连接BD ,则BD 的长为( ) (A )3(B )23(C )33(D )43二、细心填一填:本大题共8小题,每小题4分,共32分. 9、计算123-的结果是.10、实数p 在数轴上的位置如图所示,化简22(1)(2)_______p p -+-=。
2014-2015学年度第二学期八年级期末考试数 学试卷满分100分。
祝你考试顺利!第Ⅰ卷一、选择题(本题共10小题,每小题3分,共30分)1.已知233x x +=-x 3+x ,则………………………………………………( )A .x ≤0B .x ≤-3C .x ≥-3D .-3≤x ≤0 2、下列各组数中,能构成直角三角形的是( )A :4,5,6B :1,1,2C :6,8,11D :5,12,233、三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( ) A. 等边三角形 B. 钝角三角形 C. 直角三角形 D. 锐角三角形.4.在根式①22b a + ②5x③xy x -2 ④ abc 27中,最简二次根式是( ) A .①② B .③④ C .①③ D .①④ 5、顺次连结对角线相等的四边形各边中点所得的四边形必定是( ) (A )菱形 (B )矩形 (C )正方形 (D )平行四边形 6、下列说法正确的是( )A .对角线互相平分且相等的四边形是菱形B .对角线相等且互相垂直的四边形是菱形C .对角线互相平分且垂直的四边形是正方形D .对角线互相垂直平分且相等的四边形是正方形7、一次函数4)2(2-+-=k x k y 的图象经过原点,则k 的值为( ) A .2 B .-2 C.2或-2 D.38、刘翔为了备战2008年奥运会,刻苦进行110米跨栏训练,为判断他的成绩是否稳定,教练对他10次训练的成绩进行统计分析,则教练需了解刘翔这10次成绩的( )A .众数B .方差C .平均数D .频数9、下图中表示一次函数y =mx+n 与正比例函数y =m nx(m ,n 是常数,且mn<0)图像的是( )10.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线是A →D →C →B →A ,设P 点经过的路线为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是( )二、填空题(每题3分,共24分)11、木工师傅要做一个长方形桌面,做好后量得长为80cm ,宽为60cm ,对角线为100cm ,则这个桌面 。
新人教版2014-2015学年八年级(下)期末数学试卷A卷(100分)一、选择题(本题共30分,每小题3分)1.(2015春•西城区期末)下列图案中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.2.(2015春•西城区期末)下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.2,2,3 B. 3,4,5 C. 5,12,13 D. 1,,3.(2013•黔西南州)已知▱ABCD中,∠A+∠C=200°,则∠B的度数是()A.100°B. 160°C. 80°D. 60°4.(2015春•西城区期末)如图,矩形ABCD中,对角线AC,BD交于点O.若∠AOB=60°,BD=8,则AB的长为()A.4 B.C. 3 D. 54题图5题图6题图5.(2012•铜仁地区)如图,正方形ABOC的边长为2,反比例函数的图象过点A,则k的值是()A.2 B.﹣2 C. 4 D.﹣46.(2015春•西城区期末)某篮球兴趣小组有15名同学,在一次投篮比赛中,他们的成绩如右面的条形图所示.这15名同学进球数的众数和中位数分别是()A.10,7 B. 7,7 C. 9,9 D. 9,7 7.(2014•绵阳)下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相垂直平分且相等的四边形是正方形D.一组对边相等,另一组对边平行的四边形是平行四边形8.(2015春•西城区期末)某小区2014年屋顶绿化面积为2000平方米,计划2016年屋顶绿化面积要达到2880平方米.若设屋顶绿化面积的年平均增长率为x,则依题意所列方程正确的是()A.2000(1+x)2=2880 B. 2000(1﹣x)2=2880C.2000(1+2x)=2880 D. 2000x2=28809.(2015春•西城区期末)若一直角三角形的两边长分别是6,8,则第三边长为()A.10 B.C. 10或D.14 10.(2015春•西城区期末)如图,以线段AB为边分别作直角三角形ABC和等边三角形ABD,其中∠ACB=90°.连接CD,当CD的长度最大时,此时∠CAB的大小是()A.75°B.45°C.30°D. 15°10题图12题图15题图二、填空题(本题共24分,每小题3分)11.(2015春•西城区期末)若x=2是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为.12.(2014•成都)如图,为估计池塘岸边A,B两点间的距离,在池塘的一侧选取点O,分别取OA,OB的中点M,N,测得MN=32m,则A,B两点间的距离是m.13.(2015春•西城区期末)2015年8月22日,世界田径锦标赛将在北京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备.在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.6秒,甲、乙、丙、丁的成绩的方差分别是0.07,0.03,0.05,0.02.则当天这四位运动员中“110米跨栏”的训练成绩最稳定运动员的是.14.(2015春•西城区期末)双曲线y=经过点A(2,y1)和点B(3,y2),则y1y2.(填“>”、“<”或“=”)15.(2015春•绿园区期末)如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD= .16.(2015春•西城区期末)将一元二次方程x2+8x+3=0化成(x+a)2=b的形式,则a+b的值为.17.(2015春•西城区期末)如图,将▱ABCD绕点A逆时针旋转30°得到▱AB′C′D′,点B′恰好落在BC边上,则∠DAB′= °.17题图18题图18.(2015春•西城区期末)如图,在平面直角坐标系xOy中,菱形OABC的顶点B在x轴上,OA=1,∠AOC=60°.当菱形OABC开始以每秒转动60度的速度绕点O逆时针旋转时,动点P同时从点O出収,以每秒1个单位的速度沿菱形OABC的边逆时针运动.当运动时间为1秒时,点P的坐标是;当运动时间为2015秒时,点P的坐标是.三、解答题(本题共20分,第19题10分,其余每小题10分)19.(10分)(2015春•西城区期末)解方程:(1)(x﹣5)2﹣9=0;(2)x2+2x﹣6=0.20.(5分)(2015春•西城区期末)已知:如图,四边形ABCD是平行四边形,AE∥CF,且分别交对角线BD于点E,F.(1)求证:△AEB≌△CFD;(2)连接AF,CE,若∠AFE=∠CFE,求证:四边形AFCE是菱形.21.(5分)(2015春•西城区期末)如图,在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为A(﹣2,﹣1),B(﹣4,1),C(﹣3,3).△ABC关于原点O对称的图形是△A1B1C1.(1)画出△A1B1C1;(2)BC与B1C1的位置关系是平行,AA1的长为2;(3)若点P(a,b)是△ABC 一边上的任意一点,则点P经过上述变换后的对应点P1的坐标可表示为.四、解答题(本题共12分,每小题6分)22.(6分)(2015春•西城区期末)“中国汉字听写大会”是由中央电视台和国家语言文字工作委员会联合主办的节目,希望通过节目的播出,能吸引更多的人关注对汉字文化的学习.某校也开展了一次“汉字听写”比赛,每位参赛学生听写40个汉字.比赛结束后随机抽取部分学生的听写结果,按听写正确的汉字个数x绘制成了以下不完整的统计图.根据以上信息回答下列问题:(1)本次共随机抽取了50 名学生进行调查,听写正确的汉字个数x在21≤x<31 范围的人数最多;(2)补全频数分布直方图;(3)各组的组中值如下表所示.若用各组的组中值代表各组每位学生听写正确的汉字个数,求被调查学生听写正确的汉字个数的平均数;听写正确的汉字个数x 组中值1≤x<11 611≤x<21 1621≤x<31 2631≤x<41 36(4)该校共有1350名学生,如果听写正确的汉字个数不少于21个定为良好,请你估计该校本次“汉字听写”比赛达到良好的学生人数.23.(6分)(2015春•西城区期末)已知关于x的一元二次方程x2+(2m+2)x+m2﹣4=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为负整数,且该方程的两个根都是整数,求m的值.五、解答题(本题共14分,每小题7分)24.(7分)(2015春•西城区期末)如图,在平面直角坐标系xOy中,点A(a,﹣)在直线y=﹣上,AB∥y轴,且点B的纵坐标为1,双曲线y=经过点B.(1)求a的值及双曲线y=的解析式;(2)经过点B的直线与双曲线y=的另一个交点为点C,且△ABC的面积为.①求直线BC的解析式;②过点B作BD∥x轴交直线y=﹣于点D,点P是直线BC上的一个动点.若将△BDP以它的一边为对称轴进行翻折,翻折前后的两个三角形所组成的四边形为正方形,直接写出所有满足条件的点P的坐标.25.(7分)(2015春•西城区期末)已知:在矩形ABCD和△BEF中,∠DBC=∠EBF=30°,∠BEF=90°.(1)如图1,当点E在对角线BD上,点F在BC边上时,连接DF,取DF的中点M,连接ME,MC,则ME与MC的数量关系是,∠EMC= °;(2)如图2,将图1中的△BEF绕点B旋转,使点E在CB的延长线上,(1)中的其他条件不变.①(1)中ME与MC的数量关系仍然成立吗?请证明你的结论;②求∠EMC的度数.B卷(50分)一、填空题(本题6分)26.(6分)(2015春•西城区期末)若一个三角形的三条边满足:一边等于其他两边的平均数,我们称这个三角形为“平均数三角形”.(1)下列各组数分别是三角形的三条边长:①5,7,5;②3,3,3;③6,8,4;④1,,2.其中能构成“平均数三角形”的是;(填写序号)(2)已知△ABC的三条边长分别为a,b,c,且a<b<c.若△ABC既是“平均数三角形”,又是直角三角形,则的值为.二、解答题(本题共14分,每小题7分)27.(7分)(2015春•西城区期末)阅读下列材料:某同学遇到这样一个问题:在平面直角坐标系xOy中,已知直线l:y=﹣x,点A(1,t)在反比例函数(x>0)的图象上,求点A到直线l的距离.如图1,他过点A作AB⊥l于点B,AD∥y轴分别交x轴于点C,交直线l于点D.他发现OC=CD,∠ADB=45°,可求出AD的长,再利用Rt△ABD求出AB的长,即为点A到直线l的距离.请回答:图1中,AD= ,点A到直线l的距离= .参考该同学思考问题的方法,解决下列问题:在平面直角坐标系xOy中,已知直线l:y=﹣x,点M(a,b)是反比例函数(x>0)的图象上的一个动点,且点M在第一象限,设点M到直线l的距离为d.(1)如图2,若a=1,d=,则k= ;(2)如图3,当k=8时,①若d=,则a= ;②在点M运动的过程中,d的最小值为.28.(7分)(2015春•西城区期末)已知:四边形ABCD是正方形,E是AB边上一点,连接DE,过点D作DF⊥DE交BC的延长线于点F,连接EF.(1)如图1,求证:DE=DF;(2)若点D关于直线EF的对称点为H,连接CH,过点H作PH⊥CH交直线AB于点P.①在图2中依题意补全图形;②求证:E为AP的中点;(3)如图3,连接AC交EF于点M,求的值.答案:一、选择题1.故选B.2.故选:A.3.故选C.4.故选:A.5.故选D.6.故选D.7.故选:C.8.故选A.9.故选C.10.故选:B.二、填空题(本题共24分,每小题3分)11.故答案是:﹣11.12.故答案为:64.13.故答案为:丁.14.故答案为:>.15.故答案为:10.16.故答案为:17.17.故答案为:75.18.故答案为:(0,﹣1);(0,0)三、解答题(本题共20分,第19题10分,其余每小题10分)19.解答:解:(1)方程整理得:(x﹣5)2=9,开方得:x﹣5=±3,即x﹣5=3,或x﹣5=﹣3,解得:x1=8,x2=2;(2)这里a=1,b=2,c=﹣6,∵△=b2﹣4ac=22﹣4×1×(﹣6)=28>0,∴方程有两个不相等的实数根,则x=﹣1±.20.解答:证明:(1)如图:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,∴∠1=∠2,∵AE∥CF,∴∠3=∠4,在△AEB和△CFD中,,∴△AEB≌△CFD(AAS);(2)∵△AEB≌△CFD,∴AE=CF,∵AE∥CF,∴四边形AFCE是平行四边形.∵∠5=∠4,∠3=∠4,∴∠5=∠3.∴AF=AE.∴四边形AFCE是菱形.21.解答:解:(1)根据题意画出△A1B1C1,如图所示;(2)由题意得:BC∥B1C1,AA1==2;(3)利用中心对称图形性质得:点P经过上述变换后的对应点P1的坐标为(﹣a,﹣b).故答案为:(2)平行,2;(2)(﹣a,﹣b)四、解答题(本题共12分,每小题6分)22.解答:解:(1)抽取的学生总数是10÷20%=50(人),听写正确的汉字个数21≤x<31范围内的人数最多,故答案是:50,21≤x<31;(2)11≤x<21一组的人数是:50×30%=15(人),21≤x<31一组的人数是:50﹣5﹣15﹣10=20.;(3)=23(个).答:被调查学生听写正确的汉字个数的平均数是23个.(4)(人).答:估计该校本次“汉字听写”比赛达到良好的学生人数约为810人.23.解答:解:(1)∵一元二次方程x2+(2m+2)x+m2﹣4=0有两个不相等的实数根,∴△=b2﹣4ac=(2m+2)2﹣4×1×(m2﹣4)=8m+20>0,∴;(2)∵m为负整数,∴m=﹣1或﹣2,当m=﹣1时,方程x2﹣3=0的根为:,(不是整数,不符合题意,舍去),当m=﹣2时,方程x2﹣2x=0的根为x1=0,x2=2都是整数,符合题意.综上所述m=﹣2.五、解答题(本题共14分,每小题7分)24解答:解:(1)∵点A(a,)在直线y=﹣上,∴﹣a﹣=,解得a=2,则A(2,﹣),∵AB∥y轴,且点B的纵坐标为1,∴点B的坐标为(2,1).∵双曲线y=经过点B(2,1),∴m=2×1=2,∴反比例函数的解析式为y=;(2)①设C(t,),∵A(2,﹣),B(2,1),∴×(2﹣t)×(1+)=,解得t=﹣1,∴点C的坐标为(﹣1,﹣2),设直线BC的解析式为y=kx+b,把B(2,1),C(﹣1,﹣2)代入得,解得,∴直线BC的解析式为y=x﹣1;②当y=1时,﹣=1,解得x=﹣1,则D(﹣1,1),∵直线BCy=x﹣1为直线y=x向下平移1个单位得到,∴直线BC与x轴的夹角为45°,而BD∥x轴,∴∠DBC=45°,当△PBD为等腰直角三角形时,以它的一边为对称轴进行翻折,翻折前后的两个三角形所组成的四边形为正方形,若∠BPD=90°,则点P在BD的垂直平分线上,P点的横坐标为,当x=时,y=x﹣1=﹣,此时P(,﹣),若∠BDP=90°,则PD∥y轴,P点的横坐标为﹣1,当x=﹣1时,y=x﹣1=﹣2,此时P(﹣1,﹣2),综上所述,满足条件的P点坐标为(﹣1,﹣2)或(,).25答:解:(1)如图1,,∵∠BEF=90°,∴∠DEF=90°,∵点M是DF的中点,∴ME=MD,∵∠BCD=90°,点M是DF的中点,∴MC=MD,∴ME=MC;∵ME=MD,∴∠MDE=∠MED,∴∠EMF=∠MDE+∠MED=2∠MDE,∵MC=MD,∴∠MDC=∠MCD,∴∠CMF=∠MDC+∠MCD=2∠MDC,∴∠EMC=∠EMF+∠CMF=2(∠MDE+∠MDC)=2∠BDC,又∵∠DBC=30°,∴∠BDC=90°﹣30°=60°,∴∠EMC=2∠BDC=2×60°=120°.(2)①ME=MC仍然成立.证明:如图2,分别延长EM,CD交于点G,,∵四边形ABCD是矩形,∴∠DCB=90°.∵∠BEF=90°,∴∠FEB+∠DCB=180°.∵点E在CB的延长线上,∴FE∥DC.∴∠1=∠G.∵M是DF的中点,∴FM=DM.在△FEM和△DGM中,,∴△FEM≌△DGM,∴ME=GM,∴在Rt△GEC中,MC=EG=ME,∴ME=MC.②如图3,分别延长FE,DB交于点H,,∵∠4=∠5,∠4=∠6,∴∠5=∠6.∵点E在直线FH上,∠FEB=90°,∴∠HEB=∠FEB=90°.在△FEB和△HEB中,,∴△FEB≌△HEB.∴FE=HE.∵FM=MD,∴EM∥HD,∴∠7=∠4=30°,∵ME=MC,∴∠7=∠8=30°,∴∠EMC=180°﹣∠7﹣∠8=180°﹣30°﹣30°=120°.故答案为:ME=MC,120.一、填空题(本题6分)26.是②③;(填写序号)(2).二、解答题(本题共14分,每小题7分)27解答:解:图1中,把x=1代入反比例解析式得:t=3,即A(1,3),即AC=3,把x=1代入y=﹣x得:y=﹣1,即CD=1,∴AD=AC+CD=3+1=4,点A到直线l的距离AB=×4=2;(1)由题意得:△MBD为等腰直角三角形,∴MB=BD=MD=5,即MD=10,把x=1代入y=﹣x得:y=﹣1,即CD=1,∴MC=9,则k=1×9=9;(2)①由k=8,得到ab=8(i),如图2所示,得到BM=BD=AD=3,即AD=6,把x=a代入y=﹣x得:b=﹣a,即MD=MC+CD=b+a=6(ii),联立(i)(ii)得:a=2,b=4或a=4,b=2,则a=2或4;②由题意得:ab=8,∵a+b≥2=4,∴MD的最小值为4,则BM的最小值为4,即d的最小值为4.故答案为:4;2;(1)9;(2)①2或4;②428.解答:解:(1)∵四边形ABCD是正方形,∴DA=DC,∠DAE=∠ADC=∠DCB=90°.∴∠DCF=180°﹣90°=90°.∴∠DAE=∠DCF.∵DF⊥DE,∴∠EDF=90°.∵∠ADE+∠CDE=90°,∠CDE+∠CDF=90°,∴∠ADE=∠CDF.在△DAE和△DCF中,∴△DAE≌△DCF.∴DE=DF.(2)①所画图形如图2所示.②连接HE,HF,如图3.∵点H与点D关于直线EF对称,∴EH=ED,FH=FD.∵DE=DF,∴EH=FH=ED=FD.∴四边形DEHF是菱形.∵∠EDF=90°,∴四边形DEHF是正方形.∴∠DEH=∠EHF=∠HFD=90°.∴∠AED+∠PEH=90°,∠HFC+∠DFC=90°.∵△DAE≌△DCF,∴∠AED=∠DFC,AE=CF.∴∠PEH=∠HFC.∵PH⊥CH,∴∠PHC=90°.∵∠PHE+∠EHC=90°,∠EHC+∠FHC=90°,∴∠PHE=∠PHC.在△HPE和△HCF中,,∴△HPE≌△HCF.∴PE=CF.∴AE=PE.∴点E是AP的中点.(3)过点F作GF⊥CF交AC的延长线于点G,如图4.则∠GFC=90°.∵正方形ABCD中,∠B=90°,∴∠GFC=∠B.∴AB∥GF.∴∠BAC=∠G.∵四边形ABCD是正方形,∴AB=BC,∴∠BAC=∠BCA=90°=45°.∴∠BAC=∠BCA=∠FCG=∠G=45°.∴FC=FG.∵△DAE≌△DCF,∴AE=CF.∴AE=FG.在△AEM和△GFM中,,∴△AEM≌△GFM.∴AM=GM.∴AG=2AM,在Rt△ABC中,.同理,在Rt△CFG中,.∴.∴.∴.。
2014年八年级下学期数学测试卷(新版人教版附答案)八年级下学期数学测试卷一、选择题:1.如果代数式有意义,那么x的取值范围是()A.x≥0B.x≠1C.x>0D.x≥0且x≠12.下列各组数中,以a、b、c为边的三角形不是直角三角形的是()ABCD3.如图,直线上有三个正方形,若的面积分别为5和11,则的面积为()A.4B.6C.16D.554.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCDC.AB=CDD.AC⊥BD5.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F 分别是边AD,AB的中点,EF交AC于点H,则的值为()A.1B.C.D.6.的图象如图所示,当时,的取值范围是()A.B.C.D.7.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,若(x,y)恰好是两条直线的交点坐标,则这两条直线的解析式是进球数012345人数15xy32A.y=x+9与y=x+B.y=-x+9与y=x+C.y=-x+9与y=-x+D.y=x+9与y=-x+8.已知一次函数y=kx+b(k、b为常数且k≠0)的图象经过点A(0,﹣2)和点B(1,0),则k=,b=9.已知:ΔABC中,AB=4,AC=3,BC=,则ΔABC的面积是()A.6B.5C.1.5D.210.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为.11.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BCB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB∥DC,AD=BC12.有一块直角三角形纸片,如图1所示,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.2cmB.3cmC.4cmD.5cm二、填空题:13.计算:14.已知,则=_________。
2014-2015学年度第二学期八年级期末考试数 学试卷满分100分。
祝你考试顺利!第Ⅰ卷一、选择题(本题共10小题,每小题3分,共30分)1.已知233x x +=-x 3+x ,则………………………………………………( )A .x ≤0B .x ≤-3C .x ≥-3D .-3≤x ≤0 2、下列各组数中,能构成直角三角形的是( )A :4,5,6B :1,1,2C :6,8,11D :5,12,233、三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( ) A. 等边三角形 B. 钝角三角形 C. 直角三角形 D. 锐角三角形.4.在根式①22b a + ②5x ③xy x -2 ④ abc 27中,最简二次根式是( )A .①②B .③④C .①③D .①④ 5、顺次连结对角线相等的四边形各边中点所得的四边形必定是( ) (A )菱形 (B )矩形 (C )正方形 (D )平行四边形 6、下列说法正确的是( )A .对角线互相平分且相等的四边形是菱形B .对角线相等且互相垂直的四边形是菱形C .对角线互相平分且垂直的四边形是正方形D .对角线互相垂直平分且相等的四边形是正方形7、一次函数4)2(2-+-=k x k y 的图象经过原点,则k 的值为( ) A .2 B .-2 C.2或-2 D.38、刘翔为了备战2008年奥运会,刻苦进行110米跨栏训练,为判断他的成绩是否稳定,教练对他10次训练的成绩进行统计分析,则教练需了解刘翔这10次成绩的( )A .众数B .方差C .平均数D .频数9、下图中表示一次函数y =mx+n 与正比例函数y =m nx(m ,n 是常数,且mn<0)图像的是( )10.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线是A →D →C →B →A ,设P 点经过的路线为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是( )二、填空题(每题3分,共24分)11、木工师傅要做一个长方形桌面,做好后量得长为80cm ,宽为60cm ,对角线为100cm ,则这个桌面 。
期末综合检测一、选择题(每小题3分,共30分)1.要使式子x -2有意义,则x 的取值范围是( )A.x>0B.x ≥-2C.x ≥2D.x ≤2 2.矩形具有而菱形不具有的性质是( )A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等 3.下列计算正确的是( ) A.4×6=46B.4+6=10 C.40÷5=22 D.()215-= -154.根据表中一次函数的自变量x 与函数y 的对应值,可得p 的值为( ) A.1 B.-1 C.3 D.-35.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( )A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元 6.四边形ABCD 中,对角线AC,BD 相交于点O,下列条件不能判定这个四边形是平行四边形的是( )A.AB ∥DC,AD ∥BCB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB ∥DC,AD=BC7.如图,菱形ABCD 的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD 的周长是( ) A.24B.16C.413D.238.如图,△ABC 和△DCE 都是边长为4的等边三角形,点B,C,E 在同一条直线上,连接BD,则BD 的长为( ) A.3B.23C.33D.439.正比例函数y=kx(k≠0)的函数值y 随x 的增大而增大,则一次函数y=x+k 的图象大致是( )10.如图,函数y=2x 和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为( ) A.x<B.x<3C.x>D.x>3二、填空题(每小题4分,共32分) 11.计算:27 -31= . 12.函数y=23+-x x的自变量x 的取值范围是 . 13.已知a 、b 、c 是△ABC 的三边长,且满足关系式222b a c --+|a -b |=0, 则△ABC 的形状为 .14.某次能力测试中,10人成绩的平均数为 .15.在一次函数y=(2-k)x+1的取值范围为 . 16.如图,在平行四边形ABCD 中,点E 、F 分别在边BC 、AD 上,请添加一个条件 ,使四边形AECF 是平行四边形(只填一个即可).17.如图,菱形ABCD 的周长为85, 对角线AC 和BD 相交于点O, AC ∶BD=1∶2, 则AO ∶BO= ,菱形ABCD 的面积S=.18.李老师开车从甲地到相距240km 的乙地,如果油箱剩余油量y(L)与行驶里程x(km)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是 L. 三、解答题(共58分)4 4题表格 5题表格6题图7题图 8题图 9题图10题图 16题图 17题图 18题图19.(10分)计算:(1) 93+712-548+231. (2) (23-1)(3+1)-(1-23)2.20.(6分)化简求值:312344922+⋅+-÷++-a a a a a a , 其中a =25-.21.(6分)直线y=2x+b 经过点(3 , 5),求关于x 的不等式2x+b ≥0的解集.22.(8分) 在矩形ABCD 中,将点A 翻折到对角线BD 上的点M 处,折痕BE 交AD 于点E .将点C 翻折到对角线BD 上的点N 处,折痕DF 交BC 于点F . (1)求证:四边形BFDE 为平行四边形;(2)若四边形BFDE 为菱形,且AB =2,求BC 的长.23.(8分)如图,在菱形ABCD 中,AB=2,∠DAB=60°,点E 是AD 边的中点,点M 是AB 边上的一个动点(不与点A 重合),延长ME 交CD 的延长线于点N,连接MD,AN. (1)求证:四边形AMDN 是平行四边形.(2)当AM 为何值时,四边形AMDN 是矩形?请说明理由.24.(10分) 如图,在□ABCD 中,F 是AD 的中点,延长BC 到点E ,使CE=21BC ,连结DE 、CF .求证:(1)四边形CEDF 是平行四边形; (2)若AB=4,AD=6,∠B=60°,求DE 的长.25.(10分)某生物小组观察一植物生长,得到植物高度y(单位:cm)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC 是线段,直线CD 平行x 轴). (1)该植物从观察时起,多少天以后停止长高?(2)求直线AC 的解析式, 并求该植物最高长多少厘米?22题图24题图26.为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:甲、乙射击成绩统计表甲、乙射击成绩折线图(1)请补全上述图表(请直接在表中填空和补全折线图).(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由.(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?27.小明、小华在一栋电梯楼前感慨楼房真高.小明说:“这楼起码20层!”小华却不以为然:“20层?我看没有,数数就知道了!”小明说:“有本事,你不用数也能明白!”小华想了想说:“没问题!让我们来量一量吧!”小明、小华在楼体两侧各选A,B 两点,测量数据如图,其中矩形CDEF 表示楼体,AB=150m,CD=10m,∠A=30°,∠B=45°(A,C,D,B 四点在同一直线上),问: (1)楼高多少米?(2)若每层楼按3m 计算,你支持小明还是小华的观点呢?请说明理由.(参考数据:≈1.73,≈1.41,≈2.24)答案解析1.【解析】选D.根据题意得2-x ≥0,解得x ≤2.2.【解析】选B.矩形与菱形的两组对边都分别平行,故选项A 不符合题意;矩形的对角线相等,菱形的对角线不一定相等,故选项B 正确;矩形与菱形的对角线都互相平分,故选项C 不符合题意;矩形与菱形的两组对角都分别相等,故选项D 不符合题意. 3.【解析】选C.×==2,与不能合并,÷===2,==15,因此只有选项C 正确.4.【解析】选A.一次函数的解析式为y=k x+b(k ≠0), ∵x=-2时y=3;x=1时y=0, ∴解得∴一次函数的解析式为y=-x+1,∴当x=0时,y=1,即p=1.5.【解析】选A.这10个数据中出现次数最多的数据是2400,一共出现了4次,所以众数是2400;这10个数据按从小到大的顺序排列,位于第5个的是2400,第6个的也是2400,故中位数是=2400.6.【解析】选D.由“AB ∥DC,AD ∥BC ”可知,四边形ABCD 的两组对边互相平行,则该四边形是平行四边形.故选项A 不符合题意;由“AB=DC,AD=BC ”可知,四边形ABCD 的两组对边分别相等,则该四边形是平行四边形.故选项B 不符合题意;由“AO=CO,BO=DO ”可知,四边形ABCD 的两条对角线互相平分,则该四边形是平行四边形.故选项C 不符合题意;由“AB ∥DC,AD=BC ”可知,四边形ABCD 的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故选项D符合题意.7.【解析】选C.∵四边形ABCD是菱形,AC=6,BD=4,AC⊥BD,OA=AC=3,OB=BD=2,AB=BC=CD=AD,∴在Rt△AOB中,AB===,∴菱形的周长为4×AB=4.8.【解析】选D.∵△ABC和△DCE都是边长为4的等边三角形,∴∠DCE=∠CDE=60°,BC=CD=4,∴∠BDC=∠CBD=30°,∴∠BDE=90°.∴BD==4.9.【解析】选A.∵正比例函数y=kx(k≠0)的函数值y随x的增大而增大,∴k>0,∴一次函数y=x+k的图象经过第一、二、三象限.10.【解析】选A.∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,m=,∴点A 的坐标是,∴不等式2x<ax+4的解集为x<.11.【解析】-=3-=.答案:12.【解析】3-x≥0且x+2≠0,解得x≤3且x≠-2.答案:x≤3且x≠-213.【解析】∵+|a-b|=0,∴c2-a2-b2=0,且a-b=0,∴c2=a2+b2,且a=b,则△ABC为等腰直角三角形.答案:等腰直角三角形14.【解析】×(5×3+4×1+3×2+2×2+1×2)=×(15+4+6+4+2)=×31=3.1.所以这10人成绩的平均数为3.1.答案:3.115.【解析】∵在一次函数y=(2-k)x+1中,y随x的增大而增大,∴2-k>0,∴k<2.答案:k<216.【解析】若添加的条件是AF=CE,理由是:∵四边形ABCD是平行四边形,∴AD∥BC,∴AF∥CE,∵AF=CE,∴四边形AECF是平行四边形.答案:AF=CE(答案不唯一)17.【解析】∵四边形ABCD是菱形,∴AO=CO,BO=DO,∴AC=2AO,BD=2BO,∴AO∶BO=1∶2;∵菱形ABCD的周长为8,∴AB=2,∵AO∶BO=1∶2,∴A O=2,BO=4,∴菱形ABCD的面积S=×2×4×4=16.答案:1∶2 1618.【解析】设y与x之间的函数关系式为y=kx+b,由函数图象,得解得则y=-x+3.5.当x=240时,y=-×240+3.5=2(L).答案:219.【解析】(1)9+7-5+2=9+14-20+==.(2)(2-1)(+1)-(1-2)2=2×+2--1-(1-4+12)=6+2--1-1+4-12 =(2-1+4)-8=5-8. 20.【解析】÷·=··=,当a=-2时,原式====.21.【解析】∵直线y=2x+b 经过点(3,5),∴5=2×3+b,解得b=-1,∵2x+b ≥0,∴2x-1≥0,解得x ≥.22.【解析】(1)菱形.理由:∵根据题意得:AE=AF=ED=DF,∴四边形AEDF 是菱形.(2)如图,连接EF,∵AE=AF,∠A=60°,∴△EAF 是等边三角形,∴EF=AE=8cm.23.【解析】(1)∵四边形ABCD 是菱形,∴ND ∥AM, ∴∠NDE=∠MAE,∠DNE=∠AME, ∵点E 是AD 中点,∴DE=AE,在△NDE 和△MAE 中,∴△NDE ≌△MAE(AAS),∴ND=MA, ∴四边形AMDN 是平行四边形. (2)AM=1.理由如下:∵四边形ABCD 是菱形,∴AD=AB=2,∵平行四边形AMDN 是矩形,∴DM ⊥AB,即∠DMA=90°,∵∠DAB=60°,∴∠ADM=30°,∴AM=AD=1.24.【解析】(1)设楼高为xm,则CF=DE=xm,∵∠A=30°,∠B=45°,∠ACF=∠BDE=90°,∴AF=2CF=2xm,在Rt △ACF 中,根据勾股定理得AC===xm,∵∠BDE=90°,∠B=45°,∴BD=xm,∴x+x=150-10,解得 x===70-70(m),∴楼高70-70(m).(2)x=70-70≈70(1.73-1)=70×0.73=51.1(m)<3×20(m),∴我支持小华的观点,这楼不到20层.25.【解析】(1)∵CD ∥x 轴, ∴从第50天开始植物的高度不变.答:该植物从观察时起,50天以后停止长高. (2)设直线AC 的解析式为y=kx+b(k ≠0), ∵直线经过点A(0,6),B(30,12),∴解得所以,直线AC 的解析式为y=x+6(0≤x ≤50), 当x=50时,y=×50+6=16.答:直线AC 的解析式为y=x+6(0≤x ≤50),该植物最高长16cm.26.【解析】(1)根据折线统计图得乙的射击成绩为:2,4,6,7,7,8,8,9,9,10,则平均数为=7(环),中位数为7.5环,方差为[(2-7)2+(4-7)2+(6-7)2+(8-7)2+(7-7)2+(7-7)2+(8-7)2+(9-7)2+(9-7)2+(10-7)2]=5.4(环2);甲的射击成绩为9,6,7,6,2,7,7,8,9,平均数为7,则甲第八次射击的成绩为70-(9+6+7+6+2+7+7+8+9)=9(环),成绩为2,6,6,7,7,7,8,9,9,9,中位数为7(环),方差为[(2-7)2+(6-7)2+(6-7)2+(7-7)2+(7-7)2+(7-7)2+(8-7)2+(9-7)2+(9-7)2+(9-7)2]=4(环2),补全如下:甲、乙射击成绩统计表甲、乙射击成绩折线图(2)由甲的方差小于乙的方差,得到甲胜出.(3)希望乙胜出,规则为9环与10环的总环数大的胜出,因为乙9环与10环的总数为28,甲9环与10环的总数为27.。