四川省绵阳市2017届高三数学11月月考试题 文(无答案)
- 格式:doc
- 大小:474.00 KB
- 文档页数:5
【考试时间:11月30日16:15~18:15】数学试题卷注意事项:1.答卷前、考生务必将自已的姓名、准考证号码填写在答题卡上2.作答时,务必将答案写在答题卡上.写在本试卷及草稿纸上无效.3.考试结束后,将答题卡交回.一、单项选择题(本大题共8小题、每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数满足,则可以为( )A. B. C. D.2.已知平面向量,则“”是“与的夹角为钝角”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.为等比数列的前项和,若,且,则等于()A.2 B.4050 C. D.4.已知实数满足,则的最小值为( )A.20 B.25 C.30 D.355.若为锐角,已知( )A. B. C. D.6.已知函数的定义域为,若函数与函数的交点为,则( )A.0 B. C.2025 D.40507.已知圆,直线,点为直线上的动点.过点作圆的两条切线,切点分别为.若使得四边形为正方形的点有且只有一个,则实数的值为()A.或B.或5C.3或D.3或58.已知点分别为椭圆的左、右焦点,过点作轴的垂线交椭圆于两点,分别为的内切圆圆心,则的周长是( )z i z z =⋅z 1i -1i +12i +12i -()()1,2,,1a b m ==- 2m <a b n S {}n a n 12a =20222030a a +=2025S 2-4050-x 104x <<1914x x +-αsin cos αα-=cos2α=2525-3535-()f x ()(),22f x f x =--R ()11221x x g x --=-+()f x ()()()112220252025,,,,,,x y x y x y 20251i i x ==∑2025222:(1)4C x y +-=:0l x y m ++=P l P C ,M N PMCN P m 3-5-3-5-12,F F 22:11612x y C +=1F x C ,M N 123,,O O O 12122,,MF F NF F F MN 123O O OC. D.二、多项选择题(本大题共3小题、每小题6分,共18分.在每小题给出的四个选项中,有多个选项是符合题目要求的、全部选对的得6分,部分选对的得部分分,有选借的得0分)9.函数的部分图象如图所示,则下列结论正砳的是( )A.B.C.关于直线对称D.将函数的图象向左平移个单位得到函数的图象10.已知抛物线的焦点为,过点的直线交该抛物线于,两点,点,则下列结论正确的是( )A.B.C.若直线的斜率为1,则D.面积的最小值为11.已知函数,则下列说法正确的是( )A.在上是增函数B.若关于的方程有两个不相等的实根,且,则C.若,不等式恒成立,则的取值范围为2+22+2-()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭2ω=π3ϕ=()f x 11π12x =()f x 5π12()2cos2g x x =24x y =F F ()()1122,,,A y B x y x ()0,1P -1214x x ⋅=-111AF BF+=AB 8AB =ABP ()()e ,ln x f x x g x x x =-=-()ln g x ()1,∞+x ()g x a =12,x x 12x x <1223x x +>0,0a x >∀>()e ln 1xa f f x x x ⎛⎫⋅-+ ⎪⎝⎭…a 2,e ∞⎡⎫+⎪⎢⎣⎭D.若,且,则的最大值为三、填空题(本大题共3小题,每小题5分,共15分)12.若直线与直线平行,则实数__________.13.点为平面直角坐标系的原点,,点满足,点为圆上一动点,则的最小值为__________.14.若数列满足对任意都有,则称数列为上的“凹数列”.已知,若数列为上的“凹数列”,则实数的取值范围是__________.四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)记的内角的对边分别为.已知为边的中点,且.(1)求证:;(2)若,求的面积.16.(本小题满分15分)已知数列的前项和为,且.(1)若,求;(2)若数列是单调递增数列,求首项的取值范围.17.(本小题满分15分)某校高三年级在一次数学测验中,各位同学的成绩,现规定:成绩在的同学为“成绩顶尖”,在的同学为“成绩优秀”,低于90分的同学为“不及格”.(1)已知高三年级共有2000名同学,分别求“成绩优秀”和“不及格”的同学人数(小数按四舍五入取整处理);(2)现在要从“成绩顶尖”的甲乙同学和“成绩优秀”的丙丁戊己共6位同学中随机选4人作为代表交流学习心得,在已知至少有一名“成绩顶尖”同学入选的条件下,求同学丙入选的概率:(3)为了了解班级情况,现从某班随机抽取一名同学询问成绩,得知该同学为142分.请问:能否判断该班成绩明显优于或者差于年级整体情况,并说明理由.(参考数据:若,则,()()()12e 1f x g x a a ==>-210x x >>()21ln e ln x ax a a -+-e-21:20l x m y m ++=2:210l x y ++=m =O ()3,0A -P 2PA PO =Q 22:(3)(4)1C x y -+-=PQ PC +{}n a *n ∈N 212n n n a a a +++…{}n a *N 244m n n mn n b +=-{}n b {}*2n n ∈N ∣…m ABC ,,A B C ,,a b c 12cos ,a c B D c a+=+AC sin sin BD ABC a C ∠=BD b =4b =ABC {}n a n n S 1221n n a S n +=+-11a =n S {}n a 1a ()110,100N ξ~[140,150][)130,140()2,X N u σ~()0.6827P u X u σσ-+=……)18.(本小题满分17分)已知双曲线,其左顶点,离心率.(1)求双曲线方程及渐近线方程;(2)过右焦点的直线与双曲线右支交于两点,与渐近线分别交于点,直线分别与直线交于.(i)求的取值范围;(ii )求证:以为直径的圆过定点,并求出该定点.19.(本小题满分17分)已知函数.(1)讨论函数极值点的个数;(2)当时,数列满足:.求证:的前项和满足.()()220.9544,330.9973P u X u P u X u σσσσ-+=-+=…………()2222:10,0x y C a b a b-=>>()2,0A -32e =F ,P Q ,M N ,AP AQ 43x =,R T PQMN RT ()293ln 32f x x ax x =+-+()f x 32a ={}n a ()113,126n n n f a a a a +==+{}n a n 23n n S n <<+。
绵阳中学高2022级高三上期第一学月月考数学试题一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知全集,集合和的关系的韦恩(Venn )图如图所示,则阴影部分所示的集合的元素共有( )A.3个B.2个C.1个D.无穷多个2.围棋是中国传统棋种,蕴含着中华文化丰富内涵,围棋棋盘横竖各有19条线,共有个落子点.每个落子点都有落白子、落黑子和空白三种可能,因此围棋空间复杂度的上限.科学家们研究发现,可观测宇宙中普通物质的原子总数.则下列各数中与最接近的是( )(参考数据:)A. B. C. D.3.的定义域为( )A. B.C. D.4.设,,,则( )A. B. C. D.5.设函数,则不等式的解集是( )A. B. C. D.6.下列选项可以使得成立的一个充分不必要条件的是( )A. B. C. D.R U ={}2230M x x x =--≤{}21,Z N x x k k ==-∈1919361⨯=3613M ≈8010N ≈MNlg 30.48≈9310831073105310lg(tan 1)y x =-ππππ,Z 24xk x k k ⎧⎫⎨⎬⎩⎭+>>+∈πππ,π,Z 42x x k x k k ⎭>+≠+⎧⎫⎨⎬⎩∈ππ,Z 4x x k k ⎧⎫⎨⎬⎩⎭>+∈ππ,Z 42k x x k ⎧⎫⎨⎬⎩⎭>+∈0.30.2a =0.20.3b =0.2log 2c =c b a>>c a b >>b a c >>a b c>>3()f x x x =()()332log 3log 0f x f x +-<1,2727⎛⎫⎪⎝⎭10,27⎛⎫ ⎪⎝⎭()0,27()27,+∞1144xy -≤≤221x y +=2241x y +=1x y +=1y x=7.函数的导函数,若函数仅在有极值,则的取值范围是( )A. B.或 C.或 D.8.存在三个实数,,使其分别满足下述两个等式:(1);(2)其中表示三个实数,,中的最小值,则( )A.的最小值是 B.的最大值是 C.的最小值是 D.的最大值是二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.已知定义在R 上的奇函数,其周期为4,当时,,则( )A. B.的值域为C.在上单调递增D.在上有9个零点10.已知函数,下列说法正确的是( )A.关于对称B.的值域为R ,当且仅当或C.的最大值为1,当且仅当D.有极值,当且仅当11.关于函数,下列说法中正确的是( )A.图象关于直线对称 B.为偶函数C.为的周期D.三、填空题(本题共3小题,每小题5分,共15分.把答案填在题中的横线上.)12.已知顶点在坐标原点,始边与轴非负半轴重合,其终边上一点P 的坐标为,则的值为________13.甲说:在上单调递减乙说:存在实数使得在成立若甲、乙两人至少有一人说的话是对的,则的取值范围是________()f x ()(1)(ln 1)f x x x ax '=-+-()f x 1x =a 21e a ≤-21ea <-1a =21ea ≤-1a =1a =1a 2a 3a 1232a a a =-1230a a a ++=M 1a 2a 3a M 2-M 2-M M -()f x (0,2)x ∈()22xf x =-(2024)0f =()f x (2,2)-()f x (2,2)-()f x [4,4]-()214()log 21f x x ax =-+()f x x a =()f x 1a ≥1a ≤-()f x a =()f x 1a <()cos sin 2f x x x =π4x =()f x 2π()f x αx 11,23⎛⎫⎪⎝⎭sin(2)α()2ln 23y x ax =-+(,1]-∞x 2210x ax -+>1,22⎡⎤⎢⎥⎣⎦a14.已知不等式对任意的实数恒成立,则的最大值为________四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)已知函数.(1)若,求函数的极值;(2)讨论函数的单调性.16.(15分)已知函数,将函数的图象向右平移个单位长度,再将所得函数图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数的图象.(1)求的解析式;(2)若关于的方程在区间上有且只有两个实数解,求实数的取值范围.17.(15分)已知,,,(1)求的值(2)求角的值.18.(17分)已知函数.(1)证明:曲线是中心对称图形;(2)若,求实数m 的取值范围.19.(17分)已知函数.(1)函数与的图像关于对称,求的解析式;(2)在定义域内恒成立,求的值;(3)求证:,.112x aeax b -+-≥x ba3212()232a f x x x ax +=-+1a =()f x ()f x π()sin 26f x x ⎛⎫=++ ⎪⎝⎭()f x π212()y g x =()g x x ()g x k =-π5π,186⎡⎤-⎢⎥⎣⎦k ππ42α≤≤3ππ2β≤≤4sin 25α=cos()αβ+=225sin 8sincos11cos 82222πsin 2ααααα++-⎛⎫- ⎪⎝⎭βα-3()ln2(1)2xf x x x x=++--()y f x =(21)()40f m f m -+-<()2ln(1)cos(2)g x x x =--+--()f x ()g x 1x =-()f x ()1f x ax -≤a 2111ln 42nk n f k =+⎛⎫-< ⎪⎝⎭∑*N n ∈绵阳中学高2022级高三上期第一学月月考数学试题参考答案题号1234567891011答案AAACBBABABDABCCD12.13. 14.8.【详解】由已知得,,,中必有2个正数,1个负数,设,,,则,因为,所以,所以,即,所以,由得,,即,所以,故选:B.10.【详解】A.令,有,由于,所以,所以关于对称,故A 正确;B.当函数的值域为R ,则能取到的所有值,所以解得:或,故B 正确;C.若函数的最大值为1,则,故C 正确;D.若有极值,则在定义域内不单调,所以,则,故D 错误.故选:ABC 11.【详解】对于A ,,故A 错误;对于B ,,故B 错误对于C ,,故是的周期,故C 正确;对于D ,,令故,,利用导数求得,故D 正确.故选:CD 12132a <22ln 2-1a 2a 3a 30a <10a >20a >3M a =1230a a a ++=312a a a -=+312a a a -=+≥23124a a a ≤331234a a a a ≥1232a a a =-3324a ≤-338a ≤-32a ≤-2()21g x x ax =-+()(2)g x g a x =-14()log ()f x g x =1144(2)log (2)log ()()f a x g a x g x f x -=-==()f x x a =2()21g x x ax =-+(0,)+∞2440a ∆=-≥1a ≥1a ≤-()f x min 11()()44g x g a a =⇒=⇒=()f x 2()21g x x ax =-+2440a ∆=-<11a -<<ππcos sin(π2)sin sin 2()22f x x x x x f x ⎛⎫⎛⎫-=--=≠⎪ ⎪⎝⎭⎝⎭()cos()sin(2)()f x x x f x -=--=-(2π)cos(2π)sin(24π)cos sin 2()f x x x x x f x +=++==2π()f x ()22()cos sin 22cos sin 21sin sin f x x x x x x x ===-sin x t =()2()21f x t t =-[1,1]t ∈-()f x13.甲对,则有在上单调递减,且大于零,所以有且,则.若乙对,则,,若甲、乙两人至少有一人说的话是对的其对立面为甲乙说的均不对,此时或与求交集为,取其补集后的取值范围,所以14.可转化为图像恒在上方,所以必然有,现考虑刚好相切时的情况,设切点为,则,消元得到带得到,所以图像恒在上方,只需要,所以,令,所以15.【详解】(1),,所以或时,,时,,则在上递减,在递增,所以的极小值为,极大值为.(2),当时,,所以在上递增,当时,或时,;时,,所以在上递增,在上递减,当时,或时,;时,,所以在上递增;在上递减.16.【详解】(1)将的图象向右平移个单位长度后,得到的图象,2210x ax -+>(,1]-∞1a ≥420a ->12a ≤<1,22x ⎡⎤∃∈⎢⎥⎣⎦max 115522224x a x a a a x x ⎛⎫+>⇒+>⇒>⇒< ⎪⎝⎭{1a a <}2a ≥54a a ⎧≥⎫⎨⎬⎩⎭{}2a a ≥a {}2a a <{}2a a <11x ay e-=2y ax b =+0a >0110,x ax e-+⎛⎫ ⎪⎝⎭001111022x a x a e ae ax b-+-+⎧=⎪⎨⎪=+⎩022a b x a -=0112x a e a -+=121212ln 22422ln 22a b a ab e a a b a a a a a--+=⇒=--⇒=--11x ay e -+=2y ax b =+422ln 2b a a a ≤--242ln 2b a a a ≤--222(1)42ln 2()()a a h a h a a a-'--=⇒=max ()(1)22ln 2h a h ==-321323()2x x x f x =-+(1)(2)()x x f x =--'1x <2x >()0f x '>12x <<()0f x '<()f x (1,2)(,1),(2,)-∞+∞()f x 2(2)3f =5(1)6f =()()(2)f x x a x '=--2a =()0f x '≥()f x (,)-∞+∞2a >2x <x a >()0f x '>2x a <<()0f x '<()f x (,2),(,)a -∞+∞(2,)a 2a <x a <2x >()0f x '>2a x <<()0f x '<()f x (,),(2,)a -∞+∞(,2)a ()f x π2πππsin 2sin 2263y x x ⎡⎤⎛⎫⎛⎫=-++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦再将所得函数图象上所有点的横坐标缩短到原来的,纵坐标不变,得到的图象,所以.(2)因为,所以.,即在区间上有且只有两个实数解,于是函数与的图象在区间上有且只有两个交点,,,,所以.画出在区间上的图象如图所示,所以,所以,.所以实数的取值范围是.17.(1)由12πsin 223y x ⎛⎫=-+ ⎪⎝⎭π()sin 223g x x ⎛⎫=-+ ⎪⎝⎭π5π186x-≤≤4ππ4π2933x-≤-≤()g x k =-πsin 223x k ⎛⎫-=-- ⎪⎝⎭π5π,186⎡⎤-⎢⎥⎣⎦πsin 23y x ⎛⎫=-⎪⎝⎭2y k =--π5π,186⎡⎤-⎢⎥⎣⎦44πsin sin 99π⎛⎫-=- ⎪⎝⎭4πππ3πsin sin πsin sin 3339⎛⎫=+=-=-= ⎪⎝⎭3π4ππ0992<<<4π4πsin sin93⎛⎫-< ⎪⎝⎭πsin 23y x ⎛⎫=-⎪⎝⎭π5π,186⎡⎤-⎢⎥⎣⎦21k ≤--<23k +≤-<32k -<≤k 3,2⎛--+ ⎝222225sin 5cos 4sin 6cos 85sin 8sin cos 11cos 82222222πcos sin 2αααααααααα⎛⎫+++-++- ⎪⎝⎭=-⎛⎫- ⎪⎝⎭2254sin 6cos 84sin 6cos 34sin 3cos 22(4tan 3)cos cos cos αααααααααα++-+-+====-+---又因为,所以,可得,解得或,由于,所以.原式.(2)又由知,因则,由,又因,故.18.【详解】(1)函数,定义域为,所以曲线关于点对称.(2),因为,,所以,所以在定义域上单调递增;又关于点对称,,由(1)得恒成立,所以,所以所以,解得19.【详解】(1)依题意,设图像上任意一点坐标为,则其关于对称的点在图像上,4sin 25α=2sin cos 5αα=222sin cos tan 2sin cos 1tan 5αααααα==++tan 2α=1tan 2α=ππ42α≤≤tan 2α=∴11=-3ππ2β≤≤5π2π4αβ≤+≤cos()αβ+=sin()αβ+===sin()sin[()2]sin()cos 2cos()sin 2βααβααβααβα-=+-=+-+3455⎛⎛⎫=--⨯= ⎪ ⎝⎭⎝π5π24βα≤-≤3π4βα-=3()ln 2(1)2xf x x x x=++--(0,2)332()(2)ln 2(1)ln 2(2)(1)2x xf x f x x x x x x x-+-=++-++-+--332ln [22(2)](1)(1)04042x x x x x x x x-⎡⎤=⋅++-+-+-=++=⎣⎦-()y f x =(1,2)22112()23(1)23(1)2(2)f x x x x x x x '=+++-=++---(0,2)x ∈20(2)x x >-22()23(1)0(2)f x x x x '=++->-()f x (0,2)()f x (1,2)(21)()4f m f m -+<()(2)4f x f x +-=()(2)4f m f m +-=(21)()4()(2)f m f m f m f m -+<=+-212021202022m mm m m -<-⎧⎪<-<⎪⎨<<⎪⎪<-<⎩112m <<()f x ()00,x y 1x =-()002,x y --()g x则,则,故,;(2)令,则在在恒成立,又,且在上是连续函数,则为的一个极大值点,,.下证当时,在恒成立,令,,当,,在上单调递增,当,,在上单调递减,故,在上恒成立,又,则时,恒成立,综上,.(3)由(2)可知:,则,即,则,又由(2)可知:在上恒成立,则在上恒成立且当且仅当时取等,令,,则,即,则,综上,,即证.()()0002y f x g x ==--()()()000022ln 1cos f x g x x x =--=++()01x >-()2ln(1)cos f x x x =++(1)x >-()()12ln(1)cos 1h x f x ax x x ax =--=++--(1)x >-()0h x ≤(1,)x ∈-+∞(0)0h =()h x (1,)x ∈-+∞0x =()h x 2()sin 1h x x a x '=--+(0)202h a a '=-=⇒=2a =()0h x ≤(1,)x ∈-+∞()ln(1)x x x ϕ=+-1()111xx x x ϕ'=-=-++(1,0)x ∈-()0x ϕ'>()x ϕ(1,0)-(0,)x ∈+∞()0x ϕ'<()x ϕ(0,)+∞()(0)0x ϕϕ≤=ln(1)x x +≤(1,)-+∞cos 1x ≤2a =()()12[ln(1)](cos 1)0h x f x ax x x x =--=+-+-≤2a =()12f x x -≤11111222f k k ⎛⎫⎛⎫--≤- ⎪ ⎪⎝⎭⎝⎭1122f k k ⎛⎫-≤ ⎪⎝⎭211111122122nk n f k n n n =+⎛⎫⎛⎫-≤+++ ⎪ ⎪++⎝⎭⎝⎭∑ ln(1)x x +≤(1,)-+∞ln 1x x ≤-(0,)+∞1x =(0,1)1n x n =∈+*N n ∈1ln 1111n n n n n -<-=+++11ln ln ln(1)ln 11n n n n n n n +<-==+-++111ln(1)ln ln(2)ln(1)ln(2)ln(21)122n n n n n n n n n+++<+-++-+++--++ ln(2)ln ln 2n n =-=21112ln 2ln 42nk n f k =+⎛⎫-<= ⎪⎝⎭∑。
应城一中2017届高三11月月考试题高三数学试卷(文)考试时间:2016年11月×日下午3:00~5:00 试卷满分:150分第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合}3,2,1{=A ,},12|{A x x y y B ∈-==,则AB =( )(A )}3,1{ (B )}2,1{ (C )}3,2{ (D )}3,2,1{2、若43i z =+,则||z z = (A )1(B )1-(C )43i 55+ (D )43i 55-3、已知△ABC 是边长为1的等边三角形,点E D ,分别是边BC AB ,的中点,连接DE 并延长到点F ,使得EF DE 2=,则AF BC •的值为( )(A )85-(B )81 (C )41 (D )8114、已知函数f (x )(x ∈R)满足f (x )=f (2-x ),若函数y =|x 2-2x -3| 与y =f (x ) 图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mi i x =∑( )(A)0 (B)m (C) 2m (D) 4m 5、秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法。
如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为 (A)35 (B) 20 (C)18 (D)9学校 姓名班级6、若平面区域30,230,230x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( ) A.355B.2C.322D.57、已知等比数列{}=-==24531),1(4,41a a a a a a n 则满足( ) A. 2 B. 1 C.21 D. 81 8、已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =,则由该观测数据算得的线性回归方程可能是( )A .y ^=+B .y ^=2x -C .y ^=-2x +D .y ^=-+9、直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为(A )13 (B )12 (C ) 23 (D )3410、如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18365+ (B )54185+ (C )90 (D )8111、过点(1,1)P 的直线,将圆形区域{}22(,)|4x y x y +≤分两部分,使得这两部分的面积之差最大,则该直线的方程为( )A .20x y +-=B .10y -=C .0x y -=D .340x y +-=12、为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A )13 (B )12 (C )23(D )56第Ⅱ卷(非选择题)本卷包括必考题和选考题两部分。
湖南省三湘名校教育联盟2024-2025学年高三上学期第二次大联考(11月)数学试题(答案在最后)本试卷共4页.全卷满分150分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在本式卷和答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如有改动,用橡皮擦干净后,再选涂其他答案;回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本式卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{40},{31}A xx B x x =-=-∣∣ ,则集合A B 中所含整数的个数为A.2 B.3C.4D.52.已知3i12iz -=+,则z 的虚部为A.75B.75-C.15-D.153.“202520251ab>”是“33a b >”的A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.已知()1sin 104θ︒+=-,则()sin 2110θ︒+=A.78B.18C.18-D.78-5.经研究表明:光源发射出来的粒子在没有被捕获之前属于光子,光子在离开光源后会与各种粒子撞击,其动量可能会改变,导致其速度降低,最终可能改变身份成为其他范围的粒子(如红外线粒子),不再能被人类的感光设备捕获.已知在某次光学实验中,实验组相关人员用人类感光设备捕获了从同一光源发射出来的两个光子A ,B ,通过数学建模与数据分析得知,此时刻在平面直角坐标系中它们的位移所对应的向量分别为(4,3),(2,10)A B s s == ,设光子B 相对光子A 的位移为s ,则s 在A s上的投影向量的坐标为A.43,55⎛⎫⎪⎝⎭B.(2,7)- C.5239,2525⎛⎫⎪⎝⎭ D.43,2525⎛⎫⎪⎝⎭6.已知等差数列{}n a 的前n 项和为n S ,公差为1,2d a =也为等差数列,则d 的值为A.2B.3C.4D.87.已知函数1()ln 2(1)x f x x m x m+=+≠+关于点(,4)n 中心对称,则曲线()y f x =在点(n m -,())f n m -处的切线斜率为A.14 B.74C.38D.1388.ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且πcos cos 2,3b Cc B A +==,则ABC 的内切圆半径的最大值为A.2B.3C.2D.1二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知正数x ,y 满足21x y +=,则A.81xy B.1412x y+ C.22142x y +D.1(1)4x y +10.三棱台111ABC A B C -中,112AB A B =,设AB 的中点为1,E AA 的中点为1,F A E 与BF 交于点1,G A C 与1C F 交于点H ,则A.直线GH 与直线1BB 异面B.1//GH BC C.线段AE 上存在点P ,使得1//BC 平面1A PCD.线段BE 上存在点P ,使得1//BC 平面1A PC11.设函数2()e ,x f x nx n n +=-+∈N ,记()f x 的最小值为n a ,则A.122a a >- B.1n a n +C.()()n f a f n > D.n m n ma a a +>+三.填空题:本题共3小题,每小题5分,共15分.12.已知命题:“2,20x ax ax ∀∈--<R ”为真命题,则a 的取值范围是______.13.已知P 为边长为4的正六边形ABCDEF 内部及其边界上的一点,则AP AB ⋅的取值范围是______.14.三棱锥P ABC -中,AB AC AB AC ==⊥,平面PBC ⊥平面ABC ,且PB PC =.记P ABC -的体积为V ,内切球半径为r ,则21r V-的最小值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知函数()2cos 2,(0,π)f x x x x =+∈.(1)求()f x 的单调递减区间;(2)若()f x 在π,12m ⎡⎤⎢⎥⎣⎦上的最小值为-2,求m 的取值范围.16.(本小题满分15分)记首项为1的数列{}n a 的前n 项和为n S ,且2(1)n n S n a =+.(1)探究数列n a n ⎧⎫⎨⎬⎩⎭是否为单调数列;(2)求数列{}2na n a ⋅的前n 项和nT .17.(本小题满分15分)如图,四棱柱1111ABCD A B C D -中,四边形ABCD 是菱形,四面体11A BC D 的体积与四面体111A B BC 的体积之差为12,A BD 的面积为(1)求点A 到平面1A BD 的距离;(2)若11111,,2A B A D A B A C BD =⊥=,求锐二面角11A BD C --的余弦值.18.(本小题满分17分)已知函数2()ln 2x f x ax ax x =+-在(0,)+∞上有两个极值点12,x x ,且21x x <.(1)求a 的取值范围;(2)当21(1,e)x x ∈时,证明:122eln ln e 1x x <+<+.19.(本小题满分17分)对于(2,3,)m m = 项数列{}n a ,若满足111m miii i a am ==-=-∑∑,则称它为一个满足“绝对值关联”的m 阶数列.(1)对于一个满足“绝对值关联”的m 阶数列{}n a .证明:存在,{1,2,,}i j m ∈ ,满足0i j a a <;(2)若“绝对值关联”的m 阶数列{}n a 还满足(1,2,,)i a i m λ=,则称{}n a 为“绝对值λ关联”的m 阶数列.①请分别写出一个满足“绝对值34关联”的4阶数列和满足“绝对值1关联”的5阶数列(不必论证,符合要求即可);②若存在“绝对值λ关联”的n 阶数列(2)n ,求λ的最小值(最终结果用常数或含n 的式子表示).三湘名校教育联盟•2025届高三第二次大联考•数学参考答案、提示及评分细则1.【答案】C 【解析】由题意可得{40},{31}A xx B x x =-=-∣∣ ,可得{30}A B x x =- ∣ ,故集合A B 中所含整数有3,2,1,0---,共4个,故选C.2.【答案】A 【解析】由题意可得3i (3i)(12i)32i 6i 17i 12i (12i)(12i)555z ------====++-,故17i 55z =+,其虚部为75,故选A.3.【答案】A 【解析】由202520251ab> 及指数函数的单调性可得0a b > ,令函数3()f x x =,易得()f x 单调递增,故当0a b > 时,一定有33a b >,故充分性成立,但由33a b >只能推出a b >,即必要性不成立,故“20252025a b >1 ”是“33a b >”的充分不必要条件,故选A.4.【答案】A 【解析】由题意可得()1sin 104θ︒+=-,故()()()()2sin 2110sin 90220cos 22012sin 10θθθθ︒︒︒︒︒+=++=+=-+2171248⎛⎫=--= ⎪⎝⎭,故选A.5.【答案】C 【解析】由向量(4,3),(2,10)A B s s == ,可得(2,10)(4,3)(2,7)B A s AB s s ==-=-=-,所以s 在A s 上的投影向量为218135239(4,3),55252525A A A A As s s s s s ⋅-⎛⎫⋅=⨯=⋅= ⎪⎝⎭ ,故选C.6.【答案】C 【解析】易知232222n n d S a n d n d ⎛⎫-=+-+- ⎪⎝⎭也为等差数列,则232222d n d n d ⎛⎫+-+- ⎪⎝⎭为完全平方,则2322(2)02d d d ⎛⎫---= ⎪⎝⎭,解得4d =,故选C.7.【答案】D 【解析】因为()f x 关于点(,4)n 中心对称,所以函数1()()4ln224x n g x f x n x n x m n ++=+-=++-++为奇函数,则240n -=,即2n =,且3ln 2x y x m +=++为奇函数,所以23m +=-,解得5m =-,故1()ln 5x f x x +=+-2,7x n m -=,且6()2(1)(5)f x x x '=-+-,故切线斜率为13(7)8f '=,故选D.8.【答案】B 【解析】设ABC 的内切圆半径为r ,由题意可得cos cos 2b C c B +=,由余弦定理可得2222a b c b ab +-⋅+2222222222222a c b a b c a c b c a ac a a +-+-+-⋅=+==,而11sin ()22ABC S bc A a b c r ==++ ,故2r =⋅2bcb c ++,由余弦定理可得2222cos a b c bc A =+-,则224b c bc bc =+- ,当且仅当b c =时等号成立,而4=2()3b c bc +-,则b c +=,其中4bc ,故33222bc r b c =⋅=++=(24)t t < ,故24(2)6263t r t t -=⋅=-+ .故选B.9.【答案】AC 【解析】对于A :因为21x y +=18xy ,当且仅当2x y =,即11,42x y ==时取等号,故A 正确;对于B :1424(2)8666x y x y x y x y x y y x +++=+=+++=+,当且仅当8x yy x =,即x =1,22y =时取等号,故B 错误;对于C :因为22x y +,则22142x y + ,当且仅当2x y =,即11,42x y ==时取等号,故C 正确;对于D :因为2112(1)1(1)2(1)2222x y x y x y ++⎡⎤+=⨯+⨯=⎢⎥⎣⎦,当且仅当21x y =+,即1,02x y ==时取等号,这与x ,y 均为正数矛盾,故1(1)2x y +<,故D 错误,故选AC.10.【答案】AD 【解析】如图所示,对于A ,因为1BB ⊂/平面11,BC F BB 平面1BC F B =,故1BB 与平面1BC F 的交点为B ,且是唯一的.又因为B ,G ,H 三点不共线,所以GH 不经过点B ,又GH ⊂平面1BC F ,所以直线GH 与直线1BB 没有交点,即直线GH 与直线1BB 异面,故A 正确;对于B ,因为AB 的中点为1,E AA 的中点为F ,所以点G 是1A AB 的重心,:1:2FG GB =,若1//GH BC ,则1:1:2FH HC =,事实上:()()1111111222A H A C A A AC A F A C A F λλλλ==+=+=+112AC λ ,所以H 是1FC 的中点,1:1:2FH HC =不成立,故B 错误;对于CD 选项,如图,取线段BF 的中点Q ,连接1AQ 并延长,交BE于点P ,下证1//BC 平面1A PC :由H 为1C F 的中点可知1//HQ BC ,又1BC ⊂/平面1,A PC HQ ⊂平面1A PC ,所以1//BC 平面1A PC ,故D 正确,C 错误;故选AD.11.【答案】BCD 【解析】由题意可得()e xf x n '=-,当(,ln )x n ∈-∞时,()0,()f x f x '<单调递减,当(ln ,)x n ∈+∞时,()0,()f x f x '>单调递增,故2(ln )ln n a f n n n n n ==+-.对于A :12212,62ln 2,22a a a a ==---=-2ln 20>,即122a a <-,故A 错误;对于B :设函数2()1ln ,,()2ln 1F x x x x x F x x x '+=--∈=--N ,设函数1()2ln 1,()2,1g x x x g x x x '=--=- 时,则()0()g x g x '>⇒单调递增,故()(1)10g x g =>⇒ ()0()F x F x '>⇒单调递增,故22()(1)01ln 0ln 11n F x F n n n n n n n n a n =⇒--⇒+-+⇒+ ,故B 正确;对于C :易知ln n n >,又因为()f x 在(ln ,)x n ∈+∞上单调递增,故(ln )()(1)f n f n f n <<+ ()n f a ,故()()n f a f n >,故C 正确;对于D :[ln ln()][ln n m m n a a a m n m n m n m n +--=+-+++-ln()]n m +,只需证明ln ln()0n m n m +-+>即可,而ln ln e n n m m +=,由e 1(1)x x x >+易得e n m >(1)m n m mn m n +=++,故ln ln()0n m n m +-+>,同理可得ln ln()0m n n m +-+>,故n m n a a +>+m a ,故D 正确,故选BCD .12.【答案】(8,0-]【解析】因为命题“2,20x ax ax ∀∈--<R ”为真命题,当0a =时,20-<成立,当0a ≠时,则280a a a <⎧⎨∆=+<⎩,解得80a -<<,故a 的取值范围是(8,0]-,故答案为(8,0]-.13.【答案】[-8,24]【解析】由题意可得AB 的模为4,根据正六边形的特征及投影的定义可以得到AP 在AB方向上的投影长度的取值范围是[2,6]-,由数量积定义可知AP AB ⋅ 等于AB 的模与AP 在AB 方向上的投影长度的乘积,所以AP AB ⋅的取值范围是[8,24]-,故答案为[8,24]-.14.62+【解析】设三棱锥P ABC -的高为h ,依题意,可取BC 中点O ,连接OA ,OP ,则OA =1,OB OC OP h ===,则PBC 的面积为1,2h BC h ABC ⋅= 的面积112OA BC ⋅=,由21PA PB h ==+可得PBA 的面积为2212h +,于是三棱锥P ABC -2211h h +++,由等体积可知)2211133r hh h +++=⨯,所以2222222122122h h h r h h ++++==+,故21r V-=2222123221122h h h h h ++-+-=+.设函数22211()2x f x x +=+,且0x >,则()f x '=()2222222212121212x x x x x x +=++++,当3,()0,()2x f x f x '<<单调递减,3()02x f x '>>,()f x 单调递增,所以3()622f x f =+ ,所以62h =时,21r V -取得最小值62+62.15.【解析】(1)由题意可得π()32cos 22sin 2,(0,)6f x x x x x π⎛⎫=+=+∈ ⎪⎝⎭,………………2分令π2,(0,π)6z x x =+∈,则π13π,66z ⎛⎫∈ ⎪⎝⎭,因为π13πsin ,,66y z z ⎛⎫=∈ ⎪⎝⎭的单调递减区间是π3π,22⎡⎤⎢⎥⎣⎦,…………………………………………5分且由π3π22z ,得π2π63x ,所以()f x 的单调递减区间是π2π,63⎡⎤⎢⎥⎣⎦.………………………………7分(2)当π,12x m ⎡⎤∈⎢⎥⎣⎦,则πππ2,2636x m ⎡⎤+∈+⎢⎥⎣⎦,因为()f x 在区间π,12m ⎡⎤⎢⎥⎣⎦上的最小值为-2,……9分即sin y z =在ππ,236m ⎡⎤+⎢⎥⎣⎦上的最小值为-1,又因为π13π,66z ⎛⎫∈ ⎪⎝⎭,所以3ππ13π2,266m +< ……12分即2ππ3m < ,故m 的取值范围为2π,π3⎡⎫⎪⎢⎣⎭.……………………………………………………………13分16.【解析】(1)由题意得2(1)n n S n a =+,当2n 时,112n n S na --=,………………………………1分两式作差得112(1),(1)n n n n n a n a na n a na --=+--=,……………………………………………………3分所以11n n a a n n -=-,则数列n a n ⎧⎫⎨⎬⎩⎭为常数数列,………………………………………………………………5分无单调性,故数列n a n ⎧⎫⎨⎬⎩⎭不是单调数列.……………………………………………………………………6分(2)由(1)可得111n a a n ==,所以n a n =,故22an n n a n ⋅=⋅.……………………………………8分所以231222322n n T n =⋅+⋅+⋅++⋅ ,①……………………………………………………………10分23412122232(1)22n n n T n n +=⋅+⋅+⋅++-⋅+⋅ ,②………………………………………………12分①-②得()231112122222222(1)2,12n nn n n n T n n n +++--=++++-⋅=-⋅=---⋅- ……………14分所以1(1)2 2.n n T n +=-⋅+…………………………………………………………………………………15分17.【解析】(1)如图,连接AC 交BD 于点O ,设四棱柱1111ABCD A B C D -的体积为V Sh =(其中S 为菱形ABCD 的面积,h 为四棱柱ABCD -1111A B C D 的高),…………………………………………1分所以1ABDA 的体积为111236S h V ⋅=,同理四面体111A B BC 的体积为111236S h V ⋅=……………2分又因为四边形ABCD 是菱形,所以111122AO OC AC A C ===,所以点A 到平面1A BD 的距离为点1C 到平面1A BD 距离的一半,所以四面体11A BC D 的体积是四面体1ABDA 的体积的两倍,即13V .……4分设点A 到平面1A BD 的距离为d ,则1111233663V V V d =-==⋅………………………………5分解得3d =分(2)如图,连接1OA ,由111A B A C ⊥得1A B AC ⊥,又四边形ABCD 是菱形,所以AC BD ⊥,又11,,A B BD B A B BD =⊂ 平面1A BD ,所以AC ⊥平面1A BD ,又1AO ⊂平面1A BD ,所以1A O AC ⊥,………………………………………………………………………………………………8分又11,A B A D BO BD ==,所以1A O BD ⊥,…………………………………………………………9分又,,BD AC O BD AC =⊂ 平面ABCD ,所以1A O ⊥平面ABCD ,以点O 为原点,OA 为x 轴,OB 为y 轴,1OA 为z 轴,建立如图所示空间直角坐标系,由(1)知12V =,且菱形ABCD的面积为S =,所以h ==………………………………11分依题意,1(0,0,0),((0,1,0),(O C B C -,易得平面1A BD的一个法向量为(0,0)OC =,…………………………………………………12分设平面1BC D 的一个法向量为(,,)n a b c =,又1(0,1,0),(OB OC ==- ,所以100OB n OC n ⎧⋅=⎪⎨⋅=⎪⎩,即00b a c =⎧⎨-=⎩,取(1,0,1)n = ,…………………………………………………13分故111cos ,2||n OC n OC n OC ⋅<>===⋅ ,……………………………………………………14分故锐二面角11A BD C --的余弦值为2.…………………………………………………………………15分【评分细则】本题第二问若考生通过利用几何法来求解二面角11A BD C --的平面角为11π4A OC ∠=,或者利用余弦定理等来直接求解二面角的余弦值,只要过程合理,最终答案正确均给满分,若过程有误或证明过程不严谨酌情扣一定的分数.18【解析】(1)易得()f x 定义域为(0,),()ln f x x a x '+∞=-,显然0a ≠.…………………………1分①当0a <时,()f x '单调递增,不可能有两零点,不合题意.…………………………………………2分②当0a >时,令函数()()g x f x '=,易得()x a g x x'-=,故(0,)x a ∈时,()0,()g x g x '<单调递减(,)x a ∈+∞时,()0,()g x g x '>单调递增,……………………………………………………………4分当e a 时,有()()(1ln )0g x g a a a =- ,不可能有两零点;当e a >时,有()0,(1)10g a g <=>,由零点存在性定理可得()g x 在区间(1,)a 必有一个零点1x .……………………………………………6分()2(2ln )g a a a a =-,令函数()2ln a a a ϕ=-,则2()10a aϕ'=->,即()a ϕ单调递增,故()(e)a ϕϕ>=e 20->,即()20g a >,故()g x 在(,)a +∞上有零点2x ,综上(e,)a ∈+∞.…8分(2)依题意有()()120g x g x ==,即1122ln ln 0x a x x a x -=-=,故得12211221ln ln ln ln x x x x a x x x x -====-2121ln x x x x -,…………………………………………………………10分因此2121122111ln ln ln 1x x x x x x x x x x ==--,令21(1,e)x t x =∈.则1ln ln 1t x t =-,同理2ln ln 1t t x t =-,故12eln ln x x +=e ln 1t t t +-,欲证122eln ln e 1x x <+<+,即证112ln (e 1)e e t t t t t --<<+++,……12分令函数1()ln 2e t m t t t -=-+,函数1()(e 1)ln ,(1,e)e t n t t t t -=+-∈+,只需证明()0,()0m t n t >>即可,又22222(e)2(e 1)(1)e 1()0(e)(e)t t t m t t t t t '+-+-+-==>++,……………………………………………………14分故()m t 是增函数,故()(1)0m t m >=,又222222(e 1)(e)1e ()e 1(e)(e)t t n t t t t t t '⎛⎫+-+==+-- ⎪++⎝⎭,令函数22e ()e 1h t t t =+--,则22e ()10h t t '=->,故()h t 单调递增,故()(1)0h t h >=,………………16分因此21()()0(e)n t h t t '=>+,故()n t 单调递增,故()(1)0n t n >=,故122eln ln e 1x x <+<+得证.17分【评分细则】第一问若考生求完导后用参变分离的方法来求参数范围,只要最终答案正确均给分,第二问也可用其他方法来证明,逻辑正确,严谨可酌情给分.19.【解析】(1)因为{}n a 为满足“绝对值关联”的m 阶数列,假设0i a ,则11110m m m m i i i i i i i i a a a a====-=-=≠∑∑∑∑1(2)m m - ,不满足题意,同理若0i a ,则111101(2)m m m mi i i i i i i i a aa a m m ====-=-+=≠-∑∑∑∑ ,也不满足题意,………………………………4分所以12,,,m a a a 中必有一些数小于0,也必有一些数大于0,不妨设121,,,0,,,,0l k k m a a a a a a +>< (其中1l k m << ),故存在{1,2,,},{,1,,}i l j k k m ∈∈+ ,满足0i j a a <.………………6分(2)①一个满足“绝对值34关联”的4阶数列为:3333,,,4444--;(答案不唯一,符合要求即可)8分一个满足“绝对值1关联”的5阶数列为:222,,,1,1333--;(答案不唯一,符合要求即可)……10分②设(1,2,,)i a i n λ= ,且111n n i i i i a an ==-=-∑∑.不妨设1212,,,0,,,,0k k k n a a a a a a ++< ,其中1k n < ,并记11,k n i i i i k a x a y ==+==∑∑,为方便起见不妨设x y (否则用i a -代替i a 即可),于是得11,n n i i i i ax y a x y ===+=-∑∑,因为111n n i i i i a a n ==-=-∑∑,即()()1x y x y n +--=-,所以11,22n n y x --=,一方面有1()2n y n k λ-=- ,另一方面12n x k λ- .所以1()n n k k n λλλ--+= ,即1n n λ- ,当且仅当n k k -=,即2n k =时等号成立.………13分(i )当n 为偶数时,设*2,n s s =∈N ,则有前s 项为正数,后s 项为负数的数列111,,,n n n n n n --- ,111,,,n n n n n n ------ 是“绝对值1n n -关联”的n 阶数列,又1n n λ- ,所以λ的最小值为1n n -;……………………………………………………………………14分(ii )当n 为奇数时,设*21,n s s =+∈N ,则11(),22n n y n k x k λλ--=- 等价于21s s k λ+- 且s k λ ,即λ不小于21s s k +-与s k中的最大者.……………………………………………………15分当k s =或1s +时,两者中的最大者均为1,有1λ ,当k s <或1k s >+时,有1s k >或121s s k>+-,则有1λ>,所以取k s =或1s +时,λ可能取得最小值1,且有前s 项为正数,后1s +项为负数数列1111,1,,1,,,,111n n n n n n ------+++ 符合题意,所以λ可以取得最小值1.…………………………………………………………………………………………16分综上所述λ的最小值为()*1,21,21n n s s n n s -⎧=⎪∈⎨⎪=+⎩N .……………………………………………………17分。
2016—2017学年四川省绵阳市东辰学校高三(上)第三次月考数学试卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={1,2,3},B={x|(x+1)(x﹣2)<0,x∈Z},则A∪B=()A.{1}B.{1,2}C.{0,1,2,3}D.{﹣1,0,1,2,3}2.复数z=(i为虚数单位)的虚部为()A.1 B.i C.﹣2i D.﹣23.已知向量=(1,2),=(3,1),则﹣=()A.(﹣2,1) B.(2,﹣1)C.(2,0)D.(4,3)4.已知a=,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a5.下列有关命题的叙述,错误的个数为()①若p∨q为真命题,则p∧q为真命题.②“x>5”是“x2﹣4x﹣5>0”的充分不必要条件.③命题P:∃x∈R,使得x2+x﹣1<0,则¬p:∀x∈R,使得x2+x﹣1≥0.④命题“若x2﹣3x+2=0,则x=1”的否命题为假命题.A.1 B.2 C.3 D.46.已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为()A.1 B.2 C.﹣1 D.﹣27.若将函数f(x)=sin2x+cos2x的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是()A.B.C. D.8.设x,y满足约束条件,则z=x+2y的最大值为()A.8 B.7 C.2 D.19.已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当x>时,f(x+)=f(x﹣).则f(6)=()A.﹣2 B.1 C.0 D.210.如图(1)是反映某条公共汽车线路收支差额(即营运所得票价收入与付出成本的差)y与乘客量x之间关系的图象.由于目前该条公交线路亏损,公司有关人员提出了两种调整的建议,如图(2)(3)所示.给出下说法:①图(2)的建议是:提高成本,并提高票价;②图(2)的建议是:降低成本,并保持票价不变;③图(3)的建议是:提高票价,并保持成本不变;④图(3)的建议是:提高票价,并降低成本.其中正确说法的序号是()A.①③B.②③C.①④D.②④11.在实数集R中定义一种运算“*”,对任意a,b∈R,a*b为唯一确定的实数,且具有性质:(1)对任意a∈R,a*0=a;(2)对任意a,b∈R,a*b=ab+(a*0)+(b*0).关于函数f(x)=(e x)*的性质,有如下说法:①函数f(x)的最小值为3;②函数f(x)为偶函数;③函数f(x)的单调递增区间为(﹣∞,0].其中所有正确说法的个数为()A.0 B.1 C.2 D.312.直角△ABC的三个顶点都在单位圆x2+y2=1上,点M(,).则||最大值是()A.B.C.D.二、填空题:本大题共4小题,每小题5分.13.计算:sin﹣cos=.14.设向量,不平行,向量λ+与+2平行,则实数λ=.15.设x,y∈R,a>1,b>1,若a x=b y=3,a+b=2,则+的最大值为.16.设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0,使得f(x0)<0,则a的取值范围是.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.已知等差数列{a n}中,a1=1,公差d>0,且a2,a5,a14分别是等比数列{b n}的第二项、第三项、第四项.(1)求数列{a n}和{b n}的通项公式;(2)求数列{a n+b n}的前n项和S n.18.已知向量=(sinA,sinB),=(cosB,cosA),•=sin2C,且A、B、C分别为△ABC的三边a、b、c所对的角.(1)求角C的大小;(2)若a+b=2,设D为AB边上中点,求||的最小值.19.已知函数f(x)=Asin(ωx+φ)+b(A>0,ω>0,﹣<φ<)的部分图象如图所示.(I)求f(x)在R上的单调递增区间;(II)设x0(x0∈(0,))是函数y=f(x)的一个零点,求cos(2x0)的值.20.已知函数f(x)=.(Ⅰ)判断函数f(x)的奇偶性,并证明;(Ⅱ)若对于任意x∈[2,4],不等式恒成立,求正实数m的取值范围.21.已知函数f(x)=ln(x+1)﹣x(x>﹣1).(1)求f(x)的单调区间;(2)若k∈Z,且f(x﹣1)+x>k(1﹣)对任意x>1恒成立,求k的最大值;(3)对于在(0,1)中的任意一个常数a,是否存在正数x0,使得e<1﹣x02成立?请说明理由.请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.[选修4—1:几何证明选讲]22.(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.[选修4-4:坐标系与参数方程]23.在直角坐标系xoy中,曲线C1:(t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=2cosθ.(Ⅰ)求C2与C3交点的直角坐标;(Ⅱ)若C2与C1相交于点A,C3与C1相交于点B,求|AB|的最大值.[选修4-5:不等式选讲]24.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当x∈[﹣,)时,f(x)≤g(x),求a的取值范围.2016—2017学年四川省绵阳市东辰学校高三(上)第三次月考数学试卷参考答案与试题解析一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={1,2,3},B={x|(x+1)(x﹣2)<0,x∈Z},则A∪B=()A.{1}B.{1,2}C.{0,1,2,3}D.{﹣1,0,1,2,3}【考点】并集及其运算.【分析】先求出集合A,B,由此利用并集的定义能求出A∪B的值.【解答】解:∵集合A={1,2,3},B={x|(x+1)(x﹣2)<0,x∈Z}={0,1},∴A∪B={0,1,2,3}.故选:C.2.复数z=(i为虚数单位)的虚部为()A.1 B.i C.﹣2i D.﹣2【考点】复数代数形式的乘除运算;复数的代数表示法及其几何意义.【分析】利用两个复数代数形式的乘除法法则,化简复数z=为1﹣2i,从而可得它的虚部.【解答】解:∵复数z===1﹣2i,故此复数的虚部为﹣2,故选D.3.已知向量=(1,2),=(3,1),则﹣=()A.(﹣2,1)B.(2,﹣1)C.(2,0)D.(4,3)【考点】平面向量的坐标运算;向量的减法及其几何意义.【分析】直接利用向量的减法的坐标运算求解即可.【解答】解:∵向量=(1,2),=(3,1),∴﹣=(2,﹣1)故选:B.4.已知a=,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a【考点】对数的运算性质.【分析】利用指数式的运算性质得到0<a<1,由对数的运算性质得到b<0,c>1,则答案可求.【解答】解:∵0<a=<20=1,b=log2<log21=0,c=log=log23>log22=1,∴c>a>b.故选:C.5.下列有关命题的叙述,错误的个数为()①若p∨q为真命题,则p∧q为真命题.②“x>5”是“x2﹣4x﹣5>0"的充分不必要条件.③命题P:∃x∈R,使得x2+x﹣1<0,则¬p:∀x∈R,使得x2+x﹣1≥0.④命题“若x2﹣3x+2=0,则x=1”的否命题为假命题.A.1 B.2 C.3 D.4【考点】命题的真假判断与应用.【分析】①若p,q只要有一个为为真,则p∨q为真命题;②“x<﹣1”时,“x2﹣4x﹣5>0”也成立;③含有量词的命题的否定,先换量词,再否定结论;④命题“若x2﹣3x+2=0,则x=1”的否命题是:若“若x2﹣3x+2≠0,则x≠1"是真命题.【解答】解对于:①若p,q只要有一个为为真,则p∨q为真命题,故①错;对于②“x<﹣1”时,“x2﹣4x﹣5>0”也成立,故②正确;对于③含有量词的命题的否定,先换量词,再否定结论,故③正确;对于④命题“若x2﹣3x+2=0,则x=1"的否命题是:若“若x2﹣3x+2≠0,则x≠1”是真命题,故④错,故选:B6.已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为()A.1 B.2 C.﹣1 D.﹣2【考点】导数的几何意义.【分析】切点在切线上也在曲线上得到切点坐标满足两方程;又曲线切点处的导数值是切线斜率得第三个方程.【解答】解:设切点P(x0,y0),则y0=x0+1,y0=ln(x0+a),又∵∴x0+a=1∴y0=0,x0=﹣1∴a=2.故选项为B7.若将函数f(x)=sin2x+cos2x的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是()A.B.C. D.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用两角和的正弦函数对解析式进行化简,由所得到的图象关于y轴对称,根据对称轴方程求出φ的最小值.【解答】解:函数f(x)=sin2x+cos2x=sin(2x+)的图象向右平移φ的单位,所得图象是函数y=sin(2x+﹣2φ),图象关于y轴对称,可得﹣2φ=kπ+,即φ=﹣,当k=﹣1时,φ的最小正值是.故选:C.8.设x,y满足约束条件,则z=x+2y的最大值为()A.8 B.7 C.2 D.1【考点】简单线性规划.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【解答】解:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点A时,直线y=﹣的截距最大,此时z最大.由,得,即A(3,2),此时z的最大值为z=3+2×2=7,故选:B.9.已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当x>时,f(x+)=f(x﹣).则f(6)=()A.﹣2 B.1 C.0 D.2【考点】抽象函数及其应用.【分析】求得函数的周期为1,再利用当﹣1≤x≤1时,f(﹣x)=﹣f(x),得到f(1)=﹣f(﹣1),当x<0时,f(x)=x3﹣1,得到f(﹣1)=﹣2,即可得出结论.【解答】解:∵当x>时,f(x+)=f(x﹣),∴当x>时,f(x+1)=f(x),即周期为1.∴f(6)=f(1),∵当﹣1≤x≤1时,f(﹣x)=﹣f(x),∴f(1)=﹣f(﹣1),∵当x<0时,f(x)=x3﹣1,∴f(﹣1)=﹣2,∴f(1)=﹣f(﹣1)=2,∴f(6)=2.故选:D.10.如图(1)是反映某条公共汽车线路收支差额(即营运所得票价收入与付出成本的差)y 与乘客量x之间关系的图象.由于目前该条公交线路亏损,公司有关人员提出了两种调整的建议,如图(2)(3)所示.给出下说法:①图(2)的建议是:提高成本,并提高票价;②图(2)的建议是:降低成本,并保持票价不变;③图(3)的建议是:提高票价,并保持成本不变;④图(3)的建议是:提高票价,并降低成本.其中正确说法的序号是()A.①③B.②③C.①④D.②④【考点】函数的图象.【分析】根据题意知图象反应了收支差额y与乘客量x的变化情况,即直线的斜率说明票价问题;当x=0的点说明公司的成本情况,再结合图象进行说明.【解答】解:根据题意和图(2)知,两直线平行即票价不变,直线向上平移说明当乘客量为0时,收入是0但是支出的变少了,即说明了此建议是降低成本而保持票价不变,故②正确;由图(3)看出,当乘客量为0时,支出不变,但是直线的倾斜角变大,即相同的乘客量时收入变大,即票价提高了,即说明了此建议是提高票价而保持成本不变,故③正确.故选B.11.在实数集R中定义一种运算“*”,对任意a,b∈R,a*b为唯一确定的实数,且具有性质:(1)对任意a∈R,a*0=a;(2)对任意a,b∈R,a*b=ab+(a*0)+(b*0).关于函数f(x)=(e x)*的性质,有如下说法:①函数f(x)的最小值为3;②函数f(x)为偶函数;③函数f(x)的单调递增区间为(﹣∞,0].其中所有正确说法的个数为()A.0 B.1 C.2 D.3【考点】函数奇偶性的判断;函数单调性的判断与证明.【分析】根据新定义的运算表示出f(x)的解析式,然后逐项研究函数的性质即可作出判断.【解答】解:由定义的运算知,f(x)=)=(e x)*==1+e x+,①f(x)=1+e x+=3,当且仅当,即x=0时取等号,∴f(x)的最大值为3,故①正确;②∵f(﹣x)=1+=1+=f(x),∴f(x)为偶函数,故②正确;③f’(x)==,当x≤0时,f′(x)=≤0,∴f(x)在(﹣∞,0]上单调递减,故③错误.故正确说法的个数是2,故选C.12.直角△ABC的三个顶点都在单位圆x2+y2=1上,点M(,).则||最大值是()A.B.C.D.【考点】点与圆的位置关系.【分析】由题意,||=|+2|≤||+2||,当且仅当M,O,A共线同向时,取等号,即可求出||的最大值.【解答】解:由题意,||=|+2|≤||+2||,当且仅当M,O,A共线同向时,取等号,即||取得最大值,最大值是++1=+1,故选:C.二、填空题:本大题共4小题,每小题5分.13.计算:sin﹣cos=﹣.【考点】二倍角的正弦.【分析】由特殊角的三角函数值,两角和的正弦函数公式,诱导公式即可化简求值得解.【解答】解:sin﹣cos=×(sin cos﹣sin cos)=sin(﹣)=sin (﹣)=﹣.故答案为:﹣.14.设向量,不平行,向量λ+与+2平行,则实数λ=.【考点】平行向量与共线向量.【分析】利用向量平行即共线的条件,得到向量λ+与+2之间的关系,利用向量相等解答.【解答】解:因为向量,不平行,向量λ+与+2平行,所以λ+=μ(+2),所以,解得;故答案为:.15.设x,y∈R,a>1,b>1,若a x=b y=3,a+b=2,则+的最大值为3.【考点】基本不等式;对数的运算性质.【分析】利用对数的换底公式、对数的运算法则、基本不等式的性质即可得出.【解答】解:∵a>1,b>1,a x=b y=3,∴xlga=ylgb=lg3,∴====3,当且仅当a=b=3时取等号.∴+的最大值为3.故答案为:3.16.设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0,使得f(x0)<0,则a的取值范围是[,1).【考点】函数恒成立问题.【分析】设g(x)=e x(2x﹣1),y=ax﹣a,则存在唯一的整数x0,使得g(x0)在直线y=ax ﹣a的下方,由此利用导数性质能求出a的取值范围.【解答】解:函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,设g(x)=e x(2x﹣1),y=ax﹣a,∵存在唯一的整数x0,使得f(x0)<0,∴存在唯一的整数x0,使得g(x0)在直线y=ax﹣a的下方,∵g′(x)=e x(2x+1),∴当x<﹣时,g′(x)<0,∴当x=﹣时,[g(x)]min=g(﹣)=﹣2e.当x=0时,g(0)=﹣1,g(1)=e>0,直线y=ax﹣a恒过(1,0),斜率为a,故﹣a>g(0)=﹣1,且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解得.∴a的取值范围是[,1).故答案为:[,1).三.解答题:解答应写出文字说明,证明过程或演算步骤.17.已知等差数列{a n}中,a1=1,公差d>0,且a2,a5,a14分别是等比数列{b n}的第二项、第三项、第四项.(1)求数列{a n}和{b n}的通项公式;(2)求数列{a n+b n}的前n项和S n.【考点】数列的求和;数列递推式.【分析】(1)利用等比中项可得方程(1+d)(1+13d)=(1+4d)2,计算可知公差d,进而代入可知等比数列{b n}的公比q===3,计算即得结论;(2)通过(1)可分别求出等差数列{a n}、等比数列{b n}的前n项和,进而相加即得结论.【解答】解:(1)依题意,(1+d)(1+13d)=(1+4d)2,整理得:3d(d﹣2)=0,解得:d=2或d=0(舍),∴a n=2n﹣1,∵等比数列{b n}的公比q===3,a2=b2=3,∴b n=b2•q n﹣2=3•3n﹣2=3n﹣1,故b n=3n﹣1.(2)由(1)可知,数列{a n}的前n项和P n==n2,数列{b n}的前n项和Q n==,故数列{a n+b n}的前n项和S n=P n+Q n=n2+.18.已知向量=(sinA,sinB),=(cosB,cosA),•=sin2C,且A、B、C分别为△ABC的三边a、b、c所对的角.(1)求角C的大小;(2)若a+b=2,设D为AB边上中点,求||的最小值.【考点】平面向量数量积的运算;三角函数中的恒等变换应用.【分析】(1)容易求出,进而得到sinC=sin2C,从而求得cosC=,根据C的范围即可得出;(2)先得到,而根据条件及基本不等式可得到,从而,进行数量积的运算,并由完全平方公式可得到=,从而可以求出,进而即可求出的最小值.【解答】解:(1);A+B=π﹣C,0<C<π;∴sin(A+B)=sinC=sin2C;∴sinC=2sinCcosC;∴,C=;(2),且;∴;∴===;∴;即的最小值为.19.已知函数f(x)=Asin(ωx+φ)+b(A>0,ω>0,﹣<φ<)的部分图象如图所示.(I)求f(x)在R上的单调递增区间;(II)设x0(x0∈(0,))是函数y=f(x)的一个零点,求cos(2x0)的值.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;函数的零点.【分析】(I)由图象可求A,即可解得b,由周期公式解得ω,由sin(2×φ)=,结合范围φ∈(﹣,),解得φ,由2kπ≤2x+≤2kπ+,k∈Z,解得f(x)在R上的单调递增区间.(II)由条件可得:f(x0)=sin(2x0+)﹣,即sin(2x0+)=,可证f(x)在(,)上是减函数,由x0∈(0,),可得范围2x0+∈(,),由同角三角函数关系式可求cos(2x0+)的值,从而由cos2x0=cos[(2x0+)﹣]即可得解.【解答】解:(I)由图象可知,A==,故b==﹣,,即T=π,于是由=π,解得ω=2.∵sin(2×φ)=,且φ∈(﹣,),解得φ=.∴f(x)=sin(2x+)﹣…4分由2kπ≤2x+≤2kπ+,k∈Z,解得kπ≤x≤kπ+,k∈Z,即f(x)在R上的单调递增区间为:[kπ,kπ+],k∈Z…6分(II)由条件可得:f(x0)=sin(2x0+)﹣,即sin(2x0+)=,∵f()•f(0)<0且f(x)在(0,)上是增函数,f()=,f()=,f(x)在(,)上是减函数,∴x0∈(0,),∴2x0+∈(,),…9分∴cos(2x0+)=,∴cos2x0=cos[(2x0+)﹣]=cos(2x0+)cos+sin(2x0+)sin=…12分20.已知函数f(x)=.(Ⅰ)判断函数f(x)的奇偶性,并证明;(Ⅱ)若对于任意x∈[2,4],不等式恒成立,求正实数m 的取值范围.【考点】函数恒成立问题;函数单调性的性质;函数奇偶性的判断.【分析】(Ⅰ)求出原函数的定义域,然后利用f(﹣x)=﹣f(x)证明函数为奇函数;(Ⅱ)利用导数证明函数为减函数,把要求解的不等式转化为,分离变量m后再利用导数求得函数的最大值,则正实数m的取值范围可求.【解答】解:(Ⅰ)f (x)在定义域上是奇函数.证明:由2x﹣1≠0,得x∈R且x≠0,∴函数的定义域为(﹣∞,0)∪(0,+∞),当x∈(﹣∞,0)∪(0,+∞)时,,,∴f(﹣x)=﹣f(x),∴f (x)在定义域上是奇函数;(Ⅱ)由于,当x∈(﹣∞,0)或x∈(0,+∞)时,恒成立,∴f(x)在(﹣∞,0),(0,+∞)上是减函数,∵x∈[2,4]且m>0,∴,由及f(x)在(0,+∞)上是减函数,∴,∵x∈[2,4],∴m<(x+1)(x﹣1)(7﹣x)在x∈[2,4]恒成立.设g(x)=(x+1)(x﹣1)(7﹣x),x∈[2,4],则g(x)=﹣x3+7x2+x﹣7,∴g′(x)=﹣3x2+14x+1=﹣3+,∴当x∈[2,4]时,g′(x)>0.∴y=g(x)在[2,4]上是增函数,g(x)min=g(2)=15.综上知符合条件的m的取值范围是(0,15).21.已知函数f(x)=ln(x+1)﹣x(x>﹣1).(1)求f(x)的单调区间;(2)若k∈Z,且f(x﹣1)+x>k(1﹣)对任意x>1恒成立,求k的最大值;(3)对于在(0,1)中的任意一个常数a,是否存在正数x0,使得e<1﹣x02成立?请说明理由.【考点】利用导数研究函数的单调性;函数恒成立问题.【分析】(1)求导f′(x)=﹣1=﹣,从而判断函数的单调区间;(2)化简可得xlnx+x﹣kx+3k>0,令g(x)=xlnx+x﹣kx+3k,求导g′(x)=lnx+1+1﹣k=lnx+2﹣k,从而讨论判断函数的单调性,从而求最大值;(3)假设存在这样的x0满足题意,从而化简可得x02+﹣1<0,令h(x)=x2+﹣1,取x0=﹣lna,从而可得h min(x)=h(x0)=(﹣lna)2+alna+a﹣1,再令p(a)=(lna)2+alna+a﹣1,从而解得.【解答】解:(1)∵f(x)=ln(x+1)﹣x,∴f′(x)=﹣1=﹣,∴当x∈(﹣1,0)时,f′(x)>0;当x∈(0,+∞)时,f′(x)<0;故f(x)的单调增区间为(﹣1,0),单调减区间为(0,+∞);(2)∵f(x﹣1)+x>k(1﹣),∴lnx﹣(x﹣1)+x>k(1﹣),∴lnx+1>k(1﹣),即xlnx+x﹣kx+3k>0,令g(x)=xlnx+x﹣kx+3k,则g′(x)=lnx+1+1﹣k=lnx+2﹣k,∵x>1,∴lnx>0,若k≤2,g′(x)>0恒成立,即g(x)在(1,+∞)上递增;∴g(1)=1+2k≥0,解得,k≥﹣;故﹣≤k≤2,故k的最大值为2;若k>2,由lnx+2﹣k>0解得x>e k﹣2,故g(x)在(1,e k﹣2)上单调递减,在(e k﹣2,+∞)上单调递增;∴g min(x)=g(e k﹣2)=3k﹣e k﹣2,令h(k)=3k﹣e k﹣2,h′(k)=3﹣e k﹣2,∴h(k)在(1,2+ln3)上单调递增,在(2+ln3,+∞)上单调递减;∵h(2+ln3)=3+3ln3>0,h(4)=12﹣e2>0,h(5)=15﹣e3<0;∴k的最大取值为4,综上所述,k的最大值为4.(3)假设存在这样的x0满足题意,∵e<1﹣x02,∴x02+﹣1<0,令h(x)=x2+﹣1,∵h′(x)=x(a﹣),令h′(x)=x(a﹣)=0得e x=,故x=﹣lna,取x0=﹣lna,在0<x<x0时,h′(x)<0,当x>x0时,h′(x)>0;∴h min(x)=h(x0)=(﹣lna)2﹣alna+a﹣1,在a∈(0,1)时,令p(a)=(lna)2﹣alna+a﹣1,则p′(a)=(lna)2≥0,故p(a)在(0,1)上是增函数,故p(a)<p(1)=0,即当x0=﹣lna时符合题意.请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.[选修4-1:几何证明选讲]22.(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB 垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.【考点】与圆有关的比例线段.【分析】(I)连接DE交BC于点G,由弦切角定理可得∠ABE=∠BCE,由已知角平分线可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE为⊙O的直径,Rt △DBE≌Rt△DCE,利用三角形全等的性质即可得到DC=DB.(II)由(I)可知:DG是BC的垂直平分线,即可得到BG=.设DE的中点为O,连接BO,可得∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.进而得到Rt△BCF的外接圆的半径=.【解答】(I)证明:连接DE交BC于点G.由弦切角定理可得∠ABE=∠BCE,而∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE.又∵DB⊥BE,∴DE为⊙O的直径,∠DCE=90°.∴△DBE≌△DCE,∴DC=DB.(II)由(I)可知:∠CDE=∠BDE,DB=DC.故DG是BC的垂直平分线,∴BG=.设DE的中点为O,连接BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.∴CF⊥BF.∴Rt△BCF的外接圆的半径=.[选修4-4:坐标系与参数方程]23.在直角坐标系xoy中,曲线C1:(t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=2cosθ.(Ⅰ)求C2与C3交点的直角坐标;(Ⅱ)若C2与C1相交于点A,C3与C1相交于点B,求|AB|的最大值.【考点】简单曲线的极坐标方程.【分析】(Ⅰ)将C2与C3转化为直角坐标方程,解方程组即可求出交点坐标;(Ⅱ)求出A,B的极坐标,利用距离公式进行求解.【解答】解:(Ⅰ)曲线C2:ρ=2sinθ得ρ2=2ρsinθ,即x2+y2=2y,①C3:ρ=2cosθ,则ρ2=2ρcosθ,即x2+y2=2x,②由①②得或,即C2与C1交点的直角坐标为(0,0),(,);(Ⅱ)曲线C1的直角坐标方程为y=tanαx,则极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤a<π.因此A得到极坐标为(2sinα,α),B的极坐标为(2cosα,α).所以|AB|=|2sinα﹣2cosα|=4|sin(α)|,当α=时,|AB|取得最大值,最大值为4.[选修4-5:不等式选讲]24.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当x∈[﹣,)时,f(x)≤g(x),求a的取值范围.【考点】绝对值不等式的解法;函数恒成立问题.【分析】(Ⅰ)当a=﹣2时,不等式f(x)<g(2a)f(x)<g(x)化为|2x﹣1|+|2x﹣2|﹣x﹣3<0,利用分段函数,求不等式f(x)<g(x)的解集;(Ⅱ)当x∈[﹣,)时,f(x)=1+a,不等式f(x)≤g(x)化为1+a≤x+3,所以x≥a﹣2对x∈[﹣,)都成立,即可得出结论.【解答】解:(Ⅰ)当a=﹣2时,不等式f(x)<g(2a)f(x)<g(x)化为|2x﹣1|+|2x ﹣2|﹣x﹣3<0,设函数y=|2x﹣1|+|2x﹣2|﹣x﹣3,则y=.其图象如图所示:从图象可知,当且仅当x∈(0,2)时,y<0,所以原不等式的解集是{x|0<x<2};(Ⅱ)当x∈[﹣,)时,f(x)=1+a,不等式f(x)≤g(x)化为1+a≤x+3,所以x≥a﹣2对x∈[﹣,)都成立,故﹣≥a﹣2,即a≤,从而a的取值范围是(﹣1,].2016年12月24日。
绵阳南山2024届补习年级十一月月考理科数学试题(答案在最后)注意事项:1.答卷前,考生务必将自己的班级、姓名、考号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将答题卡交回.一、选择题:本卷共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,0,1,2A =-,{}2xB y y ==,M A B = ,则集合M 的子集个数是()A.2B.3C.4D.8【答案】C 【解析】【分析】求出集合M ,由此可计算出集合M 的子集个数.【详解】{}{}20xB y y y y ===> ,{}1,0,1,2A =-,{}1,2M A B ∴=⋂=,因此,集合M 的子集个数是224=.故选:C.【点睛】本题考查集合子集个数的计算,一般要求出集合的元素个数,考查计算能力,属于基础题.2.抛物线24y x =的焦点坐标是()A.(0,1)B.(1,0)C.10,16⎛⎫⎪⎝⎭D.1,016⎛⎫⎪⎝⎭【答案】C 【解析】【分析】将抛物线化为标准方程可得焦点坐标.【详解】抛物线24y x =标准方程为214x y =,其焦点坐标为10,16⎛⎫⎪⎝⎭故选:C.3.已知函数()f x 的定义域为R ,则“(1)()f x f x +>恒成立”是“函数()f x 在R 上单调递增”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】函数()f x 为R 上增函数R x ⇒∀∈,(1)()f x f x +>,反之不成立,即可判断出结论.【详解】函数()f x 为R 上增函数R x ⇒∀∈,(1)()f x f x +>,反之不成立,例如定义()f x 在(0,1]上,()f x x =-,且在R 上满足(1)()1f x f x +=+,则有“(1)()f x f x +>”,∴“(1)()f x f x +>”是“函数()f x 为增函数”的必要不充分条件.故选:B .4.若向量,a b满足||||||a b a b +=+,则向量,a b一定满足的关系为()A.0a= B.存在实数λ,使得a bλ=C.存在实数,m n ,使得ma nb= D.||||||a b a b -=-【答案】C 【解析】【分析】对于A,B,D 通过举反例即可判断,对于C 需分a 与b 是否为0讨论即可.【详解】||||||a b a b +=+,两边同平方得222222||||a a b b a a b b +⋅+=+⋅+ ||||a b a b ∴⋅= ,||||cos ||||a b a b θ∴= ,对A ,0b = 时,a为任一向量,故A 错误,对B ,若0b = ,0a ≠时,此时不存在实数λ,使得a b λ=,故B 错误,对于C ,因为||||cos ||||a b a b θ=,当a 与b 至少一个为零向量时,此时一定存在实数m ,n ,使得ma nb = ,具体分析如下:当0a = ,0b ≠r r时,此时m 为任意实数,0n =,当0a ≠ ,0b =时,此时n 为任意实数,0m =,当0a = ,0b =时,,m n 为任意实数,当0a ≠ ,0b ≠r r 时,因为||||cos ||||a b a b θ=,则有cos 1θ=,根据[]0,θπ∈,则0θ=,此时,a b 共线,且同向,则存在实数λ使得a b λ=(0λ>),令n m λ=,其中,m n 同号,即n a b m= ,即ma nb = ,则存在实数m ,n ,使得ma nb = ,故C 正确,对于D ,当0a = ,0b ≠r r时,||||||a b a b -≠- ,故D 错误,故选:C.5.在平面直角坐标系xOy 中,若圆()()2221:14C x y r -+-=(r >0)上存在点P ,且点P 关于直线10x y +-=的对称点Q 在圆()222:49C x y ++=上,则r 的取值范围是()A.(2,+∞) B.[2,+∞) C.(2,8)D.[2,8]【答案】D 【解析】【分析】求出圆1C 关于10x y +-=对称的圆的方程,转化为此圆与()2249x y ++=有交点,再由圆心距与半径的关系列不等式组求解.【详解】()()2221:14C x y r -+-=圆心坐标()11,4C ,设()1,4关于直线10x y +-=的对称点为(),a b ,由141022411a b b a ++⎧+-=⎪⎪⎨-⎪=⎪-⎩,可得30a b =-⎧⎨=⎩,所以圆()()2221:14C x y r -+-=关于直线10x y +-=对称圆的方程为()2220:3C x y r ++=,则条件等价为:()2220:3C x y r ++=与()222:49C x y ++=有交点即可,两圆圆心为()03,0C -,()20,4C -,半径分别为r ,3,则圆心距025C C ==,则有353r r -≤≤+,由35r -≤得28r -≤≤,由35r +≥得2r ≥,综上:28r ≤≤,所以r 的取值范围是[]28,,故选:D.6.已知函数()s π3πin f x x ⎛⎫=+⎪⎝⎭,其在一个周期内的图象分别与x 轴、y 轴交于点A 、点B ,并与过点A 的直线相交于另外两点C 、D .设O 为坐标原点,则()BC BD OA +⋅=()A.118B.89C.49D.29【答案】B 【解析】【分析】根据图象结合三角函数求点,A B ,进而求,BC BD OA +uu u r uu u r uu r,即可得结果.【详解】因为()s π3πin f x x ⎛⎫=+⎪⎝⎭,可得π(0)sin 32f ==,即0,2B ⎛⎫ ⎪ ⎪⎝⎭,由图可知:点A 为减区间的对称中心,令ππ2ππ,3x k k +=+∈Z ,解得22,3x k k =+∈Z ,取0k =,则23x =,即2,03A ⎛⎫⎪⎝⎭,可得232,,,0323BA OA ⎛⎫⎛⎫=-= ⎪ ⎪ ⎪⎝⎭⎝⎭uu r uu r ,因为点A 为线段CD的中点,则42,3BC BD BA ⎛+== ⎝uu u r uu u r uu r ,所以()428339BC BD OA +⋅=⨯=uu u r uu u r uu r .7.已知过椭圆2222:1(0)x y C a b a b+=>>左焦点F且与长轴垂直的弦长为,过点()2,1P 且斜率为-1的直线与C 相交于A ,B 两点,若P 恰好是AB 的中点,则椭圆C 上一点M 到F 的距离的最大值为()A.6B.6+C.6+D.6【答案】D 【解析】【分析】利用椭圆的方程和性质及直线与椭圆位置关系即可解决.【详解】由过椭圆2222:1(0)x y C a b a b +=>>左焦点F且与长轴垂直的弦长为可得椭圆过点(c -,代入方程得222181+=c a b.设()()1122,,,,A x y B x y 则2222112222221,1,x y x y a b a b +=+=,两式作差得22221212220x x y y a b --+=,即()()()()12121212220x x x x y y y y a b -+-++=,因为P 恰好是AB 的中点,所以12124,2x x y y +=+=,又因为直线AB 斜率为-1,所以12121y y x x -=--,将它们代入上式得222a b =,则联立方程222222221812c a b a b a b c ⎧+=⎪⎪⎪=⎨⎪=+⎪⎪⎩解得66a b c ⎧=⎪=⎨⎪=⎩.所以椭圆C 上一点M 到F的距离的最大值为6+=+a c 故选:D8.若直线y x b =-+与曲线x =b 的取值范围是()A.⎡⎣B.⎡-⎣C.[1,1)-D.]{(1,1-⋃【解析】【分析】由题意作图,根据直线与圆的位置关系,可得答案.【详解】由曲线x =221x y +=,其中0x ≥,表示以原点为圆心,半径为1的右半圆,y x b =-+是倾斜角为135︒的直线,其与曲线有且只有一个公共点有两种情况:(1)直线与半圆相切,根据d r =,所以1d ==,结合图象,可得:b =;(2)直线与半圆的下半部分相交于一个交点,由图可知[1,1)b ∈-.综上可知:[1,1)b ∈-.故选:C.9.已知02αβπ<<<,函数()5sin 6f x x π⎛⎫- ⎝=⎪⎭,若()()1f f αβ==,则()cos βα-=()A.2325B.2325-C.35D.35-【答案】B 【解析】【分析】由已知条件,结合三角函数的性质可得263ππα<<,2736ππβ<<,从而利用()cos cos 66ππβαβα⎡⎤⎛⎫⎛⎫-=--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦即可求解.【详解】解:令()5sin 06f x x π⎛⎫-= ⎪⎝⎭=,02x π<<,则6x π=或76x π=,令()5sin 56f x x π⎛⎫-= ⎪⎝⎭=,02x π<<,则23x π=,又02αβπ<<<,()()1ff αβ==,所以263ππα<<,2736ππβ<<,1sin 65πα⎛⎫-= ⎪⎝⎭,1sin 65πβ⎛⎫-= ⎪⎝⎭,因为062ππα<-<,26ππβπ<-<,所以cos 65πα⎛⎫-= ⎪⎝⎭,cos 65πβ⎛⎫-=- ⎪⎝⎭,所以()cos cos cos cos sin sin 666666ππππππβαβαβαβα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=---=--+-- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦26261123555525-⨯⨯=-=+,故选:B.10.已知数列{}n a 满足12a =,26a =,且2122n n n a a a ++-+=,若[]x 表示不超过x 的最大整数(例如[]1.61=,[]1.62-=-),则222122021232022a a a ⎡⎤⎡⎤⎡⎤++⋅⋅⋅+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()A.2019B.2020C.2021D.2022【答案】D 【解析】【分析】求出()1na n n =+,()2111nn a n+=+,即得解.【详解】解:由题设知,()()2112n n n n a a a a +++---=,214a a -=,故{}1n n a a +-是首项为4,公差为2的等差数列,则122n n a a n +-=+,则11221n n n n a a a a a a ----+-+⋅⋅⋅+-()()()()1213212121n a a n n n n ⎡⎤=-=-+⋅⋅⋅++++-=+-⎣⎦,所以()1na n n =+,故()2111nn a n+=+,又*n ∈N ,当1n =时,2122a ⎡⎤=⎢⎥⎣⎦,当2n ≥时,()211n n a ⎡⎤+=⎢⎥⎢⎥⎣⎦,所以22212202123202221112022a a a ⎡⎤⎡⎤⎡⎤++⋅⋅⋅+=++++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.故选:D .11.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,过2F 作一条直线与双曲线右支交于,A B 两点,坐标原点为O ,若OA c =,15BF a =,则该双曲线的离心率为()A.2B.2C.3D.3【答案】B 【解析】【分析】由1212OA c F F ==得1290F AF ∠=︒,由双曲线定义得23BF a =,在1AF B △中应用勾股定理得2AF a =,在12AF F △中再应用勾股定理得,a c 的关系式,求得离心率.【详解】因为1212OA c F F ==,所以1290F AF ∠=︒,又122BF BF a -=,所以23BF a =,又122AF AF a =+,由22211AF AB BF +=得22222(2)(3)(5)AF a AF a a +++=,解得2AF a =,所以由2221212AF AF F F +=,得222(2)(2)a a a c ++=,解得2c e a ==.故选:B .【点睛】关键点点睛:本题考查求双曲线的离心率,解题关键是由1212OA c F F ==得1290F AF ∠=︒,然后结合双曲线的定义在1AF B △中应用勾股定理求得2AF ,在12AF F △中应用勾股定理建立,a c 的关系.12.设0.02e 1a =-,()0.012e 1b =-,sin 0.01tan 0.01c =+,则()A.a b c >>B.a c b >>C.c a b >>D.b c a>>【答案】A 【解析】【详解】因为()20.020.010.01e 2e 1e 10a b -=-+=->,所以a b >.设()()2e 1sin tan xf x x x =---,则()f x '=212e cos cos xx x--,令()()g x f x '=,则32sin ()2e sin cos xxg x x x'=+-.当π0,6x ⎛⎫∈ ⎪⎝⎭时,2e 2x >,sin 0x >,33π2sin2sin 62πcos 9cos 6x x <=<,所以()0g x '>,所以当π0,6x ⎛⎫∈ ⎪⎝⎭时,()(0)0f x f ''>=,所以()f x 在π0,6x ⎛⎫∈ ⎪⎝⎭上单调递增,从而()(0)0f x f >=,因此(0.01)0f >,即b c >.综上可得a b c >>.故选:A【点睛】比较函数值的大小,要结合函数值的特点,选择不同的方法,本题中,,a b 可以作差进行比较大小,而,b c 的大小比较,则需要构造函数,由导函数得到其单调性,从而比较出大小,有难度,属于难题.二、填空题:本大题共4小题,每小题5分,共20分13.已知复数z 满足13i z z -=-,则z =__________.【答案】5【解析】【分析】设i z a b =+,,R a b ∈,根据复数的模及复数相等的充要条件得到方程组,解得a 、b ,即可求出z ,从而得解.【详解】设i z a b =+,,R a b ∈,则z =,因为13i z z -=-i 13i a b --=-,所以13a b -==⎪⎩,所以43a b =⎧⎨=⎩,即43i z =+,所以5z ==.故答案为:514.已知双曲线22221(0,0)x y a b a b-=>>的一个焦点在直线2y x =-上,且焦点到渐近线的距离为双曲线的方程为_______.【答案】2213y x -=【解析】【分析】根据点到直线的距离公式可得b =,由焦点在直线上可得2c =,进而可求解1a ==.【详解】由题意可得双曲线的焦点在x 轴上,又直线2y x =-与x 的交点为()2,0,所以右焦点为()2,0,故2c =,渐近线方程为b y x a=±,所以(),0cb c a b ==又1a ==,故双曲线方程为2213yx -=,故答案为:2213y x -=15.已知定义在R 上的函数()f x 满足()()2f x f x x +-=,[)12,0,x x ∀∈+∞均有()()()121212122f x f x x x x x x x -+>≠-,则不等式()()112f x f x x -->-的解集为___________.【答案】1,2⎛⎫+∞ ⎪⎝⎭【解析】【分析】构造函数()()212g x f x x =-,通过题干条件得到()g x 为奇函数,且在R 上单调递增,从而根据单调性解不等式,求出解集.【详解】因为定义在R 上的函数()f x 满足()()2f x f x x +-=,所以设()()212g x f x x =-,则()()g x g x =--,所以()()212g x f x x =-为奇函数,因为[)12,0,x x ∀∈+∞,都有()()()121212122f x f x x x x x x x -+>≠-,当12x x >时,则有()()()()1212122x x x x f x f x +-->,即()()22121222x x f x f x ->-,所以()()12g x g x >,所以()g x 在()0,∞+上单调递增,当12x x <时,则有()()22121222x x f x f x -<-,所以()()12g x g x <,所以()g x 在()0,∞+上单调递增,综上:()g x 在()0,∞+上单调递增,因为()g x 为奇函数,则()g x 在R 上单调递增,()()112f x f x x -->-变形为:()()()22111122f x x f x x ->---,即()()1g x g x >-,所以1x x >-,解得:12x >.故答案为:1,2⎛⎫+∞ ⎪⎝⎭16.已知抛物线2:8C y x =,其焦点为点F ,点P 是拋物线C 上的动点,过点F 作直线()1460m x y m ++--=的垂线,垂足为Q ,则PQ PF+的最小值为___________.【答案】5##5+【解析】【分析】通过确定直线过定点M (4,2),得到Q 在以FM 为直径的圆上,将P 到Q 的距离转化为到圆心的距离的问题,再利用抛物线的定义就可得到最小值.【详解】将已知直线(1)460+-+-=m x m y 化为()460-++-=m x x y ,当4x =时2y =,可确定直线过定点(4,2),记为M 点.∵过点F 做直线(1)460+-+-=m x m y 的垂线,垂足为Q ,∴FQ ⊥直线(1)460+-+-=m x m y ,即,90︒⊥∠=FQ MQ FQM ,故Q 点的轨迹是以FM 为直径的圆,半径r =,其圆心为FM 的中点,记为点H ,∴(3,1)H ,∵P 在抛物线2:8C y x =上,其准线为2x =-,∴PF 等于P 到准线的距离.过P 作准线的垂线,垂足为R .要使||||PF PQ +取到最小,即||||PR PQ +最小,此时R 、P 、Q 三点共线,且三点连线后直线RQ 过圆心H .如图所示,此时()min ||||5+=-=-PR PQ HR r故答案为:5三、解答题(共70分)解答应写出文字说明、证明过程或演算步骤.第17—21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知34,cos 5a C ==.(1)求sin A 的值;(2)若11b =,求ABC 的面积.【答案】(1;(2)22.【解析】【分析】(1)先由平方关系求出sin C ,再根据正弦定理即可解出;(2)根据余弦定理的推论222cos 2a b c C ab+-=以及4a =可解出a ,即可由三角形面积公式in 12s S ab C =求出面积.【小问1详解】由于3cos 5C =,0πC <<,则4sin 5C =.因为4a =,由正弦定理知4sin A C =,则sin sin 45A C ==.【小问2详解】因为4a =,由余弦定理,得2222221612111355cos 22225a a a a b c C ab a a +--+-====,即26550a a +-=,解得5a =,而4sin 5C =,11b =,所以ABC 的面积114sin 51122225S ab C ==⨯⨯⨯=.18.已知数列{}n a 中的相邻两项21k a -,2k a 是关于x 的方程()232320k k x k x k -++⋅=的两个根,且212(1,2,3,)k k a a k -≤= .(1)求1357,,,a a a a 及2(4)n a n ≥(不必证明);(2)求数列{}n a 的前2n 项和2n S .【答案】(1)13572,,,(4)24812,2n na a a a a n ===≥==;(2)2133222n n n +++-【解析】【分析】(1)方程由因式分解可解得21,23k x x k ==,结合212(1,2,3,)k k a a k -≤= 则可求得1357,,,a a a a ,令()2132n n f n x x =-=-,设()23xg x x =-,由导数法可求得()()()40f n g n g =≥>,则有2n n a =;(2)分组求和,结合公式法求和即可【小问1详解】由题意得,()()213203,2k k x k x x x k -===-⇒,由212(1,2,3,)k k a a k -≤= ,则当1k =时,21123,2x x a ⇒===;当2k =时,21346,4x x a ⇒===;当3k =时,21589,8x x a ⇒===;当4k =时,712612,112x x a ⇒===;当k n =()4n ≥时,21,23n x x n ==,令()2132n n f n x x =-=-,设()23x g x x =-,由()()2ln 2416ln 2330x g x g '=≥=-->',故()g x 单调递增,故()()()430f n g n g =≥=>,则21x x >,∴22n n a =;【小问2详解】由(1)得122122n n nS a a a a -=++++ ()()2363222n n =+++++++ ()()21233212nn n-+=+-2133222n n n ++=+-19.已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别是1F ,2F ,上、下顶点分别是1B ,2B ,离心率12e =,短轴长为.(1)求椭圆C 的标准方程;(2)过2F 的直线l 与椭圆C 交于不同的两点M ,N ,若12MN B F ⊥,试求1F MN △内切圆的面积.【答案】(1)22143x y +=;(2)36169π.【解析】【分析】(1)由题意得122c a b ⎧=⎪⎨⎪=⎩,解出即可;(2)首先算出直线l 的方程,然后和椭圆的方程联立消元,算出1F MN △的面积和周长,然后得到1F MN △内切圆的半径即可.【详解】(1)由题意得122c a b ⎧=⎪⎨⎪=⎩,又222a b c =+,解得24a =,23b =,所以椭圆C 的方程为22143x y +=.(2)由(1B ,()21,0F ,知12B F的斜率为12MN B F ⊥,故MN的斜率为3,则直线l的方程为()13y x =-,即1x =+,联立221,431,x y x ⎧+=⎪⎨⎪=+⎩可得:21390y +-=,设()11,M x y ,()22,N x y,则1213y y +=-,12913y y =-,则1F MN △的面积122413S c y y =⋅-==,由1F MN △的周长48L a ==,及12S LR =,得内切圆2613S R L ==,所以1F MN △的内切圆面积为236ππ169R =.20.已知函数()ln(1)2f x x ax =+-+.(1)若2a =,求()f x 在0x =处的切线方程;(2)当0x ≥时,()2ln(1)0f x x x x +++≥恒成立,求整数a 的最大值.【答案】(1)20x y +-=(2)4【解析】【分析】(1)利用函数解析式求切点坐标,利用导数求切线斜率,点斜式求切线方程;(2)0x =时,不等式恒成立;当0x >时,不等式等价于()()1ln 12x x a x ⎡⎤+++⎣⎦≤,设()()()1ln 12x x g x x⎡⎤+++⎣⎦=,利用导数求()g x 的最小值,可求整数a 的最大值.【小问1详解】若2a =,则()ln(1)22f x x x =+-+,()02f =,则切点坐标为()0,2,()121f x x =-+',则切线斜率()01k f '==-,所以切线方程为()20y x -=--,即20x y +-=.【小问2详解】由()2ln(1)0f x x x x +++≥,得(1)[ln(1)2]ax x x ≤+++,当0x =时,02a ⋅≤,a ∈R ;当0x >时,()()1ln 12x x a x⎡⎤+++⎣⎦≤,设()()()1ln 12x x g x x ⎡⎤+++⎣⎦=,()()22ln 1x x g x x --+'=,设()()2ln 1h x x x =--+,()01x h x x +'=>,则()h x 在()0,∞+单调递增,(3)1ln 40h =-<,(4)2ln 50h =->,所以存在0(3,4)x ∈使得()00h x =,即()002ln 1x x -=+.()00,x x ∈时,()0h x <,即()0g x '<;()0,x x ∈+∞时,()0h x >,即()0g x '>,则有()g x 在()00,x 单调递减,在()0,x +∞单调递增,()min 0()g x g x =,所以()()()()()000000001ln 121221x x x x a g x x x x ⎡⎤⎡⎤++++-+⎣⎦⎣⎦≤===+,因为0(3,4)x ∈,所以01(4,5)x +∈,所以整数a 的最大值为4.【点睛】方法点睛:不等式问题,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.解题过程中要注意分类讨论和数形结合思想的应用.21.在平面直角坐标系xOy 中,动点G 到点()4,0F 的距离比到直线60x +=的距离小2.(1)求G 的轨迹的方程;(2)设动点G 的轨迹为曲线C ,过点F 作斜率为1k ,2k 的两条直线分别交C 于M ,N 两点和P ,Q 两点,其中122k k +=.设线段MN 和PQ 的中点分别为A ,B ,过点F 作FD AB ⊥,垂足为D .试问:是否存在定点T ,使得线段TD 的长度为定值.若存在,求出点T 的坐标及定值;若不存在,说明理由.【答案】(1)216y x=(2)存在定点(4,2)T ,使得线段TD 的长度为定值2;理由见解析【解析】【分析】(1)根据动点G 到点(4,0)F 的距离比它到直线60x +=的距离小2和抛物线的定义可知点G 的轨迹是以(4,0)F 为焦点,以直线40x +=为准线的抛物线,进而得出结果;(2)设直线方程,联立抛物线方程,求得A ,B 的坐标,从而表示出AB 的方程,说明其过定点,由FD AB ⊥可说明点D 点在一个圆上,由此可得结论.【小问1详解】由题意可得动点G 到点()4,0F 的距离比到直线60x +=的距离小2,则动点G 到点()4,0F 的距离与到直线40x +=的距离相等,故G 的轨迹是以(4,0)F 为焦点,以直线40x +=为准线的抛物线,设抛物线方程为22,(0)y px p =>,则焦准距8p =,故G 的轨迹的方程为:216y x =;【小问2详解】由题意,直线MN 的方程为1(4)y k x =-,由题意可知12120,0,k k k k ≠≠≠,由2116(4)y x y k x ⎧=⎨=-⎩,消去y 得:2222111(816)160k x k x k -++=,211256(1)0k ∆=+>,设1122(,),(,)M x y N x y ,则1212111221116168,(4)(4)x x y y k x k x k k +=++=-+-=,故21188(4,A k k +,同理可求得22288(4,B k k +,所以直线AB 的斜率21121222218888(4)(4)ABk k k k k k k k k -==++-+,故直线AB 的方程为:()()12121221211121288844442k k k k k k y x x x k k k k k k k k ⎛⎫=--+=-+=-+ ⎪+++⎝⎭,故直线AB 过定点(4,4),设该点为(4,4)E ,又因为FD AB ⊥,所以点D 在以EF 为直径的圆上,由于(4,4),(4,0)E F ,4EF ==,故以EF 为直径的圆的方程为22(4)(2)4x y -+-=,故存在定点(4,2)T ,使得线段TD 的长度为定值2.【点睛】本题考查了抛物线方程的求解以及直线和抛物线的位置关系中的定点问题,综合性较强,解答时要注意设直线方程并和抛物线方程联立,利用很与系数的关系进行化简,关键是解题思路要通畅,计算要准确,很容易出错.(二)选考题:共10分.请考生在第22、23题中任选一题做答.如果多做,则按所做的第一题记分.22.在平面直角坐标系xOy 中,直线1C 的参数方程为2cos ,sin ,x t y t αα=+⎧⎨=⎩(t 为参数,0απ<<),曲线2C 的参数方程为()1sin 2,2sin cos ,x y βββ=+⎧⎨=+⎩(β为参数),以坐标原点O 为极点,以x 轴正半轴为极轴建立极坐标系.(1)求曲线2C 的极坐标方程;(2)若点(2,0)P ,直线1C 与曲线2C 所在抛物线交于A ,B 两点,且||2||PA PB =,求直线1C 的普通方程.【答案】(1)2sin 4cos ρθθ=,[]cos 0,2ρθ∈(2)240x y +-=或240x y --=.【解析】【分析】(1)由()2sin cos 1sin 2βββ+=+将曲线2C 的参数方程化为普通方程,再根据极坐标和直角坐标的转化公式即可得出答案;(2)将直线的参数方程代入曲线2C 的普通方程,可得根与系数的关系式,结合根与系数的关系式化简可求得tan α的值,即可求出直线1C 的斜率,再由点斜式即可得出答案.【小问1详解】因为[]1sin 20,2x β=+∈,由()2sin cos 1sin 2βββ+=+,所以曲线2C 的普通方程为24y x =,[]0,2x ∈,cos x ρθ=,sin y ρθ=,所以22sin 4cos ρθρθ=,即2sin 4cos ρθθ=.所以曲线2C 的极坐标方程为2sin 4cos ρθθ=,[]cos 0,2ρθ∈.【小问2详解】设A ,B 两点对应的参数分别为12,t t ,将2cos ,sin ,x t y t αα=+⎧⎨=⎩代入24y x =得22sin 4cos 80t t αα--=,由题知2sin 0α≠,22222216cos 32sin 16(cos sin )16sin 1616sin 0αααααα∆=+=++=+>,所以1224cos sin t t αα+=,1228sin t t α-=.因为||2||PA PB =,所以122t t =,又12280sin t t α-=<,所以122t t =-,故22sin t α=±.当22sin t α=时,代入1224cos sin t t αα+=得tan 2α=-,此时1C 的普通方程为2(2)y x =--,即240x y +-=.当22sin t α=-时,代入1224cos sin t t αα+=得tan 2α=,此时1C 的普通方程为2(2)y x =-,即240x y --=,联立22404x y y x--=⎧⎨=⎩可得()2244x x -=,即2540x x -+=,解得:1x =或4x =,所以直线1C 的普通方程为240x y +-=或240x y --=.23.已知()|||2|().f x x a x x x a =-+--(1)当1a =时,求不等式()0f x <的解集;(2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围.【答案】(1)(,1)-∞;(2)[1,)+∞【解析】【分析】(1)根据1a =,将原不等式化为|1||2|(1)0x x x x -+--<,分别讨论1x <,12x ≤<,2x ≥三种情况,即可求出结果;(2)分别讨论1a ≥和1a <两种情况,即可得出结果.【详解】(1)当1a =时,原不等式可化为|1||2|(1)0x x x x -+--<;当1x <时,原不等式可化为(1)(2)(1)0x x x x -+--<,即2(1)0x ->,显然成立,此时解集为(,1)-∞;当12x ≤<时,原不等式可化为(1)(2)(1)0x x x x -+--<,解得1x <,此时解集为空集;当2x ≥时,原不等式可化为(1)(2)(1)0x x x x -+--<,即2(10)x -<,显然不成立;此时解集为空集;综上,原不等式的解集为(,1)-∞;(2)当1a ≥时,因为(,1)x ∈-∞,所以由()0f x <可得()(2)()0a x x x x a -+--<,即()(1)0x a x -->,显然恒成立;所以1a ≥满足题意;当1a <时,2(),1()2()(1),x a a x f x x a x x a-≤<⎧=⎨--<⎩,因为1a x ≤<时,()0f x <显然不能成立,所以1a <不满足题意;综上,a 的取值范围是[1,)+∞.【点睛】本题主要考查含绝对值的不等式,熟记分类讨论的方法求解即可,属于常考题型.。
数学(文科)试卷注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分;2.答卷前,考生务必将自己的姓名、准考证号填写在本试题卷相应的位置;3.全部答案在答题卷上完成,答在本试题卷上无效;4.考试结束后,将答题卷交回。
一、选择题 :本大题共12小题,每小题5分,共60分1.设集合2{|430}A x x x =-+≥,{|230}B x x =-≤,则A B =( )A .(1][3)-∞,,+∞B . [13],C .3(][3)2-∞,,+∞D .3[3]2,2.复数i i -+1)1(4+2等于 ( )A .2-2iB .-2iC .1-iD .2i3.下列命题中正确的是( )A .命题“x R ∃∈,使得210x -<”的否定是“x R ∀∈,均有210x ->”;B .命题“若cos cos x y =,则x=y”的逆否命题是真命题:C .命题“存在四边相等的四边形不是正方形”是假命题D .命题”若x=3,则2230x x --=”的否命题是“若3x ≠,则2230x x --≠”; 4.已知132a -=,31log 2b =,121log 3c =,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >>5.已知平面直角坐标系xOy 上的区域D 由不等式组给定.若M (x ,y )为D 上的动点,点A 的坐标为,则z=•的最大值为( )A. 4B. 3C.3D.4 6.若,2παπ⎛⎫∈ ⎪⎝⎭,则3cos 2sin 4παα⎛⎫=- ⎪⎝⎭,则sin 2α的值为( )A .118B .118-C . 1718-D . 17187.某四面体的三视图如图所示,该四面体的六条棱的长度中,最大的是( )A.C.D.8.已知等差数列}{}{n n b a ,的前项和为,,若对于任意的自然数,都有1432--=n n T S nn ,则102393153)(2b b a b b a a ++++= ( ) A. 5027 B.4017 C.209 D. 19439.在等比数列}{n a 中,b a a a a a a =+≠=+161565),0(,则2625a a +的值是( )A .a bB . a b 2C . 22a bD .2a b10..已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是( )A.(7,5)B.(5,7)C.(2,10)D.(10,1)11.《算数书》竹简于上世纪八十年代在湖北省江××县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一. 该术相当于给出了有圆锥的底面周长与高,计算其体积的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率近似取为 3.那么近似公式2275v L h ≈相当于将圆锥体积公式中的近似取为( ) A.258 B. 355113 C.15750 D. 22712..函数1)3(log -+=x y a )1,0(≠>a a 且的图象恒过定点,若点在直线02=++ny mx 上,其中0,0m n >>,则21m n +的最小值为( )A..4 C .52 D .92二.填空题:本大题共4小题,每小题5分,共20分.。
应城一中2017届高三11月月考试题高三数学试卷(理)第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合2{230},{ln(2)}A x x x B x y x =--≤==-,则AB =( )A .(1,3)B .(1,3]C .[1,2)-D .(1,2)-2.已知i 是虚数单位,复数21ii+的值为A .1i -B .1i +C .iD .2i -000003..0,ln .,tan 2016.,sin cos 3.,20x A x x xB x R xC x R x xD x R ∀>>∃∈=∃∈+=∀∈>下列命题中,是假命题的是 4.设偶函数()f x 的定义域为R ,当[)0,x ∈+∞时,()f x 是增函数,则 ()()()2,,3f ff π--的大小关系是A.()()()23f ff π-<<- B.()()()23f f f π<-<-C.()()()23f f f π-<-<D.()()()32f f f π-<-<101005.{}9278,.100.99.98.97n a a a A B C D ==已知等差数列前项的和为,则226.sin 2,cos ()34παα=+=已知则 1112 (6323)A B C D 7.已知P 是△ABC 所在平面内一点,20PB PC PA ++=,现将一粒红豆随机撒在△ABC内,则红豆落在△PBC 内的概率是A .14B .13C .12D .23228.,,,=(||||....||||||||OA a OB b BC OA C OC a a b a b a b a b A B C D a b a b a bλλλ==⊥≠已知非零向量且为垂足,若0),则等于学校 考号姓名班级9.设点P 是双曲线22221(0,0)x y a b a b-=>>上的一点,1F 、2F 分别是双曲线的左、右焦点,已知12PF PF ⊥,且122PF PF =,则双曲线的一条渐近线方程是 A .2y x = B .3y x = C .2y x = D .4y x =10. 某几何体的三视图如图所示,则该几何体的外接球的表面积为A .24πB .12πC .8πD .6π11.《九章算术》是我国古代著名数学经典。
2017届四川省绵阳市丰谷中学高三上学期第一次月考数学(文)试题班级: 姓名: . 总分:审题:高三备课组一、选择题(每小题5分,共60分)1、设全集∪={a ,b ,c ,d},集合M={ a ,c ,d },N={b ,d} 则N )M (C U ⋂等于( )A 、{b}B 、{d}C 、{a, c}D 、{b, d}2、设集合M={x| 0<x ≤3},N={ x| 0<x ≤2},则“a ∈M ”是“a ∈N ”的( )条件A 、充分不必要B 、必要不充分C 、充要D 、既不充分也不必要3、设A={x| 1<x <2},B={x| x <a},若A B ,则实数a 的取值范围是( ) A 、a ≥2B 、a ≤2C 、a >2D 、a <24、不等式xx 1-≥2的解集是( ) A 、(]1,-∞- B 、)01[,- C 、)[∞+-,1 D 、(()∞+⋃-∞-,,0]1 5、设a ∈(0,1),则函数y=)1x (log 1a -的定义域为( )A 、(1,]2B 、(1,+∞)C 、(2,+∞)D 、(1,2) 6.以下有关命题的说法错误的是( )A .命题“若0232=+-x x 则x=1”的逆否命题为“若023,12≠+-≠x x x 则”B .“1=x ”是“0232=+-x x ”的充分不必要条件C .若q p ∧为假命题,则p 、q 均为假命题D .对于命题01,:,01:22≥++∈∀⌝<++∈∃x x R x p x x R x p 均有则使得7.函数xx x f 2)1ln()(-+=的零点所在的大致区间是( )A .(3,4)B .(2,e )C .(1,2)D .(0,1)8、若f(x)为偶函数,且在(-∞,0)单调递增,则下列关系式中成立的是( )A 、)2(f )1(f )23(f <-<- B 、)2(f )23(f )1(f <<- C 、)23()1()2(-<-<f f f D 、)1()23()2(-<<-f f f9. 已知命题为则总有p e x x p x⌝>+>∀,1)1(,0:( )A.1)1(,0000≤+≤∃x ex x 使得 B. 1)1(,0000≤+>∃x e x x 使得C.0000,(1)1x x x e ∀>+≤总有D.0000,(1)1x x x e ∀≤+≤总有 10、若0<x <y <1,则( )A 、xy 33< B 、log 33log y x < C 、log y x 44log < D 、y x )41()41(<11、已知f(x)=⎪⎩⎪⎨⎧02e x )0()0()0(<=>x x x ,则f{f [f (-2)]}的值为( )A 、0B 、eC 、e 2D 、412、设函数y=f(x)是奇函数,并且对任意x ∈R ,均有f (-x )=f(x+2), 又当x ∈(0,]1时,f (x) =2 x ,则)25(f 的值是( )A 、272B 、22-C 、2-D 、2选择题请将答案写在表格内二、填空题(共20分,每小题5分)13、已知集合M={0,a},N={x | x 2-2x -3<0,x ∈N +},若M ∩N ≠Φ,则a 的值为________14、 ()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 .15、 曲线31y x x =++在点(1,3)处的切线方程是 ;16、计算:3log 1215522433e ln 45log 2log 2-⨯⨯+++ =_________ 三、解答题(17题10分,其他每题12分,共70分)17、(本小题满分10分)已知全集U=R ,{}{}22120,450A x x x B x x x =--≤=-- ,求(1)A∩B(2)A ∪B (3)B C A C u u ⋂18.(本小题12分)已知二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称,写出函数的解析表达式,并求出函数)(x f 的单调递增区间.19.(本小题12分)已知命题:12,:,p x q x Z -≥∈∧若“p q?”⌝与“q?”同时为假命题,求x 的值。
2015-2016学年四川省绵阳中学高三(上)11月月考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若a为实数,且2+ai=(1+i)(3+i),则a=( )A.﹣4 B.﹣3 C.3 D.42.设x∈R,则“l<x<2”是“l<x<3”的( )A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件3.下列四个命题,其中正确命题的个数( )①若a>|b|,则a2>b2②若a>b,c>d,则a﹣c>b﹣d③若a>b,c>d,则ac>bd④若a>b>o,则>.A.3个B.2个C.1个D.0个4.抛物线y=2x2的焦点坐标是( )A.(0,)B.(,0)C.(0,)D.(,0)5.函数f(x)=ln(x+1)﹣的零点所在的大致区间是( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)6.设偶函数f(x)在[0,+∞)单调递增,则使得f(x)>f(2x﹣1)成立的x的取值范围是( )A.(,1)B.(﹣∞,)∪(1,+∞)C.(﹣,)D.(﹣∞,﹣)∪(,+∞)7.如图,点O为坐标原点,点A(1,1),若函数y=a x(a>0,且a≠1)及log b x(b>0,且b≠1)的图象与线段OA分别交于点M,N,且M,N恰好是线段OA的两个三等分点,则a,b满足( )A.a<b<1 B.b<a<1 C.b>a>1 D.a>b>18.一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y﹣2)2=1相切,则反射光线所在直线的斜率为( )A.﹣或﹣B.﹣或﹣C.﹣或﹣D.﹣或﹣9.已知函数f(x)=丨x﹣2丨+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k的取值范围是( )A.(0,)B.(,1)C.(1,2)D.(2,+∞)10.若函数f(x)=x3+ax2+bx+c有极值点x1,x2,且f(x1)=x1<x2,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数是( )A.3 B.4 C.5 D.6二、填空题:本大题共5小题,每小题5分.本大题共25分.11.已知等比数列{a n}满足:a1+a3=1,a2+a4=2,则a4+a6=__________.12.已知向量与向量的夹角为120°,若且,则在上的投影为__________.13.设x,y满足约束条件的取值范围是__________.14.过双曲线=1(a>0,b>0)的左焦点F(﹣c,0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,O为原点,若,则双曲线的离心率为__________.15.若在曲线f(x,y)=0上两个不同点处的切线重合,则称这条切线为曲线f(x,y)=0的“自公切线”.下列方程:①x2﹣y2=1;②y=x2﹣|x|;③y=3sinx+4cosx;④对应的曲线中存在“自公切线”的有__________.三、解答题:本大题共6小题,16-19每小题12分,20小题13分,21小题14分,本大题共75分.解答应写出文字说明、证明过程或演算步骤.16.设命题p:函数y=kx+1在R上是增函数,命题q:曲线y=x2+(2k﹣3)x+1与x轴交于不同的两点,如果p∧q是假命题,p∨q是真命题,求k的取值范围.17.已知S n为公差不为0的等差数列{a n}的前n项和,且a1=1,S1,S2,S4成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设,求数列{b n}的前n项和.18.已知m=(2cos(x+),cosx),n=(cosx,2sin(x+)),且函数f(x)=•+1 (1)设方程f(x)﹣1=0在(0,π)内有两个零点x1,x2,求f(x1+x2)的值;(2)若把函数y=f(x)的图象向左平移个单位,再向上平移2个单位,得函数g(x)图象,求函数g(x)在[﹣,]上的单调增区间.19.某厂生产当地一种特产,并以适当的批发价卖给销售商甲,甲再以自己确定的零售价出售,已知该特产的销售(万件)与甲所确定的零售价成一次函数关系’当零售价为80元/件时,销售为7万件;当零售价为50元/件时,销售为10万件,后来,厂家充分听取了甲的意见,决定对批发价改革,将每件产品的批发价分成固定批发价和弹性批发价两部分,其中固定批发价为30元/件,弹性批发价与该特产的销售量成反比,当销售为10万件,弹性批发价为1元/件,假设不计其它成本,据此回答下列问题(1)当甲将每件产品的零售价确定为100元/件时,他获得的总利润为多少万元?(2)当甲将每件产品的零售价确定为多少时,每件产品的利润最大?20.(13分)已知圆F1:(x+1)2+y2=r2与圆F2:(x﹣1)2+y2=(4﹣r)2(0<r<4)的公共点的轨迹为曲线E,且曲线E与y轴的正半轴相交于点M.若曲线E上相异两点A、B满足直线MA,MB的斜率之积为.(Ⅰ)求E的方程;(Ⅱ)证明直线AB恒过定点,并求定点的坐标;(Ⅲ)求△ABM的面积的最大值.21.(14分)已知函数f(x)=lnx﹣+a(其中a∈R,无理数e=2.71828…).当x=e时,函数f(x)有极大值.(1)求实数a的值;(2)求函数f(x)的单调区间;(3)任取x1,x2∈[e,e2],证明:|f(x1)﹣f(x2)|<3.2015-2016学年四川省绵阳中学高三(上)11月月考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若a为实数,且2+ai=(1+i)(3+i),则a=( )A.﹣4 B.﹣3 C.3 D.4【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】利用复数的运算法则、复数相等即可得出.【解答】解:2+ai=(1+i)(3+i)=2+4i,∴a=4.故选:D.【点评】本题考查了复数的运算法则、复数相等,考查了推理能力与计算能力,属于基础题.2.设x∈R,则“l<x<2”是“l<x<3”的( )A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】不等式的解法及应用;简易逻辑.【分析】由l<x<2,可得l<x<3,反之不成立,则答案可求.【解答】解:若l<x<2,则l<x<3,反之,若l<x<3,则不一定有l<x<2,如x=2.5.∴x∈R,则“l<x<2”是“l<x<3”的充分而不必要条件.故选:A.【点评】本题考查充分条件、必要条件的判定方法,是基础题.3.下列四个命题,其中正确命题的个数( )①若a>|b|,则a2>b2②若a>b,c>d,则a﹣c>b﹣d③若a>b,c>d,则ac>bd④若a>b>o,则>.A.3个B.2个C.1个D.0个【考点】命题的真假判断与应用.【专题】综合题;转化思想;分析法;不等式的解法及应用.【分析】直接由不等式的可乘积性判断①;举例说明②③④错误.【解答】解:①若a>|b|,则a2>b2,①正确;②若a>b,c>d,则a﹣c>b﹣d错误,如3>2,﹣1>﹣3,而3﹣(﹣1)=4<5=2﹣(﹣3);③若a>b,c>d,则ac>bd错误,如3>1,﹣2>﹣3,而3×(﹣2)<1×(﹣3);④若a>b>o,则,当c>0时,<,④错误.∴正确命题的个数只有1个.故选:C.【点评】本题考查命题的真假判断与应用,考查了不等式的基本性质,是基础题.4.抛物线y=2x2的焦点坐标是( )A.(0,)B.(,0)C.(0,)D.(,0)【考点】抛物线的简单性质.【专题】计算题;转化思想;圆锥曲线的定义、性质与方程.【分析】将抛物线化为标准方程,结合抛物线的性质,可得答案.【解答】解:抛物线y=2x2的标准方程为:x2=y,故抛物线y=2x2的焦点坐标是(0,),故选:C【点评】本题考查的知识点是抛物线的性质,化为标准方程是解答圆锥曲线类问题的关键.5.函数f(x)=ln(x+1)﹣的零点所在的大致区间是( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)【考点】函数的零点与方程根的关系.【专题】计算题.【分析】函数f(x)=ln(x+1)﹣的零点所在区间需满足的条件是函数在区间端点的函数值符号相反.【解答】解:∵f(1)=ln(1+1)﹣2=ln2﹣2<0,而f(2)=ln3﹣1>lne﹣1=0,∴函数f(x)=ln(x+1)﹣的零点所在区间是(1,2),故选B.【点评】本题考查函数的零点的判定定理,连续函数在某个区间存在零点的条件是函数在区间端点处的函数值异号.6.设偶函数f(x)在[0,+∞)单调递增,则使得f(x)>f(2x﹣1)成立的x的取值范围是( )A.(,1)B.(﹣∞,)∪(1,+∞)C.(﹣,)D.(﹣∞,﹣)∪(,+∞)【考点】奇偶性与单调性的综合.【专题】计算题;函数的性质及应用.【分析】利用偶函数的性质、单调性去掉不等式中的符号“f”,转化为具体不等式即可求解.【解答】解:因为f(x)为偶函数,所以f(x)>f(2x﹣1)可化为f(|x|)>f(|2x﹣1|)又f(x)在区间[0,+∞)上单调递增,所以|x|>|2x﹣1|,即(2x﹣1)2<x2,解得<x<1,所以x的取值范围是(,1),故选:A.【点评】本题考查函数的奇偶性、单调性及其应用,考查抽象不等式的求解,考查学生灵活运用知识解决问题的能力.7.如图,点O为坐标原点,点A(1,1),若函数y=a x(a>0,且a≠1)及log b x(b>0,且b≠1)的图象与线段OA分别交于点M,N,且M,N恰好是线段OA的两个三等分点,则a,b 满足( )A.a<b<1 B.b<a<1 C.b>a>1 D.a>b>1【考点】指数函数的图像与性质.【专题】函数的性质及应用.【分析】先由图象得到0<a<1,0<b<1,再根据反函数的定义可以得出y=a x经过点M,则它的反函数y=log a x也经过点M,根据对数函数的图象即可得到a<b.【解答】解:由图象可知,函数均为减函数,所以0<a<1,0<b<1,因为点O为坐标原点,点A(1,1),所以直线OA为y=x,因为y=a x经过点M,则它的反函数y=log a x也经过点M,又因为log b x(b>0,且b≠1)的图象经过点N,根据对数函数的图象和性质,∴a<b,∴a<b<1故选:A.【点评】本题考查了对数函数和指数函数的图象及性质,以及反函数的概念和性质,属于基础题.8.一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y﹣2)2=1相切,则反射光线所在直线的斜率为( )A.﹣或﹣B.﹣或﹣C.﹣或﹣D.﹣或﹣【考点】圆的切线方程;直线的斜率.【专题】计算题;直线与圆.【分析】点A(﹣2,﹣3)关于y轴的对称点为A′(2,﹣3),可设反射光线所在直线的方程为:y+3=k(x﹣2),利用直线与圆相切的性质即可得出.【解答】解:点A(﹣2,﹣3)关于y轴的对称点为A′(2,﹣3),故可设反射光线所在直线的方程为:y+3=k(x﹣2),化为kx﹣y﹣2k﹣3=0.∵反射光线与圆(x+3)2+(y﹣2)2=1相切,∴圆心(﹣3,2)到直线的距离d==1,化为24k2+50k+24=0,∴k=或﹣.故选:D.【点评】本题考查了反射光线的性质、直线与圆相切的性质、点到直线的距离公式、点斜式、对称点,考查了计算能力,属于中档题.9.已知函数f(x)=丨x﹣2丨+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k的取值范围是( )A.(0,)B.(,1)C.(1,2)D.(2,+∞)【考点】函数的零点.【专题】函数的性质及应用.【分析】画出函数f(x)、g(x)的图象,由题意可得函数f(x)的图象(蓝线)和函数g (x)的图象(红线)有两个交点,数形结合求得k的范围.【解答】解:由题意可得函数f(x)的图象(蓝线)和函数g(x)的图象(红线)有两个交点,如图所示:K OA=,数形结合可得<k<1,故选:B.【点评】本题主要考查函数的零点与方程的根的关系,体现了转化、数形结合的数学思想,属于基础题.10.若函数f(x)=x3+ax2+bx+c有极值点x1,x2,且f(x1)=x1<x2,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数是( )A.3 B.4 C.5 D.6【考点】函数在某点取得极值的条件;根的存在性及根的个数判断.【专题】综合题;压轴题;导数的综合应用.【分析】求导数f′(x),由题意知x1,x2是方程3x2+2ax+b=0的两根,从而关于f(x)的方程3(f(x))2+2af(x)+b=0有两个根,作出草图,由图象可得答案.【解答】解:f′(x)=3x2+2ax+b,x1,x2是方程3x2+2ax+b=0的两根,由3(f(x))2+2af(x)+b=0,则有两个f(x)使等式成立,x1=f(x1),x2>x1=f(x1),如下示意图象:如图有三个交点,故选A.【点评】考查函数零点的概念、以及对嵌套型函数的理解,考查数形结合思想.二、填空题:本大题共5小题,每小题5分.本大题共25分.11.已知等比数列{a n}满足:a1+a3=1,a2+a4=2,则a4+a6=8.【考点】等比数列的通项公式.【专题】等差数列与等比数列.【分析】设等比数列{a n}的公比为q:可得2=q(a1+a3)=q,于是a4+a6=q2(a2+a4).【解答】解:设等比数列{a n}的公比为q:∵a1+a3=1,a2+a4=2,∴2=q(a1+a3)=q,则a4+a6=q2(a2+a4)=8.故答案为:8.【点评】本题考查了等比数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.12.已知向量与向量的夹角为120°,若且,则在上的投影为.【考点】数量积判断两个平面向量的垂直关系.【专题】平面向量及应用.【分析】因为向量与向量的夹角为120°,所以在上的投影为,问题转化为求.【解答】解:因为向量与向量的夹角为120°,所以在上的投影为,问题转化为求,因为,故,所以在上的投影为.故答案为:.【点评】本题考查在上的投影的求法,是基础题,解题时要认真审题,注意向量垂直的性质的合理运用.13.设x,y满足约束条件的取值范围是[,11].【考点】简单线性规划.【专题】数形结合.【分析】本题属于线性规划中的延伸题,对于可行域不要求线性目标函数的最值,而是求可行域内的点与(﹣1,﹣1)构成的直线的斜率问题,求出斜率的取值范围,从而求出目标函数的取值范围.【解答】解:由z==1+2×=1+2×,考虑到斜率以及由x,y满足约束条件所确定的可行域.而z表示可行域内的点与(﹣1,﹣1)连线的斜率的2倍加1.数形结合可得,在可行域内取点A(0,4)时,z有最大值11,在可行域内取点B(3,0)时,z有最小值,所以≤z≤11.故答案为:[,11].【点评】本题利用直线斜率的几何意义,求可行域中的点与(﹣1,﹣1)的斜率,属于线性规划中的延伸题,解题的关键是对目标函数的几何意义的理解.14.过双曲线=1(a>0,b>0)的左焦点F(﹣c,0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,O为原点,若,则双曲线的离心率为.【考点】双曲线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】由题设知|EF|=b,|PF|=2b,|PF′|=2a,过F点作x轴的垂线l,过P点作PD⊥l,则l为抛物线的准线,据此可求出P点的横坐标,后在Rt△PDF中根据勾股定理建立等式,由此能求出双曲线的离心率.【解答】解:∵|OF|=c,|OE|=a,OE⊥EF,∴|EF|=b,∵,∴E为PF的中点,|PF|=2b,又∵O为FF′的中点,∴PF′∥EO,∴|PF′|=2a,∵抛物线方程为y2=4cx,∴抛物线的焦点坐标为(c,0),即抛物线和双曲线右支焦点相同,过F点作x轴的垂线l,过P点作PD⊥l,则l为抛物线的准线,∴PD=PF′=2a,∴P点横坐标为2a﹣c,设P(x,y),在Rt△PDF中,PD2+DF2=PF2,即4a2+y2=4b2,4a2+4c(2a﹣c)=4(c2﹣b2),解得e=故答案为:.【点评】本题主要考查双曲线的标准方程,以及双曲线的简单性质的应用,同时考查抛物线的定义及性质,考查运算求解能力,考查数形结合思想、化归与转化思想,属于中档题.15.若在曲线f(x,y)=0上两个不同点处的切线重合,则称这条切线为曲线f(x,y)=0的“自公切线”.下列方程:①x2﹣y2=1;②y=x2﹣|x|;③y=3sinx+4cosx;④对应的曲线中存在“自公切线”的有②③.【考点】直线与圆锥曲线的关系;命题的真假判断与应用.【专题】新定义.【分析】①x2﹣y2=1 是一个等轴双曲线,没有自公切线;②在 x=和 x=﹣处的切线都是y=﹣,故②有自公切线.③此函数是周期函数,过图象的最高点的切线都重合或过图象的最低点的切线都重合,故此函数有自公切线.④结合图象可得,此曲线没有自公切线.【解答】解:①x2﹣y2=1 是一个等轴双曲线,没有自公切线;②y=x2﹣|x|=,在 x=和 x=﹣处的切线都是y=﹣,故②有自公切线.③y=3sinx+4cosx=5sin(x+φ),cosφ=,sinφ=,此函数是周期函数,过图象的最高点的切线都重合或过图象的最低点的切线都重合,故此函数有自公切线.④由于,即 x2+2|x|+y2﹣3=0,结合图象可得,此曲线没有自公切线.故答案为②③.【点评】正确理解新定义“自公切线”,正确画出函数的图象、数形结合的思想方法是解题的关键.三、解答题:本大题共6小题,16-19每小题12分,20小题13分,21小题14分,本大题共75分.解答应写出文字说明、证明过程或演算步骤.16.设命题p:函数y=kx+1在R上是增函数,命题q:曲线y=x2+(2k﹣3)x+1与x轴交于不同的两点,如果p∧q是假命题,p∨q是真命题,求k的取值范围.【考点】复合命题的真假.【专题】简易逻辑.【分析】易得p:k>0,q:或,由p∧q是假命题,p∨q是真命题,可得p,q一真一假,分别可得k的不等式组,解之可得.【解答】解:∵函数y=kx+1在R上是增函数,∴k>0,又∵曲线y=x2+(2k﹣3)x+1与x轴交于不同的两点,∴△=(2k﹣3)2﹣4>0,解得或,∵p∧q是假命题,p∨q是真命题,∴命题p,q一真一假,①若p真q假,则,∴;②若p假q真,则,解得k≤0,综上可得k的取值范围为:(﹣∞,0]∪[,]【点评】本题考查复合命题的真假,涉及不等式组的解法和分类讨论的思想,属基础题.17.已知S n为公差不为0的等差数列{a n}的前n项和,且a1=1,S1,S2,S4成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设,求数列{b n}的前n项和.【考点】数列的求和.【专题】计算题;转化思想;综合法;等差数列与等比数列.【分析】(Ⅰ)由已知,得,利用等差数列前n项和公式求出首项和公差,由此能求出a n.(Ⅱ)=,由此利用裂项法能求出数列{b n}的前n项.【解答】解:(Ⅰ)∵S n为公差不为0的等差数列{a n}的前n项和,且a1=1,S1,S2,S4成等比数列,∴由已知,得,即,整理得,又由a1=1,d≠0,解得d=2,故a n=1+(n﹣1)×2=2n﹣1.n∈N*.(Ⅱ)∵,a n=2n﹣1,∴=,∴数列{b n}的前n项和:===,n∈N*.【点评】本题考查数列的通项公式和前n项和公式的求法,考查数列的通项公式的求法,是中档题,解题时要认真审题,注意裂项求和法的合理运用.18.已知m=(2cos(x+),cosx),n=(cosx,2sin(x+)),且函数f(x)=•+1 (1)设方程f(x)﹣1=0在(0,π)内有两个零点x1,x2,求f(x1+x2)的值;(2)若把函数y=f(x)的图象向左平移个单位,再向上平移2个单位,得函数g(x)图象,求函数g(x)在[﹣,]上的单调增区间.【考点】函数y=Asin(ωx+φ)的图象变换;平面向量数量积的运算;三角函数中的恒等变换应用.【专题】计算题;数形结合;数形结合法;三角函数的求值;三角函数的图像与性质.【分析】(1)利用平面向量数量积的运算可得f(x)=cos(2x+)+2,由题意解得cos (2x+)=﹣,结合范围x∈(0,π),解得x1,x2的值,即可得解.(2)利用函数y=Asin(ωx+φ)的图象变换可得g(x)=cos(2x+)+4,由2k≤2x+≤2k即可解得函数g(x)在[﹣,]上的单调增区间.【解答】解:(1)f(x)=•+1=2cos(x+)cosx+cosx2sin(x+)+1=﹣2sinxcosx+2cosxcosx+1=﹣sin2x+1+cos2x+1=cos(2x+)+2,…而f(x)﹣1=0,得:cos(2x+)=﹣,而x∈(0,π),得:或,所以f(x1+x2)=f()=cos(+)+2=3.…(2)f(x)=cos(2x+)+2左移个单位得f(x)=cos(2x+)+2,再上移2个单位得g(x)=cos(2x+)+4,…则g(x)的单调递增区间:2k≤2x+≤2k,所以﹣+kπ≤x≤﹣+kπ,而x∈[﹣,],得:f(x)在x∈[﹣,﹣]和x∈[,]上递增…【点评】本题主要考查了函数y=Asin(ωx+φ)的图象变换,平面向量数量积的运算,三角函数中的恒等变换应用,属于基本知识的考查.19.某厂生产当地一种特产,并以适当的批发价卖给销售商甲,甲再以自己确定的零售价出售,已知该特产的销售(万件)与甲所确定的零售价成一次函数关系’当零售价为80元/件时,销售为7万件;当零售价为50元/件时,销售为10万件,后来,厂家充分听取了甲的意见,决定对批发价改革,将每件产品的批发价分成固定批发价和弹性批发价两部分,其中固定批发价为30元/件,弹性批发价与该特产的销售量成反比,当销售为10万件,弹性批发价为1元/件,假设不计其它成本,据此回答下列问题(1)当甲将每件产品的零售价确定为100元/件时,他获得的总利润为多少万元?(2)当甲将每件产品的零售价确定为多少时,每件产品的利润最大?【考点】函数模型的选择与应用.【专题】应用题;函数的性质及应用.【分析】(1)设该特产的销售量y(万件),零售价为x(元/件),且y=kx+b,由题意求得k,b,设弹性批发价t与该特产的销售量y成反比,求得t,b的关系式,设总利润为z(万元),求得z的关系式,再令x=100,即可得到所求总利润;(2)由(1)可得每件的利润为m=x﹣30﹣(x<150),运用基本不等式即可得到所求最大值及对应的x值.【解答】解:(1)设该特产的销售量y(万件),零售价为x(元/件),且y=kx+b,由题意可得7=80k+b,10=50k+b,解得k=﹣,b=15,可得y=15﹣x,设弹性批发价t与该特产的销售量y成反比,当销售为10万件,弹性批发价为1元/件,即有t=,设总利润为z(万元),则z=(15﹣x)(x﹣30﹣)=(15﹣0.1x)(x﹣30﹣),令x=100时,则z=(15﹣10)×(100﹣30﹣)=340,即有他获得的总利润为340万元;(2)由(1)可得每件的利润为m=x﹣30﹣(x<150)=x﹣﹣30=x﹣150++120≤120﹣2=120﹣20=100.当且仅当x﹣150=﹣10,即x=140时,取得等号.则甲将每件产品的零售价确定为140元/件时,每件产品的利润最大.【点评】本题考查一次函数和反比例函数的解析式的求法,考查基本不等式的运用:求最值,注意每件的利润和总利润的关系,考查分析问题和解决问题的能力,属于中档题.20.(13分)已知圆F1:(x+1)2+y2=r2与圆F2:(x﹣1)2+y2=(4﹣r)2(0<r<4)的公共点的轨迹为曲线E,且曲线E与y轴的正半轴相交于点M.若曲线E上相异两点A、B满足直线MA,MB的斜率之积为.(Ⅰ)求E的方程;(Ⅱ)证明直线AB恒过定点,并求定点的坐标;(Ⅲ)求△ABM的面积的最大值.【考点】轨迹方程.【专题】综合题;圆锥曲线的定义、性质与方程.【分析】(Ⅰ)确定|QF1|+|QF2|=4>|F1F2|,可得曲线E是长轴长2a=4,焦距2c=2的椭圆,且b2=a2﹣c2=3,即可求E的方程;(Ⅱ)分类讨论,设直线方程,代入椭圆方程,利用韦达定理,结合直线MA,MB的斜率之积为,即可证明直线AB恒过定点,并求定点的坐标;(Ⅲ)求出△ABM的面积,利用基本不等式求出最大值.【解答】解:(Ⅰ)设⊙F1,⊙F2的公共点为Q,由已知得,|F1F2|=2,|QF1|=r,|QF2|=4﹣r,故|QF1|+|QF2|=4>|F1F2|,因此曲线E是长轴长2a=4,焦距2c=2的椭圆,且b2=a2﹣c2=3,所以曲线E的方程为(Ⅱ)由曲线E的方程得,上顶点,由题意知,x1≠0,x2≠0.若直线AB的斜率不存在,则直线AB的方程为,故y1=﹣y2,,因此,与已知不符,因此直线AB的斜率存在设直线AB:y=kx+m,代入椭圆E的方程(3+4k2)x2+8kmx+4(m2﹣3)=0①因为直线AB与曲线E有公共点A,B,所以方程①有两个非零不等实根x1,x2所以,又,由得,,即,所以,化简得,故m=.结合,即直线AB恒过定点N(0,2.(Ⅲ)由又====当且仅当4k2﹣9=12,即时,△ABM的面积最大,最大值为【点评】本题考查椭圆的定义与方程,考查直线与椭圆的位置关系,考查直线过定点,考查三角形面积的计算,属于中档题.21.(14分)已知函数f(x)=lnx﹣+a(其中a∈R,无理数e=2.71828…).当x=e时,函数f(x)有极大值.(1)求实数a的值;(2)求函数f(x)的单调区间;(3)任取x1,x2∈[e,e2],证明:|f(x1)﹣f(x2)|<3.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【专题】导数的综合应用.【分析】(1)将x=e代入函数的表达式求出a的值即可;(2)先求出函数的导数,从而求出函数的单调区间;(3)问题转化为证明|f(x)max﹣f(x)min|<3即可.【解答】解:(1)由题知f(e)=lne﹣+a=,解得a=0;(2)由题可知函数f(x)的定义域为(0,+∞),又f′(x)=﹣==,由>0得0<x<e;<0得x>e;故函数f(x)单调增区间为(0,e),单调减区间为(e,+∞);(3)因为f(x)=lnx﹣,由(1)知函数f(x)的单调减区间为(e,+∞),故f(x)在[e,e2]上单调递减,∴f(x)max=f(e)=lne﹣=1﹣=;f(x)min=f(e2)=lne2﹣=2﹣,∴f(x)max﹣f(x)min=﹣(2﹣)=,∴|f(x)max﹣f(x)min|=<3①,依题意任取x1,x2∈[e,e2],欲证明|f(x1)﹣f(x2)|<3,只需要证明∴|f(x)max﹣f(x)min|<3即可,由①可知此式成立,所以原命题得证.【点评】本题考查了导数的应用,考查了函数的单调性,绝对值不等式的证明,本题属于中档题.。
四川省绵阳市2017届高三数学11月月考试题 文(无答案)
择题)和第Ⅱ卷(非选择题)两部分,共4页,满分150分,考试时间120分钟。
注意事项:
1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4.保持卡面清洁,不折叠,不破损。
第Ⅰ卷(选择题,共60分)
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.
1、设集合{}1,0,1-=A ,{}
x x x B ==2,则B A ⋂=
A. {}1,0,1-
B. {}1,0
C. {}0
D.{
}1 2、已知i 为虚数单位,复数
i
-11
的虚部是 A .
21 B .21- C .i 21 D .i 2
1- 3、“1x <”是“12
log 0x >”的
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
4、已知双曲线22221(0,0)x y a b a b
-=>>
的一条渐近线方程为6y x =,则此双曲线的离心率为 A
.
6 B .76 C
.2 D .5
4
5、已知倾斜角为θ的直线l 与直线032=+-y x 垂直,则θ2sin = A .45 B .54 C .54- D .45-
6、已知实数y x ,满足不等式组⎪⎩
⎪
⎨⎧≤-≥+≥+-0230
1y x y x y x ,求y x z 2+=的最小值
A .4
B .5 C. 4- D .无最小值
7、P 为函数x
y e =图象上的点,则点P 到直线y x =的最短距离为
A .1
B .12
8、若某程序框图如图所示,则该程序运行后输出的值是 A .2 B .3 C .4 D .5
9、2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的. 弦图是由4个全等的直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos2θ的值为 A .7
25- B .725 C .1225- D .12
25
10、已知圆的方程为()2
214x y +-=,若过点1
(1,)2
P 的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为 A .4230x y --= B .220x y +-= C .4230x y +-= D .220x y -+=
11、已知函数()cos sin f x x x =,若121
()()2
f x f x ==,则12x x -的最小值为 A .2π B .
32
π C .π D .2π
12、已知函数a ax e x x f x
---=)2()(,若不等式0)(>x f 恰好存在两个正整数解,则实数a 的
取值范围是
A .3,04e ⎡⎫-⎪⎢⎣⎭
B .,02e ⎡⎫-⎪⎢⎣⎭
C .3,42e e ⎡⎫-⎪⎢⎣⎭
D .3,22e ⎡⎫
-⎪⎢⎣⎭
第 Ⅱ 卷(非选择题,共90分)
二、填空题:本大题共4小题,每小题5分,共20分.
13、 在等比数列{}n a 中,0>n a 且965=a a ,则=+9323log log a a ______.
14、若函数22log (2),0(),026
x x f x x x x +>⎧⎪
=⎨≤⎪
+⎩,且()2f a =,则a =______.
15、设向量(1,)AB m =,(2,1)BC m =-其中[)1,m ∈-+∞,则AB AC ⋅的最小值为______. 16、设0m >,点(4,)A m 为抛物线2
2(0)y px p =>上一点,F 为焦点,以A 为圆心、AF 为半径的圆C 被y 轴截得的弦长为6,则圆C 的标准方程为______.
三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤。
17、(本小题满分12分)
在ABC ∆中,角A .B .C 所对的边分别为,,a b c ,且满足sin sin sin c b A B
a b C
-+=
-. (Ⅰ)求角A ;
(Ⅱ)若cos 2B b ==,求ABC ∆的面积.
18、(本小题满分12分)
已知数列{}n a 是等比数列,24a =,32a +是2a 和4a 的等差中项. (Ⅰ)求数列{}n a 的通项公式;
(Ⅱ)设22log 1n n b a =-,求数列{}n n a b 的前n 项和n T .
19、(本题满分12分)
有一批货物需要用汽车从城市甲运至城市乙,已知从城市甲到城市乙只有两条公路,且通过这两条公路所用的时间互不影响.据调查统计,通过这两条公路从城市甲到城市乙的200辆汽车所用时间的
频数分布表如下表:
(Ⅰ)为进行某项研究,从所用时间为12天的60辆汽车中随机抽取6辆. (ⅰ)若用分层抽样的方法抽取,求从通过公路1和公路2的汽车中各抽取几辆;
(ⅱ)若在(ⅰ)的条件下抽取的6辆汽车中,再任意抽取两辆汽车,求这两辆汽车至少有一辆通过公路1的概率.
(Ⅱ)假设汽车A 只能在约定日期(某月某日)的前11天出发,汽车B 只能在约定日期的前12天出发.为了尽最大可能在各自允许的时间内将货物运往城市乙,估计汽车A 和汽车B 应如何选择各自的路径.
20、(本题满分12分)
已知中心在原点,焦点在y 轴上的椭圆C ,其上一点P 到两个焦点12,F F 的距离之和为4,离心率
为
2
. (Ⅰ)求椭圆C 的方程;
(Ⅱ)若直线1y kx =+与曲线C 交于,A B 两点,求OAB ∆面积的取值范围.
21、(本小题满分12分)
设函数2()2(4)ln f x ax a x x =+++. (Ⅰ)讨论函数()f x 的单调区间;
(Ⅱ)若函数()y f x =的图象与x 轴交于,A B 两点,线段AB 中点的横坐标为0x , 求证:0()0f x '<.
请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题计分,做答时请用2B 铅笔在答题卡上把所选题目对应的题号涂黑.
22、(本小题满分10分)【选修4-4:坐标系与参数方程】
已知直线l
的参数方程为1x y ⎧=-⎪⎪⎨⎪=⎪⎩(其中t 为参数),曲线1C : 03sin 3cos 2222=-+θρθρ,以坐标原点为极点,x 轴正半轴为极轴,建立极坐
标系,两种坐标系中取相同长度单位。
(Ⅰ)求直线l 的普通方程及曲线1C 的直角坐标方程;
(Ⅱ)在曲线1C 上是否存在一点P ,使点P 到直线l 的距离最大?若存在,求出距离最大值及点P .若不存在,请说明理由。
23、(本小题满分10分)【选修4—5:不等式选讲】 已知函数2)(-=x x f
(Ⅰ)解不等式:2)1()(≤++x f x f (Ⅱ)若0a >,求证:()(2)()f ax f a af x -≥-。