分布式无线传感器网络时间同步方案- 简单 详尽 实用
- 格式:pdf
- 大小:867.30 KB
- 文档页数:10
无线传感器网络时间同步方法研究随着物联网技术的快速发展,无线传感器网络(Wireless Sensor Networks, WSNs)已经成为实现智能化、自动化和联网化的重要要素之一。
在WSNs中,时间同步是一项关键技术,它可以确保网络节点之间的时间一致性,从而实现数据的准确收集和处理。
本文将探讨无线传感器网络时间同步方法的研究,包括时钟同步协议和时间误差补偿方法。
一、时钟同步协议时钟同步协议旨在使WSNs中的节点能够在一个全局共享的时间轴上保持一致。
常见的时钟同步协议包括以下几种。
1.1 Berkeley算法Berkeley算法是一种分布式时钟同步算法,它通过选举一个特殊节点作为时间服务器来实现同步。
该算法将网络节点分为两类:时间服务器和普通节点。
时间服务器通过周期性地向所有普通节点广播时间信息来同步网络。
普通节点根据接收到的时间信息调整自己的时钟。
由于该算法采用分布式的方式,节点之间的通信开销相对较小,适用于大规模的WSNs。
1.2 RBS算法RBS(Reference Broadcast Synchronization)算法是一种基于参考广播的时钟同步算法,通过以广播方式将时间信息传播给其他节点来实现同步。
该算法先选举一个特殊节点作为参考节点,该节点拥有一个精确的时钟源。
参考节点周期性地广播时间信息,并且其他节点在接收到广播后根据参考节点的时间信息进行时钟的调整。
RBS算法适用于小规模的WSNs,但对网络中的通信开销较大。
1.3 FTSP算法FTSP(Flooding Time Synchronization Protocol)算法是一种基于洪泛方式的时钟同步算法,它通过广播方式将时间信息传播给所有其他节点。
FTSP算法基于对跳数的计算来估计节点之间的时钟差,并通过协调函数来调整时钟。
由于该算法采用全节点通信的方式,能够实现较高的同步精度。
二、时间误差补偿方法时间误差是指节点自身时钟与参考时间的差值,由于节点硬件等原因,时钟会存在一定的误差。
无线传感器网络时间同步无线传感器网络是由许多分布式传感器节点组成的,这些节点能够自组织通信,以收集数据和感知环境。
由于这些节点必须协作,因此它们必须具有准确的时钟以便能够对数据或事件进行同步。
无线传感器网络时间同步旨在协调网络中的每个节点以确保它们具有相同的时间参考。
它是网络内数据可靠性和完整性的基础,因为许多应用程序需要使用时间戳和顺序号来正确处理数据。
但是,在无线传感器网络中实现时间同步是具有挑战性的,因为节点的时钟精度可能受到环境条件和硬件偏差的影响。
下面是一些目前用于无线传感器网络时间同步的主要协议和技术:1. 基于发送时间戳的时间同步协议基于发送时间戳的时间同步协议是最常见的无线传感器网络时间同步协议。
在这种协议中,每个节点在发送消息时将当前时间戳附加到消息中。
接收方使用其本地时钟的当前值与时间戳比较以计算往返时延,并校准它的时钟。
该协议的优点是它的实现简单易用;缺点是由于时间戳的传输,它无法在所有情况下达到足够准确的时间同步。
2. 基于跳数的时间同步协议基于跳数的时间同步协议利用无线传感器网络中节点之间的跳数来进行时间同步。
假设网络中的所有节点都具有相同的无线电发射时间,并且在发出时间信号后,将该信号转发到所有相邻节点。
通过测量传输时间和跳数,节点可以确定其当前时间偏差,并进行时间同步。
该协议需要更高的能量消耗以维护节点之间的同步。
3. 时钟插值算法时钟插值算法是一种通用的时间同步方法,它使用数学插值来改进节点时钟的准确性。
它的基本思想是,每个节点保留它在本地的最后一次时间同步,然后通过使用两个时间同步点之间的本地振荡分组来估计其本地钟差。
这种方法需要节点能够记录更多的历史时间同步信息,并需要更复杂的算法来计算时钟偏差。
4. 时间同步协议中的校准方法为了提高时间同步协议的准确性,一些校准方法被加入其中,例如跨层反馈校准、以及基于信号速率不变性原则的校准方法。
这些校准方法可以帮助减少噪声和误差,提高时间同步协议的准确性和可靠性。
无线传感器网络中的时钟同步技术和算法无线传感器网络(Wireless Sensor Network,简称WSN)是一种由许多分布在广阔区域内的无线传感器节点组成的网络系统。
这些节点可以感知环境中的各种信息,并将其通过无线通信传输到基站或其他节点。
然而,由于节点之间的通信需要依赖时间,时钟同步技术和算法在无线传感器网络中起着至关重要的作用。
时钟同步是指在网络中的各个节点之间保持时间的一致性。
在无线传感器网络中,由于节点分布广泛且受到环境干扰的影响,节点的时钟很容易出现偏差。
如果节点之间的时钟不同步,将会导致数据传输错误、通信冲突以及能量浪费等问题。
因此,时钟同步技术和算法的研究对于无线传感器网络的正常运行至关重要。
目前,有许多时钟同步技术和算法被提出和应用于无线传感器网络中。
其中,最常用的方法是基于全局时间的时钟同步。
这种方法通过引入一个全局时钟源,将所有节点的时钟与之同步。
全局时钟源可以是一个基站或者其他节点,它通过广播或单播的方式向其他节点发送时间信息。
接收到时间信息的节点会根据接收到的时间信息调整自己的时钟,以达到与全局时钟源同步的目的。
然而,基于全局时间的时钟同步方法存在一些问题。
首先,全局时钟源可能会受到环境干扰或恶意攻击的影响,导致时间信息的不准确。
其次,全局时钟源需要不间断地发送时间信息,这会导致能量的浪费。
另外,全局时钟源的故障或失效将会导致整个网络的时钟同步失效。
为了解决这些问题,研究人员提出了一些基于局部时间的时钟同步技术和算法。
这些方法不依赖于全局时钟源,而是通过节点之间的相互协作来实现时钟同步。
其中一个常用的方法是基于邻居节点的时钟同步。
节点会与其邻居节点进行通信,并通过交换时间信息来调整自己的时钟。
通过与多个邻居节点的通信和协作,节点可以逐渐调整自己的时钟,达到与其他节点的同步。
除了基于局部时间的时钟同步方法,还有一些其他的时钟同步技术和算法被提出。
例如,基于时间戳的时钟同步方法利用节点之间的时间戳信息来实现时钟同步。
无线传感器网络的时间同步与时钟校准方法无线传感器网络(Wireless Sensor Network, WSN)是由大量分布在空间中的无线传感器节点组成的网络系统。
这些节点可以通过无线通信互相连接,协同工作以完成各种任务。
在无线传感器网络中,时间同步和时钟校准是非常重要的问题,对于网络的性能和可靠性有着直接的影响。
时间同步是指在无线传感器网络中,使得各个节点能够按照相同的时间标准进行操作。
这样可以实现节点之间的协同工作,提高整个网络的效率。
而时钟校准则是指将每个节点的本地时钟与全局时间进行校准,以保证节点之间的时间一致性。
目前,有许多时间同步和时钟校准的方法被提出和应用于无线传感器网络中。
其中,最常用的方法之一是基于时间戳的同步方法。
该方法通过在数据包中添加时间戳的方式,使得接收节点可以获取发送节点的发送时间,从而实现时间同步。
然而,由于无线传感器网络中节点的能源和计算能力有限,时间戳同步方法往往会带来较大的能耗和时延。
为了解决时间戳同步方法的问题,一些新的同步方法被提出。
其中之一是基于声波的同步方法。
该方法利用节点之间的声波通信,在网络中广播时间信号,从而实现时间同步。
由于声波传播速度较慢,节点之间的距离可以忽略不计,从而减小了能耗和时延。
此外,基于声波的同步方法还可以提供更高的精度和稳定性,适用于一些对时间要求较高的应用场景。
除了时间同步,时钟校准也是无线传感器网络中的重要问题。
时钟校准的目的是使得每个节点的本地时钟与全局时间保持一致,以避免时间误差对网络性能的影响。
目前,常用的时钟校准方法有两种:硬件校准和软件校准。
硬件校准是通过使用高精度的时钟源来校准节点的本地时钟,例如GPS信号。
然而,由于硬件成本较高,硬件校准方法在实际应用中并不常见。
相比之下,软件校准方法更加灵活和经济。
该方法通过网络中的节点之间相互协作,根据时间同步的结果来校准本地时钟,从而实现时钟的校准。
总的来说,无线传感器网络的时间同步和时钟校准是保证网络性能和可靠性的关键问题。
面向无线传感器网络的分布式多节点时间同步研究分布式多节点时间同步是无线传感器网络中的关键问题之一。
在无线传感器网络中,由于节点数量多、分布广泛,节点之间的时间同步是实现网络协同工作的基础。
本文将围绕分布式多节点时间同步展开研究,探讨相关技术和方法。
首先,我们需要了解分布式多节点时间同步的目标和原理。
对于无线传感器网络来说,时间同步的目标是使得节点能够在相同的时间参考下进行协同工作,从而实现数据的时空一致性。
时间同步的实现依赖于节点间的通信和时间信息的传递。
在分布式的情况下,每个节点都需要和其他节点进行通信,并进行时间信息的交换和协调。
接下来,我们将介绍几种常见的分布式多节点时间同步方法。
首先是基于全局时钟的方法,其中一个节点作为全局时钟的源节点,其他节点通过与源节点的通信来同步时间。
这种方法可以实现较高的时间同步精度,但是源节点的单点故障可能导致整个网络的时间同步失效。
其次是基于网络层时间同步的方法,节点通过与相邻节点的通信和时间信息交换来实现时间同步。
这种方法相对较为灵活,可以应对网络拓扑的变化,但是可能存在网络延迟和不稳定性的影响。
最后是基于时钟偏移补偿的方法,节点通过测量与相邻节点的时钟偏移来进行时间同步,从而减少通信负载和网络延迟。
这种方法适用于资源受限的无线传感器网络,但是可能牺牲一定的时间同步精度。
在分布式多节点时间同步的研究中,还存在一些挑战和问题需要解决。
首先是节点间的通信和信息传递问题,节点之间可能受到信号传播延迟、干扰等因素的影响,导致时间同步的不准确性。
其次是节点时钟的漂移和偏移问题,节点的晶体振荡器不可避免地存在时钟漂移和偏移,需要采取相应的补偿算法来减小时钟误差。
此外,还需要考虑网络拓扑的变化和节点能量的限制等问题。
为解决以上问题,研究者们提出了许多方法和算法来改进分布式多节点时间同步的效果。
例如,引入时间戳和时间同步算法,可以减小节点之间的通信延迟和误差。
另外,基于时钟漂移估计和补偿的方法可以提高节点时钟的精度和同步效果。
无线传感器网络分布式时间同步算法研究无线传感器网络分布式时间同步算法研究随着科技的飞速发展,无线传感器网络(Wireless Sensor Network,WSN)作为一种重要的信息采集和传输技术,已广泛应用于环境监测、物联网、智能交通等领域。
在无线传感器网络中,时间同步是保证传感器节点之间数据协同采集和传输的重要环节。
然而,由于传感器节点分散在不同的位置并且缺乏全局的时钟源,导致节点间的时间同步问题变得复杂而困难。
为了解决无线传感器网络中的时间同步问题,研究人员提出了一系列分布式时间同步算法。
本文将围绕这一主题进行探讨,并分析当前常用的算法及其优缺点。
一、问题分析在无线传感器网络中,由于各个节点的位置分布随机且节点数量庞大,传感器节点之间存在着不同的时延。
同时,由于能源和存储的限制,节点之间的通信是基于无线传输,并且容易受到外部环境干扰。
这些因素使得无线传感器网络中的时间同步问题异常复杂。
二、常用算法及其优缺点1. Flooding算法Flooding算法是无线传感器网络中最简单的时间同步算法之一。
该算法的基本原理是将时间同步信息通过广播方式从一个节点发送到其他所有节点。
虽然Flooding算法实现简单,但是它会导致大量的冗余消息和能量浪费,并且无法解决节点之间的时延问题。
2. Tree-based算法Tree-based算法采用树状拓扑结构进行时间同步。
每个节点只需和其父节点进行时间同步,从而减少了通信开销。
然而,由于树状拓扑结构的建立需要依赖节点的位置信息,这种算法对节点位置的要求较高,并且当树的结构发生变化时,重新建立树状拓扑结构非常困难。
3. TPSN算法Time-Period Synchronization(TPSN)算法是一种基于时钟周期同步的时间同步算法。
该算法要求节点具备相同的时钟周期,并通过周期性的消息交换进行时间同步。
TPSN算法能够有效解决节点之间的时延问题,但是由于时钟周期的偏移和误差,还存在一定的误差。
无线传感器网络的时间同步与时钟漂移校准方法研究无线传感器网络是一种由许多无线传感器节点组成的分布式网络系统,其具有自主感知、自组织和自适应等特点,在许多领域都有广泛的应用。
在无线传感器网络中,节点之间的时间同步与时钟漂移校准是保证网络正常运行的重要问题。
本文将探讨无线传感器网络的时间同步与时钟漂移校准方法的研究。
时间同步是指无线传感器网络中各个节点通过某种方法将自己的时钟与其他节点的时钟同步,以保证节点之间的协同工作和数据收集的准确性。
时间同步在无线传感器网络中有着重要的意义。
首先,时间同步可以实现数据的时序关联,使得节点之间可以准确地进行数据交互和协同处理。
其次,时间同步可以提高无线传感器网络的能量效率。
节点之间的时间同步可以避免冲突和能量浪费,从而延长网络的寿命。
此外,时间同步还可以提供准确的事件触发和时间戳,为网络中的事件定位和数据分析提供支持。
在无线传感器网络中,节点之间的时钟存在着不同程度的时钟漂移。
时钟漂移是指节点时钟的频率偏差,也就是实际时钟与真实时钟之间的差异。
时钟漂移对于时间同步和数据收集的准确性有着重要影响。
如果时钟漂移不能得到准确的校准,将导致网络中数据的误差累积,进而影响节点之间的通信和协同工作。
目前,针对无线传感器网络的时间同步与时钟漂移校准问题,已经提出了许多研究方法和算法。
下面将介绍其中两种常见的方法:网络全局时间同步和分布式时间同步。
网络全局时间同步方法是指通过一个或多个专门的节点将网络中的所有节点之间的时钟同步。
这种方法可以确保网络中的所有节点具有相同的时间参考,从而实现严格的时间同步。
其中最常用的方法是基于时间源的同步方法。
在这种方法中,一个节点被选为时间源,并向其他节点广播自己的时间信息。
其他节点通过接收时间源节点的信号进行时钟同步。
时间源节点可以是网络中的某个特定节点,也可以是多个节点的组合。
此外,还有一些基于无线信道延迟和节点距离的时间同步方法。
这些方法通过测量节点之间的无线信道延迟和节点之间的距离来实现时钟同步。
无线传感器网络中的时间同步方法无线传感器网络(Wireless Sensor Networks,WSN)是由大量部署在被监测区域内的无线传感器节点组成的网络。
这些节点通过无线通信协作工作,收集、处理和传输环境中的信息。
时间同步是WSN中的一个关键问题,它可以确保节点之间的时间一致性,提高网络性能和能源效率。
本文将介绍一些常用的无线传感器网络中的时间同步方法。
一、基于全局时间同步的方法基于全局时间同步的方法是通过引入一个全局时间参考来实现节点之间的时间同步。
其中,GPS是最常用的全局时间参考。
节点通过接收GPS信号来获取准确的时间信息,并进行时间同步。
然而,GPS信号在室内或者复杂的环境中可能受到干扰,导致时间同步的不准确。
因此,基于全局时间同步的方法在某些特殊环境下可能并不适用。
二、基于局部时间同步的方法基于局部时间同步的方法是通过节点之间相互协作来实现时间同步。
其中,最常用的方法是基于邻居节点的时间同步。
节点通过与邻居节点进行通信,交换时间信息,并根据接收到的时间信息进行时间同步。
这种方法不依赖于全局时间参考,适用于无法获取准确全局时间的环境。
然而,由于节点之间的通信可能受到信号传输延迟等因素的影响,导致时间同步的误差增大。
三、基于时钟漂移的方法基于时钟漂移的方法是通过测量节点时钟的漂移率来实现时间同步。
节点的时钟可能存在一定的漂移,即时钟的频率与真实时间的频率不完全一致。
通过测量时钟的漂移率,节点可以根据漂移率对时间进行校正,从而实现时间同步。
然而,由于节点时钟漂移率的变化可能受到温度、电压等因素的影响,导致时间同步的准确性降低。
四、基于事件驱动的方法基于事件驱动的方法是通过节点之间的事件触发来实现时间同步。
节点在收到某个事件触发信号后,记录下该事件发生的时间,并将该时间信息传递给其他节点。
其他节点根据接收到的事件时间信息进行时间同步。
这种方法不依赖于全局时间参考和时钟漂移,适用于无法获取准确全局时间和时钟漂移率的环境。
无线传感器网络中的数据时钟同步方法无线传感器网络(Wireless Sensor Network, WSN)是一种由大量分布在空间中的无线传感器节点组成的网络。
这些节点通过自组网技术,能够协同工作并收集、处理、传输环境中的各种信息。
在无线传感器网络中,数据时钟同步是一项十分关键的技术,它可以确保网络中各个节点的时钟准确同步,从而保证数据的一致性和可靠性。
目前,存在多种数据时钟同步方法用于无线传感器网络。
下面将介绍几种常见的方法:1. 基于事件触发的同步方法:该方法基于网络中发生的事件来进行同步。
当一个事件在无线传感器网络中发生时,节点会根据该事件的时间戳进行调整自身的时钟。
例如,当一个节点探测到温度超过某个阈值时,它会广播一个事件,并将当前时间戳加入其中。
其他节点收到该事件后,根据事件中的时间戳进行时钟调整。
这种方法能够在网络中实时进行同步,但对事件的触发和传播有较高的依赖性。
2. 基于交互的同步方法:该方法基于节点之间的相互交互来进行同步。
节点会周期性地向其邻居节点发送同步请求,并利用接收到的时钟信息来调整自身的时钟。
这种方法能够适用于各种网络环境,并且能够自动适应节点的加入和离开。
然而,由于通信的延迟和不确定性,可能导致时钟同步误差较大。
3. 基于时间协议的同步方法:该方法使用时间协议来进行同步,例如网络时间协议(Network Time Protocol, NTP)。
节点会周期性地向时间服务器发送时间请求,服务器会回复准确的时间戳。
节点根据收到的时间戳来调整自身的时钟,并与时间服务器保持同步。
这种方法能够提供较高的时钟同步精度,但对于无线传感器网络来说,可能会产生较大的通信开销和能量消耗。
4. 基于位置信息的同步方法:该方法通过节点之间的相对位置信息来进行同步。
节点会通过测量收到信号的强度和到达时间差来估计与邻居节点的距离,并根据距离信息来进行时钟同步。
这种方法可以减少通信开销和能量消耗,但对于大规模网络来说,位置信息的获取和处理可能会带来一定的复杂性。
2013年2月西安电子科技大学学报(自然科学版) Feb.2013 第40卷第1期JOURNAL OF XIDIAN UNIVERSITY V ol.40 No.1 doi:10.3969/j.issn.1001-2400.2013.01.017一种简单的分布式无线传感器网络时间同步方案师 超,仇洪冰,陈东华3,李晓艳112,1( 1. 西安电子科技大学 通信工程学院,陕西 西安 710071;2.桂林电子科技大学 信息与通信学院, 广西 桂林 541004;3. 华侨大学 信息科学与工程学院, 福建 厦门 361021)摘要:无线传感器网络(WSN)缺乏基本架构,具有分布式、能量受限、存储及计算能力受限的特点.这些特点决定了在设计无线传感器网络时间同步方案时,不能有太复杂的计算和路由选择.为了实现快速时间同步和较低的能量消耗,本文提出一种简单的无线传感器网络时间同步方案.各个节点广播自己当前的时钟信息,相应的邻居节点接收到这些信息后,对接收到的信息做简单的算术平均,将平均值作为下一个时刻的时钟刻度再进行广播.此过程反复进行,最终会使网络所有节点的时钟达到一个相同的平均值,实现无线传感器网络的分布式同步.由于网络节点只接收来自邻居节点的广播信息,故该方案无复杂的路由选择,并且计算简单、收敛快速、能耗较低.用随机矩阵理论对该同步算法的收敛性进行了理论证明,对收敛速度和能耗以及同步误差进行了分析.最后用计算机仿真对本方案进行了仿真实验,实验结果符合预期分析,证明本方案切实可行.关键词:同步;时间同步 ;无线传感器网络中图分类号:TN929.5 文献标识码:A 文章编号:1001-2400(2013)01-0116-10 Simple distributed time synchronization scheme for wireless sensor networks2,13SHI chao1, QIU Hongbing, CHEN Donghua, LI Xiaoyan1(1. School of Telecommunication Engineering, Xidian Univ., Xi'an 710071, China; 2. Info. and CommunicationCollege, Guilin Univ. of Electronic Tech., Guilin 541004, China;3. Information Science & Engineering College,Huaqiao Univ.,Xiamen 361021,China)Abstract: Wireless sensor networks (WSN) is featured by none infrastructure, distribution, resource constraintsand limited processing and memory. Accordingly, when designing the time synchronization protocols for wirelesssensor networks, intensive computation and complex route selecting are undesirable. For accelerating the timesynchronization and lowering energy consumption in WSN, this paper presents a simple time synchronizationscheme for wireless sensor networks. In this scheme, each note broadcasts its clock information and as a result itsneighbors will receive the clock information. After averaging the received clock information, the neighbor notestake the averaged clock information as its next clock tick. This process is carried out repeatedly until all the netnotes meet a same clock tick, which means the whole networks achieve distributed synchronization. As each notein the network only receives its neighbor’s information, so this scheme does no need specific routing and toocomplex processing and has fast convergence rate and low energy consumption. The proof for the convergence ofthe proposed synchronization algorithm is carried out using random matrix theory. The analysis of the convergencerate and the energy consumption and synchronization error are also carried out. The results of theoretical analysisare verified by computer simulation.Key Words: synchronization, time Synchronization, wireless sensor networks______________________________2012-09-25 10:56收稿日期:2012-05-14 网络出版时间:基金项目:国家自然科学基金资助项目(61071088);中央高校基本科研业务费专项资金资助项目(11QZR02);广西第1期 师超等:一种简单的分布式无线传感器网络时间同步方案 117时间同步是所有分布式系统都要解决的一个重要问题,对于无线传感器这种能量、计算能力及存储能力受限的分布式网络尤其重要.分布式同步是指要求分布式网络的所有节点达到统一的时间尺度[1].许多分布式节点是依靠自己内部的晶体振荡器提供时钟信息,因而要使这些节点达到一致的时间尺度,就要使他们的相位和频率保持一致.无线传感器网络的时间同步主要面临以下几个方面的挑战:随机延迟、不完美的晶体振荡器、有限的能源动力、有限的存储和计算能力[2],对于大规模的无线传感器网络而言,还面临同步协议的可扩展性要求[3-4].早期人们对无线传感器网络时间同步的研究主要集中在如何消除随机延迟对同步精度的影响[5-7].近几年的研究集中于如何正确估计接收时钟信息来提高同步精度[8].然而这些研究对无线传感器网络节点有限的储存能力和计算能力等方面考虑甚少.尤其是在多跳无线网络环境中,为了维护全网的时钟同步,这些算法需要每个节点建立复杂的路由信息并通过大量的计算来完成.在无线传感器的网络时间同步中,节点间的时钟信息交换有广播与点对点两种方式[9].文献[6]和[9]是点对点方式,[5]和[7]是广播方式.文献[6]需要建立层次性网络结构,每级子节点通过点对点的信息交换实现和父节点的时间同步,最终实现和根节点的同步,这种同步方法本质上是主从同步方式,对根节点和各级父节点的依赖性较强,也不适用于网络拓扑的动态变化.文献[5]和[7]的同步方法中引入了参考节点,参考节点广播不含时间信息的信标,广播域中的节点通过交换接收到的信标实现网络的分布式同步.尽管参考节点不影响同步精度,但同步过程的实现依赖于参考节点.所以上述同步方法并不是完全分布式同步方式.对于无线传感器这种分布式网络,在设计算法时要充分考虑其分布式自组织等特性.文献[9]提出一种成对平均时间同步(A TSP)方案,网络中每个相邻节点对之间进行时钟信息交换,时钟信息更新值为节点对之间的算术平均值,网络拓扑图中各条边的每个节点对按一定次序反复这样交换和更新时钟信息,最终可以使网络中所有节点的时钟信息收敛于初始时钟信息的平均值.这种同步方式是完全分布式,具有很好的鲁棒性和可扩展性,并且有较高的同步精度.但是这种同步方法要求网络中每条边进行时钟信息交换,导致信息交换交换量大,能耗过高,并且同步收敛速度较慢.在A TSP 同步方案中,一个节点在向其邻居节点发送时钟信息时处于其广播域中的很多节点也能够收到此信息,同样一个节点在接收时钟信息时能够收到许多其他邻居节点的时钟信息.考虑到上述因素本文提出一种广播接收(Broadcast and Receive Synchronization: BRS )同步方案.网络中各个节点广播自己当前的时钟信息,相应的邻居节点接收这些信息,对接收到的信息做简单的算术平均,把此平均值作为自己下一个时刻的时钟刻度.这样的过程反复进行,最终会使网络节点达到一个相同的刻度值,从而实现网络的分布式同步.由于网络节点只接收邻居节点的时钟信息,所以该方案不需要具体的路由选择,并且计算简单,各个节点只需对收到的信息做算术平均,通过广播消息的方式减少需要发射消息的数量,减小了网络能耗.与ASTP 算法相比,本文所提算法收敛速度快,消息交换量小,能耗低,适合无线传感器网络对时间同步的要求. 1系统模型1.1网络模型假定在一定区域内随机分布有个传感器节点,每个节点装配一个晶体振荡器提供时钟.这些节点通过一定的拓扑结构连接成一个分布式无线传感器网络.我们用一个简单无向图来描述分布式无线传感器网络.用图的顶点集合N i (,)G V E ={1,2,}V N =…,表示网络节点.如果一对节点之间能够相互收发信息,则称该节点对为相邻节点.如果(,)i j (,)i j E ∈,E 是边集合,则表示一条边.对于无向图,如果,则(,(,)i j (,)i j E ∈)j i E ∈.一个节点i V ∈的邻居节点定义为.节点i 的度定义为.图G 度序列向量定义为.用表示节点 和(){:(,)}S i j V j i E Δ=∈∈i d ()i d S i =||12[]T n d d d = … d ij a i j 之间的边数,如果西安电子科技大学学报(自然科学版) 第40卷 118 节点i 和j 互为邻居则,否则1ij a =0ij a =,称矩阵()ij N N a =A ´为图的邻接矩阵.本文假定网络拓扑结构为静态拓扑,其无向图为连通图.G (,)G V E =1.2时钟模型分布式无线网络中,每个节点都有自己晶体振荡器来记录本地时间.晶体振荡器自由运行的输出可用一个余弦函数来表示:i ()cos (),i S t t i =Φ (1)其中()(0)2/()i i i t T t πΦ=Φ++ζ,()i t Φ表示瞬时相位,为自由振荡周期,i T 0i i 0T T T T =+Δ,为真实的振荡周期,随机周期偏差.为初始相位,i T Δ(0)i Φ()t ζ为随机相位噪声.序列定义为晶体振荡器的时间刻度即离散相位,满足()i t n ()i t n (())2i i t n n πΦ=⋅,0,1,2n =……,这样得到离散非耦合时钟模型为:()(0)(),i i i t n t nT v t =++ (2)其中为初始相位,为自由振荡周期,为离散随机噪声.(0)i T ()v t i t 时钟同步分为频率同步和全同步(即频率和相位都同步)两种情况.当时间参量足够大时,如果每个时间节点存在一个共同的振荡周期T ,满足,,1,2i j T T T i j i j = = , ≠=…,则认为这些网络节点是频率同步的.如果每个网络节点的时钟刻度都是相等的,即满足()(),,=1,2,,1,2,i j t n t n i j i j N n = ≠ ; …,=¼,则认为这些网络节点是全同步的.本文的时钟模型采用离散时钟模型,并且不考虑相位噪声和路径损耗. 2 BRS 同步算法分布式无线网络的时间同步要求有三种方式[6]:第一种是最简单的同步方式,仅需处理事件或消息的先后顺序.第二种是维护本地网内的相对时钟关系,要求所有节点达到统一的时间尺度.本文的BRS 算法、经典的RBS 协议[5]以及文献[9]的A TSP 算法属于这一类.第三种是要求所有节点的时钟同步于一个参考时钟,TPSN 协议[6]即属于这一种.由上文1.2节的时钟模型可知,网络节点的晶体振荡器存在频率偏差和相位偏差,因而决定了无线传感器网络的同步方案有两种:反复校正相位偏差与同时校正相位偏差和频率偏差.相偏是由于初始值不同以及频偏引起的.相位同步只能维持短期的时间同步,要做到较长期时间同步就要做到相位和频率同步,即实现全同步.本文既研究相位同步又研究频率同步.2.1相位同步在A TSP 同步算法中,一个节点在向其邻居节点发送时钟信息时处于其广播域中的很多节点也能够收到此信息,同样一个节点在接收时钟信息时能够收到许多其他邻居节点的时钟信息,A TSP 算法对接收到的这些时钟信息只用其中之一,其他信息作为干扰项处理,本文的BRS 算法则要充分利用这些接收到的信息.假定网络各节点无频率偏差,即,这样只要相位实现同步即达到了全同步.并且假定时钟信息从发送端到接收端无延迟.,,1,2i j T T i j i j N = , ≠=…算法1 BRS 相位同步算法第1期 师超等:一种简单的分布式无线传感器网络时间同步方案 1191.对于连通网络中的每个节点在n 时刻,1,2j N =…0,1,2,n =…,∞,分别广播自己当前的相位信息.(),1,2,j t n j N =…,2.处于节点j 广播域的节点接收来自其邻居节点的相位信息i (),1,2,j t n j K =…,,其中为接收到信息总数.节点对接收到的这个相位信息做算术平均K i K 11()Kj j t n K=∑,把此平均值作为节点i 的下一个时刻度的相位,即: 1n + 11(1)()Ki j t n t n K =+=∑.j), (3) 3.节点i 将更新后的相位信息广播给其邻居节点.(1i t n +4.上述过程反复进行直至网络所有节点的时钟刻度达到一个相同的值,即整个网络达到分布式相位同步.用向量表示个节点当前时刻的时钟刻度,在不考虑传播延迟的情况下有 :12()[()()()]TN n t n t n t n = … t N (1)*()./n n +=t A t d (4) 其中(4)中符号./表示矩阵点除.引理1:设S 是不可约随机矩阵,则1)的S 谱半径()1ρ=S .2)对于任一正向量z ,成立 lim c ,k k →∞=S z x (5) 其中是相应x ()ρS 的特征向量,是某个常数.c 证明:显然是随机矩阵[1,1,=e T ?]S 的特征向量,对应的特征值为1.又S 是不可约非负矩阵,且,根据Perron–Frobenius 定理0e >[10]可得:S 的谱半径()1ρ=S .1)式得证.假定S 存在个线性无关的特征向量:,则的线性组合为:m (1)(2)(),m x x x ,?(1)(2)(),m x x x ,?()1c mi i i ==∑.z x (6)所以有:西安电子科技大学学报(自然科学版) 第40卷120 ()1c mkk i i i ==∑,i S z l x (7) (7)中是与i l ()i x 相对应的特征值,不妨假定1()1ρ==S l ,根据Perron–Frobenius 定理[10]知:()1i ρ=S l <,.2,3,i m =?对(7)式两边以为参数取极限:k ()(1)()(1)112lim lim c c lim c c c ,m mkk i k i i ii i k k k i i →∞→∞→∞====+=∑∑1=S z x x x x l l x (8) 其中(1)1c c ,===x x e ).2)式得证.定理1:对于连通的无线传感器网络,在网络节点频率相同的情况下,无论各节点的初始相位如何取值,经过算法1进行反复的时钟交换和更新,最终各节点的相位(0)t (1n +t 趋向一致.即实现网络的相位同步.证明:对邻接矩阵A 按行归一化处理后得到的矩阵为.由随机矩阵的定义P [10-11]知矩阵为随机矩阵.又因为强连通图G 的充要条件是其邻接矩阵P A 是不可约矩阵[10],所以为不可约随机矩阵. P 由邻接矩阵和度序列向量的定义得(4)式右边为:()./()n n =A t d P t 创,这样(4)简化为:(1)()n .n +=t P t ´ (9) 由(9)式可得:2(1)()(1)(0)n n n n ,+= =− =…=t P t P t P t ´´´ (10) P 为不可约随机矩阵,由引理1可得:T lim (1)lim (0)c c[1,1,1].n n n n →∞→∞+===…t P t x ´ (11) 这说明在本文所提算法中,无论网络各节点的初值如何取值,节点的相位最终趋于一致,即达到相位同步.定理1得证.2.2 频率同步频率是晶体振荡器固有属性,频率的不同步是晶体振荡器固有属性,而相位的同步则不是其固有属性,是由于频率不同步和网络节点运行时间的不同产生的.所以频率和相位的感知是不同的.节点的本地时钟可以分为硬件时钟和软件时钟.硬件时钟用晶振脉冲作为时间度量的基准,软件时钟用一个计数器记录振荡器产第1期 师超等:一种简单的分布式无线传感器网络时间同步方案 121生的脉冲数量,每当脉冲数累计到预设的阈值后就输出一个中断信号并重新开始计数.通过调整计数器的阈值可以构造出不同频率的软件时钟.在实际处理中,人们不可能对晶体振荡器固有的频率做出调整,只能对软件时钟做处理.本文的BRS 算法只要求知道晶振的初始频率,晶振的初始频率信息一般从其硬件说明书获得,并且在网络的同步开始可以方便地使用软件处理[12].在同步过程中可以认为网络节点能够感知自己的频率信息[9].现在我们考虑存在频率偏差的情况,即,,1,2i j T T i j i j N ≠ , ≠=….类似2.1节中相位同步过程,不同的是在此过程中各个节点广播和接收的时钟信息是频率信息.并且假定时钟信息从发送端到接收端无延迟.算法2 BRS 频率同步算法 1.对于连通网络中的每个节点在时刻,1,2j N =…n 0,1,2,n =…,∞,分别广播自己频率信息.(),1,2,j T n j N =…,2.处于节点j 的广播域的节点i 接收来自其邻居节点的频率信息(),1,2,j T n j =…,Κ,其中Κ为接收到信息总数.节点i 对接收到的这个相位信息做算术平均Κ11()Kj j T n K=∑,把此平均值作为节点i 的下一个时刻度的相位,即: 1n + 11(1)()Ki j T n T n K =+=∑.j).n (12) 3.节点i 将更新后的相位信息广播给其邻居节点.(1i T n +4.上述过程反复进行直至网络所有节点的时钟频率达到一个相同的值,即整个网络达到分布式频率同步.我们用向量表示这个节点当前时刻的时钟频率,在不考虑传播延迟的情况下有:12()[()()()]TN n T n T n T n = … T N (1)*()n +=T P T (13) 其中表示网络拓扑图的归一化邻接矩阵.P 定理2:对于连通的无线传感器网络,无论网络节点的初始频率如何取值,经过算法2进行反复的时钟交换和更新,最终各节点的频率(0)T (1n )+T 趋向一致.即实现网络的频率同步.证明:同定理1. 3 同ATSP 算法进行比较A TSP 算法是由Wu [9]等人最近提出的一种无线传感器网络时间同步协议.该协议通过节点对之间的信息交换,使实现网络各节点同步于其初始值的平均值,具体算法如下:西安电子科技大学学报(自然科学版) 第40卷122 1)网络拓扑图中每条边的节点对分别交换本地时钟信息和;,)i j (()i t n ()j t n 2)节点的下一个时钟刻度设置为节点对时钟刻度的平均值,即1(1)(1)(()());2i j i j t n t n t n t n +=+=+ (14) 3)上述过程按一定的边顺序反复进行.在文献[9]中,作者把A TSP 协议同TPSN 协议进行比较,认为A TSP 协议的同步精度要高于TPSN 协议,但这是以大量的消息交换为代价的.下面对本文的BRS 同步算法和A TSP 同步算法在收敛速度、同步误差及能耗等方面做定性分析或定量比较. 3.1 同步收敛速度本文的BRS 同步算法充分利用无线信道的广播特性来提高同步的收敛速度和降低网络能耗.节点i 在向节点j 发送其时钟信息时,节点的其他邻居节点同样能收到此信息,同理节点i j 在向节点i 发送其时钟信息时,节点j 的其他邻居节点也能收到此信息,将各节点收到的信息做算术平均作为它们下一时刻的时钟刻度.此算法只对收到的信息做处理,所以算法简单.本文所提的BRS 算法中节点在调整自己的时钟信息时参考了和其相邻所有节点的时钟信息,而A TSP 算法只利用了其相邻节点其中一个的时钟信息,所以本文的BRS 算法达到同步的收敛时间要小于A TSP 算法的收敛时间.3.2 随机延迟和同步误差在2.1和2.2节中我们忽略了时钟信息的随机延迟,但实际情况中信息从发送端到接收端的消息延迟总是客观存在的.文献[6]将消息延迟细分为发射、接入、传输、传播、接受和接收六个分量.这六个分量体现在发端和接端的不同网络层次上.用随机变量表示节点ij qj 的消息到节点i 的随机延迟,则本文算法1中第2步,节点i 的下一个时刻度的相位实际更新应为:1n + 11(1)(())Ki j j t n t n q K =+=+∑ .ij(15) 在A TSP 算法中,节点i 有延迟的消息更新为:1(1)(()()).2i i j t n t n t n q +=++ ij (16) 不确定的时间消息延迟是同步误差的主要来源[9],提高同步精度的重要方法就是设法减少消息延迟,例如通过MAC 层或物理层时间戳技术来消除一些随机延迟因素的影响以提高同步精度[1].如同文献[9],本文用消息随机延迟的方差来表示同步误差.(16)中的是(15)中个中的一个,假定这个随机变量的方差分别为:ij qK ij q K ij q 12,,,K σσ…σ,其最小值为,最大值为.min σmax σ用,分别表示A TSP 同步方案和BRS 同步方案的同步误差,由(15)和(16)得:(a)D Δ(b)D Δ11(a)=Kj j D K =Δσ∑,1(b)=2j D Δσ,则min max (a)D σ≤Δ≤σ,min max 11(b)22D σ≤Δ≤σ,所以BRS 的同步误差比A TSP 的同步误差要高,但误差上界为A TSP 同步误差的两倍.第1期 师超等:一种简单的分布式无线传感器网络时间同步方案 1233.3 能量消耗无线传感器网络是能量受限的分布式网络,在设计其时间同步算法时必须考虑能耗问题,无线传感器网络的能效问题贯穿于WSN 通信协议开发的始终[13].在无线通信中,发射消息总是比接收消息消耗更多的能量[14],本文的BRS 同步算法通过广播方式一方面减小了消息发送数量节约能量、降低能耗,另一方面提高收敛速度缩短同步时间节约能量、降低能耗.在A TSP 同步算法中一个边的两对节点完成消息交换需要发射两次消息.假定由节点组成的连通网络图中,每个节点的平均度为,则A TSP 算法完成一遍循环要发射消息的数量为,而BRS 算法完成一遍循环要发射消息的数量为.例如在个节点的全连接网络中,每个节点都和其他个节点相连接(即每个节点的度为),在A TSP 算法完成一遍循环要发射消息的数量为,而BRS 算A TSP N ave d 2ave Nd N N 1N −1N −2(1)N N −BRS 44.1内均匀分布,1网络中各个节18n =图1分布式无线网络拓扑图 图2网络节点的相位同步仿真西安电子科技大学学报(自然科学版)第40卷124图3本文BRS算法和ATSP算法收敛比较 图4 BRS算法和ATSP算法的同步误差仿真比较 在图1的拓扑结构中取节点3和节点4分别按A TSP同步算法和BRS同步算法进行相位更新,通过观察它们的相位变换来比较这两种算法的收敛速度,仿真结果如图3示.可以看到A TSP算法在时刻各个节点相位才能达到一个相同值,而本文的BRS算法在54n=20n=时刻各个节点相位就可以达到一个相同值.这说明本文算法的收敛速度要快于A TSP算法.在网络图中节点的度值越大这种效果越明显.在图1示的网络图中,节点3的度为2,节点4的度为4,所以节点4的收敛快速性要明显优于节点3.节点的度值越大,表明接收到的信息越多,因而收敛速度越快,这个结果符合预期.另外可以看到本文的BRS算法与A TSP算法最终的收敛值并不一致,这是由于两种算法机制不同.本文算法通过计算接收到邻居节点的算术平均使网络中各节点达到某一个均值,这个均值与网络拓扑和初始值的分布都有关系,但不一定是各节点的初始平均值,而ASTP算法的目的就是要各节点同步于其初始值的平均值.4.2误差比较下面我们对BRS同步算法和A TSP算法的同步误差做仿真实验.实验环境为图1示的5节点组成一个连通的分布式无线传感器网络,其初始相位在区间内均匀分布.每个节点接收来自邻居节点的广播时钟信息,通过算法1不断地更新自己的相位值,每个节点的每次接收时钟信息中都会有消息延迟产生.在仿真试验中假定随机延迟在区间均匀分布.如同文献[9],我们用能量函数(或李亚普洛夫函数)来表示同步误差,其中为节点i在n时刻的实际相位,(0,1)(0.001,0.01)21()(()())NiiF n t n t=⎡=−∞⎣∑ ⎤⎦()i t n ()t∞为理解状况下,网络各节点的相位收敛值.图4为BRS同步算法和A TSP算法的同步误差仿真比较图,由图4可以看到BRS同步误差比A TSP的同步误差略大,但不会超过A TSP的同步误差的两倍,此仿真实验结果和3.2节的理论分析基本一致.综上可得:尽管BRS同步算法的误差比A TSP同步算法误差略高,但BRS同步算法能带来同步收敛速度快、网络能耗低的好处.实际应用中可以通过MAC层或物理层时间戳技术来消除一些随机延迟因素的影响以提高同步精度.5 结束语在设计无线传感器网络的时间同步协议时,要考虑许多制约因素:低成本的时钟晶振、无线的网络环境、能量及计算存储能力受限、高密度的网络节点,网络节点随时可能脱离网络等.这些因素决定了时间同步协第1期师超等:一种简单的分布式无线传感器网络时间同步方案125议应该是分布式的,且不能有复杂的路由选择和复杂的计算.本文提出一种简单的分布式无线传感器时间同步方案,网络节点只进行邻居之间的时钟信息交互.充分利用无线网络环境的广播特性,一个节点在发送时钟信息时,其邻居节点都会接收到此时钟信息.一个接收节点可以收到许多相邻节点发送来的时钟信息,将收到的当前时刻的这些时钟信息进行算术平均,并将结果作为自己下一个时刻的时钟刻度,然后再将此时钟刻度广播给其相邻节点.如此反复进行,最终使网络所有节点的时钟趋于一致,即实现了网络的分布式同步.这种方法通过一次接收许多邻居节点的时钟信息提高同步收敛速度,通过广播方式发射时钟信息减少了消息发送数量降低能耗.作者以后的研究工作中会考虑网络拓扑在动态变化时的时间同步该如何设计,以及如何提高同步收敛速度使网络能耗到达最优.参考文献:[1] Yik-Chung Wu, Qasim Chaudhari,et al. Clock Synchronization for Wireless Sensor Networks [J]. IEEE SignalProcessing Magazine, 2011, 124-138.[2] Ian F.Akyildiz, Mehmet Can Vuran .Wireless Sensor Networks [M]. New Y ork: Wiley, 2010, 243-264.[3] Y.W. Hong, A. Scaglione. A Scalable Synchronization Protocol for Large Scale Sensor Networks and ItsApplications [J]. IEEE Journal on Selected Areas in Communication, 2005, 23(5):1085-1099.[4] Roberto Pagliari, Anna Scaglione. Scalable Network Synchronization with Pulse-Coupled Oscillators [J]. IEEETransactions on Mobile Computing, 2011, 10(3):392-404.[5] J.Elson, L.Girod, D.Estrin. Fine-grained Network Time Synchronization Using Reference Broadcasts [C]. FifthSymposium on Operating System Design and Implementation, 2002, 147-163.[6] S.Ganeriwal, R.Kumar, M.B.Srivastava. Timing Sync Protocol for Sensor Networks [C]. First InternationalConference on Embedded Network Sensor Systems, 2003, 138-149.[7] K.Noh, Q.Chaudhari, E.Serpedin, et al. A New Approach for Time Synchronization in Wireless SensorNetworks: Pairwise Broadcast Synchronization [J]. IEEE Transactions on Wireless Communications, 2008, 7(9):3318-3322.[8] M. Leng, Yik-Chung Wu. On Clock Synchronization Algorithms for Wireless Sensor Networks UnderUnknown Delay [J]. IEEE Transactions on V ehicular Technology, 2010, 59(1):182-190.[9] J.Wu, L.Jiao, R.Ding. A verage Time Synchronization in Wireless Sensor Networks by Pairwise Messages[J].Computer Communications, 2012, 35(2):221-233.[10] R. A. Horn, C. R. Johnson. Matrix Analysis [M]. Cambridge University Press, Cambridge, 1985.[11] J. Liu, S. Mou, A.S Morse, et al. Deterministic Gossiping [J].Proceeding of the IEEE,2011,99(9):1505-1524.[12] J.V an Greunen, J.Rabaey. Lightweight Time Synchronization for Sensor Networks [C], the Second AcmInternational W orkshop on Wireless Sensor Networks and Applications, 2003, 11-19.[13] 李延晓,张月玲,管桦,等.一种无线传感器网络MAC 层能量有效算法 [J].西安电子科技大学学报.2012,39(1), 168-171.Li Y anxiao, Zhang Y ueling, Guan Hua, et al. Novel Low Energy Consumption MAC Protocol for the Wireless Sensor Networks [J]. Journal of Xidian University, 2012, 39(1): 168-171.[14] K-Y. Cheng, K-S. Lui, Y.-C. Wu, et al. A Distributed Multi-hop Time Synchronization Protocol for WirelessSensor Networks Using Pairwise Broadcast Synchronization [J]. IEEE Transactions on Wireless Communications, 2009, 8(4):1764-1772.。